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In the present study, we have investigated entropy generation on a magnetohydrodynamic fluid flow and heat 
transfer over a stretching cylinder with a porous medium in slip flow regime. A uniform heat source and radiation 
is also considered. Similarity transformation has been applied for making an ordinary differential equation from 
nonlinear governing partial differential equations. The numerical solution for the set of nonlinear ordinary 
differential equations has been obtained by using the fourth-order Runge-Kutta scheme together with the 
shooting method. The effects of pertinent parameters such as the magnetic field parameter, permeability 
parameter, slip parameter, Prandtl number and radiation parameter on the fluid velocity distribution, temperature 
distribution, entropy generation and Bejan number are discussed graphically. 
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1. Introduction 

 
The study of heat transfer around cylinders has received much attention in recent years due to its 

many important practical applications such as electronics cooling, thermal design of buildings, solar 
collectors, drilling operations, geothermal power generation, commercial refrigeration and float glass 
production, etc. A boundary layer viscous fluid flow and heat transfer characteristics outside a moving or 
stretching cylinder is an important problem in extrusion processes. The technological applications of such 
studies include fiber production and hot rolling. Lin and Shih [1, 2] investigated laminar boundary layer heat 
transfer along horizontal and vertical moving cylinders with constant velocity. Wang [3] was first who 
studied the fluid flow and heat transfer characteristics outside the stretching hollow cylinder. For large 
Reynolds number, he compared numerical results with asymptotic solutions. The axisymmetric motion of a 
viscous fluid was studied by Burde [4] over a stretching cylinder. Further Ishak and Nazar [5] and Bachok 
and Ishak [6] investigated heat transfer characteristics of an axisymmetric laminar boundary layer flow 
outside a stretching cylinder with numerical solutions by converting governing equations into ordinary 
differential equations, which contain a curvature parameter. Earlier, the problem of laminar natural 
convection boundary layer flow over a vertical cylinder was studied by Sparrow and Gregg [7]. Chamkha 
and Quadri [8] studied heat and mass transfer in the presence of an internal heat source from a permeable 
cylinder immersed in a porous medium with a magnetic field. They applied heat source effect. Saeid [9] 
examined a free convective fluid flow and heat transfer from a horizontal cylinder by using a thermally non-
equilibrium model. Nguyen et al. [10] and Gang et al. [11] examined the transient behavior of a viscous flow 
over an expanding stretching cylinder and a rotating circular cylinder. respectively. 

Flow and heat transfer with slip has its applications in several engineering and industrial processes. 
Heat transfer can be enhanced by considering velocity slip. Due to this reason the fluid flow problems with 
slip have attracted attention of researchers. The laminar boundary layer flow due to a stretching cylinder in 
the presence of slip was studied by Wang and Ng [12] and Mukhopadhyay [13]. Chauhan et al. [14, 15] 
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considered the slip flow and heat transfer through a porous medium outside a hollow stretching cylinder in 
the presence of a magnetic field. Recently, Jain and Parmar [16] examined the heat and mass transfer 
characteristics in an MHD flow through a stretching cylinder in the heat source. 

The radiation effect has an important role in the context of space technology and in the processes 
involving high temperatures. Jain and Bohra [17, 18] studied fluid flow and heat transfer over a rotating disk 
and rotating channel through a porous medium with radiation effect and in different conditions. Abbas et al. 
[19] analyzed the radiation effect on a laminar MHD viscous fluid flow over a stretching cylinder in porous 
medium. Jain and Chaudhary [20, 21] investigated the effect of radiation on heat and mass transfer over a 
moving cylinder. 

Heat generation/absorption has its application in problems dealing with dissociating fluids, 
concerned with chemical reactions, may alter the particle deposition rate. Abel et al. [22] gave on analytical 
solution for the problem of flow and heat transfer of an incompressible viscous fluid over a continuously 
moving permeable stretching surface with nonuniform heat source/sink in a fluid-saturated porous medium. 
The effects of heat source, chemical reaction and suction/injection over a permeable cylinder moving with a 
linear velocity were studied by Chamkha [23]. Manjunatha et al. [24] took a stretching cylinder to observe 
the effect of heat generation/absorption on the flow and heat transfer of an MHD dusty fluid, which is 
embedded in porous medium. 

The analysis of entropy generation minimization in a thermal system was pioneered by Bejan [25]. 
Based on his idea, many researchers have examined entropy generation effects in flow and heat transfer 
systems such as Makinde and Beg [26] and Jain et al. [27, 28]. The minimization of entropy over an 
isothermal rotating cylinder was investigated by Bak and Heilen [29] and Yilbas [30]. Butt and Ali [31] 
discussed entropy generation effect on a magnetohydrodynamic flow and heat transfer over a radially 
stretching sheet. Recently, entropy production in a viscous flow over an oscillating stretching cylinder was 
examined by Munawar et al. [32]. Butt and Ali [33] contributed to the study of entropy generation effects in 
MHD fluid flow over a stretching cylinder. Motivated by the studies mentioned above, in the present study 
we have investigated entropy generation for a magnetohydrodynamic slip flow over a stretching cylinder in a 
porous medium with radiation and uniform heat source. 

 
2. Flow analysis 

 
Consider a steady, radiative, laminar, boundary layer flow of an electrically conducting viscous fluid 

driven by a stretching cylinder of diameter 2a, in a fluid saturated porous medium along the axial of the 
cylinder and r is measured in the radial direction and z is in axial direction. A uniform magnetic field 0B  is 
applied along the radial direction. An induced magnetic field has been neglected as the magnetic Reynolds 
number considered is small. Considering the assumptions mentioned and Chauhan et al. [14]. 
It can be written as 
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 Subject to the boundary conditions 
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at  :r a       ,u 0       * ,
w

w 2cz
r


  


 

 
at  :r        ,w 0  (2.4) 
 
where, u and w are the velocity components in the r and z directions, respectively; c > 0 is a positive 
constant;   is viscosity; /     is the kinematic viscosity;   is fluid density;   is the electrical 

conductivity; k0 is the permeability of the porous medium; P is pressure;   is the velocity slip parameter. 
 

 
 

Fig.1. Schematic diagram of the problem. 
 
 We assume that  ew z 2cz , so Eqs (2.1) to (2.3) admit similarity solutions. 

Similarity transformations have been applied in the governing equations to reduce them into the 
corresponding ordinary differential equations, following Chauhan et al. [14] and Wang [3] 
 

  
( )

, , '( )
2

r caf
u w 2czf

a

         
. (2.5) 

 
        Substituting Eq.(2.5) into Eqs (2.1) – (2.4), Eq.(2.1) is identically satisfied and from Eq.(2.2), we obtain 
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where a prime denotes differentiation with respect to   and Re
2ca

2



 is the Reynolds number, gives the 

information, whether the flow is inertial or viscous force dominant and it describes about the flow whether it 
is laminar or turbulent. For a laminar flow the range of the Reynolds number is 2000. For transition flow the 
local Reynolds number values are between 2000 to 4000 and for values higher than 4000, the flow becomes 
turbulent. Here we study at low Reynolds number for laminar flow. 

2 2
0B a

M
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 is the magnetic parameter applied normal to the flow which creates a resistive type force, the 

Lorentz force and 0
2

k
K

a
  is permeability parameter.

, 
 

 The corresponding boundary conditions are reduced to the following. 
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at    =1 :     f=0,      +f 1 f   , 
 
at     :      ' ,f 0         (2.7) 
 

where, * /2 a    is velocity slip parameter. 
 
3. Heat transfer analysis 

 
The energy equation for the slip flow in the presence of heat absorption/generation is given as 
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where T is the fluid temperature and the surface of the stretching cylinder is held at constant temperature Tw. 
The ambient fluid temperature is considered to be T , with wT T . Further, it is assumed that the fluid and 
the porous medium are in local thermal equilibrium. 
 Subject to the boundary conditions 
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CP is the specific heat at constant pressure;   is the thermal conductivity in the porous medium and   is the 

temperature slip parameter, 0Q  is the heat generation/absorption coefficient and rq  is the radiative heat flux. 
 Using the Rosseland approximation for radiation, the radiative heat flux is defined as 
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where 1  is the Stephan-Boltzmann constant and 1k  is the mass absorption coefficient. The temperature 

differences within the flow are assumed to be sufficiently small so that ,4 3 4T 4T T 3T  
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 Similarity transformation is 
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 Substituting Eqs (3.3) and (3.4) into Eqs (3.1) and (3.2), we get 
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where Pr PC



 is Prandtl number. The Prandtl number signifies the ratio of momentum diffusivity to 

thermal diffusivity. Increasing the value of the Prandtl number increases the rate of cooling in the fluid flow 
as for higher Prandtl number, heat can diffuse from the wall faster and thickness of the thermal boundary 
layer decreases. Gases typically have Prandtl numbers in the range 0.71 while the Prandtl number for most 
liquids is much larger than unity. The Prandtl number for water ranges from 4-7, while that for oil might be 
of the order of 50-100.  
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 is the radiation parameter. It defines the relative contribution of conduction heat transfer 

to the thermal radiation transfer. For N = 1, both modes of heat transfer have the same contribution.  
 N > 1, thermal radiation contributes more than thermal conduction and for N < 1; thermal radiation 
dominates over thermal conduction. 

 0

P

Q

c C
 


 is the heat absorption/generation parameter, in case of heat generation, 0   

significantly accelerates the flow and for heat absorption 0  , the flow is retarded (momentum boundary 
layer thickness is lowered). 
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 is the local Eckert number. It defines as the ratio of kinetic energy at the wall to 

the specific enthalpy difference between wall and fluid. 
 Now the corresponding boundary conditions for     as 

 
at    =1 :      ',1    
  
at     :      ,0       (3.6) 
 

where * /2 a    is the temperature slip parameter. 

 
4. Entropy generation analysis 

 
Following Bejan [25] and Butt and Ali [33], the dimensional volumetric rate of entropy generation 

for the present problem in cylindrical coordinates can be written as 
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where rT  is the reference temperature. 
 Using Eq.(2.6), we express the entropy generation number in a dimensionless form as 
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 is the Brinkman 

number. It is the ratio between heat produced by viscous dissipation and heat transported by molecular 
conduction. i.e., the ratio of viscous heat generation to external heating. The Brinkman number (Br) specifies 
the temperature rise due to viscous dissipation in the fluid. 
 For most fluids (air, water) at moderate speeds, the Brinkman number is much less than one. 
 
  H f mNs N N N     (4.3) 

 
where NH, Nf and Nm are entropy generation due to heat transfer, fluid friction and magnetic field., which are 
given as 
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 In many engineering designs and optimization problems, the contribution of the heat transfer entropy 
generation to the total entropy generation rate is required; therefore, Paoletti et al. [34] presented an 
alternative irreversibility distribution parameter in terms of Bejan number (Be) and defined it as the ratio of 
the entropy generation due to heat transfer (NH) to the total entropy generation (Ns). The Bejan number is 
given by the following mathematical expression 
Equation  
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 Analyzing the expression for the Bejan number, it could be observed that its value lies between
Be0 1  with the following extreme cases and when entropy is generated by heat transfer irreversibility 

and fluid friction irreversibility, the value of the Bejan number could be Be = 1 and Be = 0, respectively. 
 In the present study, physical quantities, skin friction coefficient and Nusselt number are defined as 
follows 
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where w  and wq  shear stress and heat transfer rate from the surface of the cylinder, respectively, which 
given as 
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 Substituting Eq.(4.6) in Eq.(4.5), we get 
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5. Numerical solution 
 
The system of nonlinear ordinary differential Eqs (2.6) and (3.5) with the boundary conditions (2.7) 

and (3.6) respectively, is solved numerically using the fourth-order Runge Kutta scheme with the shooting 
technique. In this technique, first we convert the BVP into IVP (initial value problem).We set the following 
first-order systems 
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with the boundary conditions 
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 For solving the IVP, set of Eqs (4.5) and (4.6), we need the initial guesses for    ''q 1 f 1  and

   z 1 1   which are arbitrarily chosen and for adjusting the estimated value of    andf 1 1   we 

compare the calculated values for f   and   at 10  (say) with the given boundary conditions

   ,f 10 0 10 0     and applying the fourth-order Runge-Kutta method, a solution was obtained. The 

step-size is taken as .0 01  . This process was repeated until we obtained correct results up to the desired 

accuracy of 610  level. 
 
6. Result and discussion 

 
In the present study, a representative set of numerical values to all embedded parameters are 

assigned in order to analyze the velocity profile, temperature distribution, entropy generation and Bejan 
number with the help of Figs 2–12. The validation of accuracy of the applied numerical result is plotted in 
Fig.4b by assuming Ec = 0 (absence of viscous dissipation), N = 0 (without radiation) and 0   (absence of 
heat source) for a fixed value of Pr. The present numerical result is found to be in good agreement with the 
available result Chauhan et al. [14]. 

Figure 2 shows the effect of pertinent parameters on the velocity profile. It is noted that velocity 
attains its maximum value at the surface of the cylinder and decreases as it moves away from the stretched 
surface of the cylinder. Velocity decreases as the magnetic field parameter (M), slip parameter    and 

Reynolds number (Re) increase whereas velocity increases as permeability increases. It is due to the reason 
that Darcy’s resistance force decreases as permeability increases, therefore the flow increases. Also the 
applied transverse magnetic field rises the Lorentz force in the fluid flow regime which reduces the flow 
velocity and due to slip, the flow velocity near the stretching wall is no longer equal to the stretching velocity 
of the wall hence, the pulling of the stretching wall can only be partly transmitted to the fluid. 
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Fig.2. Velocity profile. 
 

Figures 3–5 depict the temperature profiles for various values of the different parameters in the 
presence of the heat generating source. Temperature decreases as the distance from the surface of the 
stretching cylinder increases, and finally vanishes at some large distance from the stretching surface of the 
cylinder. The influence of the velocity slip , temperature slip parameter ,  local Eckert number Ec and 
radiation parameter N on the temperature distribution is plotted in Figs 3a-3b. The local Eckert number is 
defined as the ratio of kinetic energy at the wall to the specific enthalpy difference between the wall and 
fluid. As heat energy is stored in the fluid due to the frictional heating, temperature rises when the Ec number 
increases. Temperature increases with an increase in the velocity slip as shown in Fig.3a. While in Fig.3b 
noticed reverse effect on an increment of temperature slip, because heat generation rate is reduced with 
increasing effect of temperature slip parameter. Also we observed that temperature rises when radiation 
effect enhance, implies contribution of thermal radiation transfer in fluid flow increases which generates 
more heat flux and due this reason temperature increases with increasing value of N.  

 
a)                                                                         b) 

             
 

Fig.3.  Effect of variation in (a) Eckert number and velocity slip parameter (b) Radiation parameter and 
temperature slip parameter on the temperature profile when K = 1, M = 1, Pr = 5, Re = 10,    = 0.1. 
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Figures 4a-b illustrates the effect of the magnetic field parameter M, Reynolds number Re, Prandtl 
number Pr and permeability parameter K on temperature profile. It is noticed that from Fig.4a that 
temperature rises when the magnetic field the increases due to the fact that the introduction of a transverse 
magnetic field tends to give a rise to the Lorentz force, to slows down the motion of the fluid flow and 
increases the thermal boundary layer. It is noted that temperature decreases when Re increases due to the fact 
that at low Reynolds numbers viscous force dominates but as the value of Re increases, viscous force 
decreases and temperature falls down. Figure 4b noticed that temperature decreases with the increasing value 
of K due to decreasing Darcy’s resistance force. An increment in Pr causes a decrease in the thermal 
boundary layer thickness because of physical nature of Pr. An increasing value of Pr indicates an increasing 
viscous effect which implies that the viscous boundary layer is thicker than the thermal boundary, so a large 
value of Pr results in thinning of the thermal boundary layer. 

Figures 5a-b illustrates the influence of the heat generation/absorption parameter ( ) on the 
temperature profile. The source term represents the heat generation distributed everywhere when   is 
positive. The heat absorption takes place in the case when   is negative and when   is zero is the case of no 
heat source. We observed both for slip condition and without slip condition. An increment in the value of the 
heat generation coefficient   causes the fluid temperature to increase. An increase in heat generation 
accelerates the flow, therefore the presence of progressively stronger heat source is beneficial to the regime. 
It is observed that for large heat generation effects ( = 0.5) a distinctive peak in the temperature profile 
occurs in the region close with no slip conditions. A similar result has been obtained by Chamkha [23]. 

 
a)                                                                          b) 

            
 
Fig.4.  Effect of variation in (a) Reynolds number and magnetic parameter (b) permeability parameter and 

Prandtl number on the temperature profile when  = 0.5, N = 1, Ec = 0.5,  =0.1. 
 

Table 1 presents the effect of various parameter magnetic parameter M, permeability parameter K, 
heat generation/absorption parameter  , Reynolds number Re, Prandtl number Pr and radiation parameter N 
on the numerical value of  ''f 1  and  ' 1  at constant slip condition. We observed that  ''f 1 increases as 

M, Re and   increase and reduces when K, Pr and N increase while  ' 1  increases with an increment of K, 

Pr and Re and decrease for the rest of the parameters. Physically, a negative sign of  ''f 1  implies that the 

surface exerts a dragging force on the fluid and a positive sign implies the opposite. 
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a)                                                                            b) 

          
 
Fig.5. Effect of variation in (a) heat generation/absorption parameter with slip (b) heat generation/absorption 

parameter without slip, when a = b = 0.5, N = 1, Ec = 0.5, K = 1, M = 1, Pr = 5, Re = 10. 
 

The effect of various parameters on the entropy generation number has been plotted in Figs 6-8. 
Figure 6a depicts that entropy enhances near the surface of the stretching cylinder with an increment in the 
Reynolds number (Re) and after a critical point it reduces due to heat source, while the radiation effect (N) 
enhances entropy throughout the cylinder because the heat transfer rate increases as the radiation parameter 
increases. In Fig.6b we can see that by increasing the value of the magnetic parameter (M) entropy enhances 
near the surface of the stretching cylinder due to increases in the magnetic field parameter, Lorentz force 
rises which opposes the fluid motion as a result entropy attains a maximum value at the stretching surface of 
the cylinder but as this distances increasing entropy decreases and at far away it vanishes. It has been shown 
in Fig.6b that the result obtained in the present investigation are similar to those obtained by Butt and Ali 
(2014) which shows validation of our observations. 
 
Table 1.  Variation of numerical value of  ''f 1  and  ' 1  with  , K, M, Re, Pr and N parameters, when 

.0 5     and Ec = 0.2. 
 

M K N Pr Re   f 1   1  

1 1 1 5 10 0.1 -1.150137893 -0.718225801 
2 1 1 5 10 0.1 -1.179971068 -0.551196684 
1 1 1 5 10 0.1 -1.150137893 -0.718225801 
1 10 1 5 10 0.1 -1.119716259 -0.792298225 
1 1 1 5 10 0.1 -1.150137893 -0.718225801 
1 1 2 5 10 0.1 -1.150137535 -0.283862547 
1 1 1 5 10 0.1 -1.150137893 -0.718225801 
1 1 1 10 10 0.1 -1.150137275 -1.006527446 
1 1 1 5 10 0.1 -1.150137893 -0.718225801 
1 1 1 5 15 0.1 -1.204112472 -0.831485523 
1 1 1 5 10 -0.1 -1.150138655 -0.992486288 
1 1 1 5 10 0 -1.150138659 -0.902881000 
1 1 1 5 10 0.1 -1.150137893 -0.718225801 
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a)                                                                         b) 

                   
 
Fig.6.  Effect of variation in (a) Reynolds number and radiation parameter (b) magnetic parameter on the 

Entropy generation number when .0 5    , K = 1, Pr = 5, Ec = 0.5,   = 0.1, Br 5  , X = 0.5. 
 

Figure 7a shows that the entropy generation number (Ns) decreases as velocity slip parameters ( ) 
increases. Figure 7b shows that entropy generation increases near the surface of the stretching cylinder as the 
Prandtl number (Pr) increases, it is due to decreases in the temperature gradient but after certain thickness of 
the boundary layer it starts to decrease due to the presence of heat source. The effects of the group parameter 
(Br/ ) and Eckert number (Ec) on Ns are depicted in Fig.8a. Increasing value of heat generation or 
absorption parameter ( ), also increases the entropy generation number (Ns) as shown in Fig.8b.  

 
a)                                                                     b) 

               
 

Fig.7.  Effect of variation in (a) velocity and permeability parameters (b) Prandtl number on the entropy 
generation number when M=1, N = 1, Re = 10, Ec = 0.2,   = 0.1, Br/  = 5, X = 0.5. 
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a)                                                                    b) 

             
 
Fig.8.  Effect of variation in (a) group parameter and Eckert number (b) heat generation/absorption parameter 

on the entropy generation number when M=1, K=0.5, N = 1, Re = 10, .0 5    , Pr =5, X = 0.5. 
 

Figures 9-10 illustrate the effects of various parameters on the Bejan number (Be). It is shown that 
Be increases with the increasing value of the Reynolds number (Re), magnetic field parameter (M) and 
Eckert number (Ec) while shows reverse effect for increasing group parameter (Br/ ) in stretching cylinder 
which is shown in Figs 9a-b and in Figs 10a-b, we observed that Be decreases as the temperature slip 
parameter ( ) and heat absorption/generation parameter   increase. The value of Be reduces to the surface 
of the stretching cylinder but after a point of inflexion it shows little increment with the increasing radiation 
effect and Fig.10b illustrates that the velocity slip parameter ( ) enhances the Bejan number. 

 
a)                                                                             b) 

              
 
Fig.9.  Effect of variation in (a) Reynolds number and magnetic parameter (b) group parameter and Eckert 

number on the Bejan number when .0 5    ,   = 0.1, X = 0.5. 
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a)                                                                       b)  

               
 
Fig.10.  Effect of variation in (a) temperature slip parameter and radiation parameter (b) heat 

generation/absorption parameter and velocity slip parameter on the Bejan number when Ec = 0.5, 
Re = 10, M =1, K =0.5, Pr = 2, Br/  = 5, X = 0.5. 

 
7. Conclusion 

 
The following conclusions are drawn from the investigation:  

 The magnetic field causes resistance to the flow which results in a decrease in velocity and increase in 
temperature.  

 The thermal boundary layer thickness decreases with the Prandtl number Pr, temperature slip parameter 
  and increases with Eckert number Ec, velocity parameter   and radiation parameter. 

 The entropy generation number Ns increases near the surface after a point it reduces with magnetic 
parameter M, Reynolds number Re and Prandtl number Pr.  

 The ratio of entropy due to heat transfer and total entropy increases as velocity slip increases and shows 
reverse effect as temperature slip increases. 
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Nomenclature 
 
 a  radius of hollow circle  
 Be  Bejan number  
 Br  Brinkman number  
 B0  uniform magnetic field  
 Cf  skin friction coefficient 
 CP  specific heat at constant pressure  
 c  positive constant  
 Ec  Eckert number  
 K  non-dimensional permeability parameter  
 k0  permeability of porous medium  
 1k   mass absorption coefficient  

 M  magnetic parameter   
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 N  radiation parameter 
 Ns  entropy generation number 
 Nu  Nusssel number 
 P  pressure  
 Pr  Prandtl number  
 Re  Reynolds number  
 S    dimensional volumetric rate of entropy generation 
 0S    reference volumetric entropy generation 

 T  temperature 
 Tr  reference temperature 
 Tw  temperature of surface of the cylinder 
 T   fluid temperature 

 u  velocity component in the r direction  
 0Q   heat generation/absorption coefficient  

 rq   radiative heat flux  

 wq   rate of heat transfer  

 w  velocity component in the z direction  
 X  dimensionless parameter 
     non-dimensional velocity slip parameter 

     dimensional velocity slip parameter 
     non-dimensional temperature slip parameter 

     dimensional temperature slip parameter 

     thermal conductivity 
     heat absorption/generation parameter  
     viscosity 

     kinematic viscosity 
     electrical conductivity 
 1   Stephan-Boltzmann constant  

 w   shear stress 

     dimensionless reference temperature 
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