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In this paper, an analytical method for deriving the relationships between the pressure drop and the
volumetric flow rate in laminar flow regimes of DeHaven type fluids through symmetrically corrugated capillary
fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be
used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration
when analytical expressions are hard to obtain due to mathematical complexities.

Five converging-diverging or diverging-converging geometrics, viz. variable cross-section, parabolic,
hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method.
Each example is concluded with a presentation of the formulae for the velocity flow on the outer surface of a thin
porous layer. Upon introduction of hindrance factors, these formulae may be presented in the most general forms.
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1. Introduction

Fluid flows and transport phenomena through the classical “ground” or “soil” are encountered
literally everywhere in everyday life, in nature (ground water), industries (composite materials, building
materials, etc.) as well as in biosystems (aquifer ecosystems, human organs, etc.) and other domains such as
e.g., membranes used in biofuel cell applications.

The reason is that except metals, some plastics and dense rocks, almost all solid and semisolid
materials can be considered as “porous” in varying degrees. Hence, there exist many types of different
technologies that depend on theories used to describe transport phenomena in porous media.

There are many practical applications that can be modelled or approximated as transport through
porous media. These applications have been discussed by Bear [1], Greenkorn [2], Nield and Bejan [3],
Vafai [4-7], Hadim and Vafai [8], Vafai and Hadim [9].

In the works cited above, the porous medium is viewed as a continuum with solid and fluid phases in
thermal equilibrium, isotropic, homogeneous and saturated with an incompressible Newtonian fluid. Vafai and
Tien [10] presented a comprehensive analysis of the generalized transport through porous media and developed
a set of governing equations utilizing the local VAT (volume averaging theory/technique) or/and the REV
(representative elementary volume) technique. The final forms of these equations can be found in the works by
Amiri and Vafai [11], Alazmi and Vafai [12], Khanafer et al. [13]. Peng and Wu [14] describe a series of
different experimental observations and associated theoretical investigations conducted to understand the
transport phenomena with or without phase change and chemical reaction and concerning a wide range of
practical applications. Fault and fracture zones are often highly-complex heterogeneities that can have a
significant effect on the fluid flow within petroleum reservoirs on length scales of less than / pm to more than
10 km. 1t is therefore important to incorporate their properties in developing simulation models. Harris et al.
[15] describe some of the numerical techniques being used to model the effects of faults and fractures on fluid
flow. Other theoretical models are groundwater models (Karamouz et al. [16], Yeh [17]) which have been used
extensively for groundwater flow analysis, pollution transport and groundwater management.
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Another way to study the flows in porous media is to use conceptual models; a great example of such
models are PNMs (pore network models). These models have gained a lot of popularity among researchers since
they are much more systematic than the real pore space of a soil and have been used in a variety of fields such as
petroleum engineering, hydrology and soil physics. In these models, the soil pore space is modelled by a discrete
network of pores that are connected by throats (Jivkov ef al. [18]). Throats in PNMs may be prismatic or non-
prismatic, mainly converging-diverging types (Xiong et al. [19]). The studies of the Newtonian flow in circular
prismatic tubes (otherwise speaking: circular tubes of constant cross-sections) were performed by Mazaheri et al.
[20], Joekar-Niaser ef al. [21] and Nsir and Schafer [22]. The flow in non-prismatic tubes, namely in conical tubes
was studied by Held and Celia [23], Hilpert ef al. [24] and by Acharya et al. [25].

The studies of non-Newtonian flows in circular tubes of variable cross-sections, conical or similar
geometry were made by Walicki ef al. [26], Walicki and Walicka [27-29], Walicka and Walicki [30], Sochi
[31-34], Walicka [35, 36].

It has been found that at the bottom of rivers, lakes, seas and oceans an enhanced transport of solutes
and particulate matter can be encountered in a thin layer, which comprises a tiny portion of the seawater layer
from top and a tiny portion of the porewater layer from below, called a benthic layer. In this layer there may
exist an interaction between the fluid flow and living media as in bioreactors. The physicochemical and
biological processes ongoing in the benthic layer cause that the fluid flowing through this layer behaves as a
non-Newtonian fluid.

Flows of non-Newtonian fluids through porous media are frequently encountered in the petroleum
industry (Vossoughi [37], Pearson and Tardy [38], Perrin et al. [39]). In exploitation of oil beds, an injection of
polymer solutions into oil reservoirs is frequently applied to enhance oil recovery. Sometimes to achieve this
aim, suspensions (frequently called slurries) of oil, coal and water are used (Vossoughi and Al-Husaini [40]).

The aim of this paper is to present an analytical method for deriving mathematical relations between
the volumetric flow rate and pressure drop or pressure gradient in tapered-expanded or corrugated capillary
fissures and tubes, such as those shown schematically in Fig.1. Employing the results of the recent papers by
Walicka [35, 36], we present five examples of flows both in capillary fissures and tubes for non-Newtonian
fluids of DeHaven type [41, 42]. Each of the examples under consideration finishes with formulae describing
the velocities in a thin porous layer consisting of variable cross-section capillaries. The real layer is replaced
with an equivalent matrix composed of homogeneous capillaries of constant cross-section for which the
velocities are given. To take into account the real values of the velocities correction coefficients called
"hindrance factors" were introduced. These flows may be used to model the classic flows through porous
media [43] or to study PNMs [36].

2. Fluids and capillaries description
DeHaven fluids are pseudoplastic fluids which are characterized by a non-linear relationship

between the shear stress and the shear strain rate; to be more precise it can be stated that the shear strain rate
is a non-linear function of the shear stress [41, 42].

e FED b 3

Fig.1. Capillary fissures or tubes: having convergent-divergent or divergent-convergent profiles.
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There are many models of fluids which, for suitably selected material coefficients, reduce to the model of the

DeHaven fluid. Some of these models are presented in Table 1.1.

Table 1.1. Models of fluids similar to the DeHaven fluid model

Author(s) Original model Model taken K; Comments
1nto account
“n + ]’7
power models
DeHaven KoY = 1(1 + K|’E|n ) - K
- . : K" K"
Meter T= HOOJFHO—HOO,, Y uoy=1[1+u t”J H L=y~ Hyp
1+ (k) Ko Ko
n=n—1 “n” power model
KoY . _
Ellis E—— uoy:r(1+1<|1:|n I) K
1+ K|’E|
“Cubic”
=2
" models
= S /) S , The model has
Rotem-Shinnar I+ Z ;T 2 Moy =T (1 + KT ) K a practlca! meaning for
- i=1
1
sinh (kt) - K, 2
Ree-Eyring T=UgY| ———= Loy =1| I+—1" |, x
(<0 6 ;
Rabinowitsch T= Lyz oY = r(] +xr’ ) K
1+ Kt
Reiner Ky — 1 HKZ 2 MKZ
- 0 o0 . .
s T=|Hpt———5 |V | MV =T [+—1 — H=Hy—Hy
Philippoff 1+ (x)’ ’ My H '
n, =1 “Quadratic” models
—He . K K
Peek-McLean | T=| U, + B —1 Moy =71| 1 25 = K=Ky —Hyp
1+ (xr) Mg Mo
Mo = Ho : pK pK
Seel T=| M, + :|'Y MOYZT(I__TJ - L=y — Uy
Y { e(m) Ko Mo ’

In what follows we will use the DeHaven fluid model to describe the flows through capillary fissures or
tubes. The presence of capillary fissures in porous media seems to be extraordinary. Note that in exploitation
of the oil beds one runs frequently into rocks rendered porous by solution or by fracturing. These interstices
have a form of capillary fissures [43].

The capillaries being the subject of our considerations are presented schematically in Fig.1. Each of
these capillaries will be described exactly in subsequent sections of this paper.
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3. Flows through rectilinear capillary fissures or tubes with variable cross-section

Frequently, rectilinear fissures or tubes of constant cross-sections are used to model the flow through
porous media (Fig.2).

a) b)
e

}.' L ),
s / Ie

h |

Fig.2. Geometry of a rectilinear capillary fissure (a) and a capillary tube (b) of constant cross-section.

The flow velocities of the DeHaven fluid in capillaries are given by the following expressions [43]:
in the capillary fissure

2 n; n;
S P A (A ) o
73 (ni+3) dy dy
in the capillary tube
2 n; n;
o, = | ppHhrel (-d_f?j [_d_l’]. (3.2)
Sul 2%(m+4)\ dy dy

The flow rates are, respectively, equal to:
— for the capillary fissure,

3 n; i
0, =2f =L [1+3"ffc (_d_l’] ](—d—p], (3.3)

u (n,- +3) dy dy

here O, is counted on the unit of a fissure width;

— for the capillary tube

4 n; n;
L L [_d_pj [_"_f’j, (3.4)
Su 2" (n;+4)\ dy dy
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Assuming the principle of superposition we may write
0. =0y +0Opn (3.5)

where O, is either O, or O,, Oy is a Newtonian flow rate, Oy, denotes an additional flow rate connected

with the DeHaven fluid.
Thus, we have, respectively

O;=0w+0Qpy (3.6)
where
213 ( dp
St e < 3.7
o 3p ( dyj G
n;+1
2k-fni+3 dp it
=ZtiJe | _YP 3.8
O p(ni+3)( dy (3-8)
and
O, =09 +9ipn (3.9)
4
=, (3.10)
Su\ dy
kit dp it
=t | . (3.11)
Qi 2"i+1p(nl-+4)( dJ’J

To find the pressure drop in the flow through capillaries of variable cross-section (Fig.3) we have the
following expressions:
— for the capillary fissure

h
_ w0 f dy

AP @ (3.12)
2
_%fc
1 ",
“(ni+3)QJDH m+l /2 dy
AP i {T j b (3.13)
! _% fl‘li+]
— for the capillary tube
"
8 d
Dpy =M [ By, (3.14)
N
2
n(n +4)0Opy |nit! dy
Ap iy =2{ — [ = (3.15)
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+h/2 +h/2

x=

-h/2 -h/2

Fig.3. Scheme of convergent-divergent and divergent-convergent capillaries with rectilinear generatrices.

The current thickness of the capillary fissure or the radius of the capillary tube are given, respectively, by

fo ()
r.()

and there are, respectively

}zxzaib|y| where —%SySJr— (3.16)

(3.17)

Introducing formulae (3.16) and (3.17) into Eqgs (3.12),(3.13) or (3.14),(3.15) we will obtain — after
integration — the following expressions (see Eqs (A.3)-(A.4) in the Appendix):
— for the capillary fissure

3u9 [( -5 }

2 2
( ) ; (n +])h fo n;+1 fz ni+1
| (n +3 “QfDH ni+1
Ap;m{ 2% } =0 7] (3.19)
and
4[£(f-1,)] (Apﬂvj
O = o, (3.20)
TGN
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42 n+1 i+l
_ 2"k [ (4= 1)) Apu | 321
QfDH_ B 2 ni+1 h ’ (3-21)
(n +3 | £(m +1)| f, " = f;
taking into account that
Ap v =Ap oy = Ap (3.22)

and reusing the principle of superposition (3.6), we may write

P ) I P ) e ) I 9 O
[ -7)] N
(n;+3)| +(n; +1)| £, nit+l - f; mitl
— for the capillary tube
hl+ rij—r-d)
Uy [ (0 ! }
Ap = 3.24
\Din 3n [i(ri—ro)] ( )
3 3
; 2(m+1)h| |, mitl . mitl
(n, +4)HQ¢DH i+l
A = , 3.25
\PtDH |: Ttki 3[i(l’l —r )] ( )
and
In| (7 —7, A
N [ (3 )3] [ P ’Nj, (3.26)
SM[i(ro - )J h
3 n (- 1,) | Ap o V'
Oy = +1( J , (3.27)
3 R h
2""+](nl- +4)u| £(n; +1)| 7, mitl it
taking into account that
Ap = Apipy = Ap (3.28)

and reusing the principle of superposition (3.9), we may write:
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h

) n[i3(r~—r0):| . 4ki[i3(r,-—r0)]”i [i(i’o_3—l§‘3):| | (%jm

The flow velocities through a thin porous layer, composed of variable cross-section capillaries and modelled
as an equivalent matrix of constant cross-section capillaries, will be given, respectively, as

2 7; nj
. ' 3k 11} . !
o - Or0p _ JubpVip |, SKiSuVop( dp)" | _dp) (3.30)
2fu 3u (m+3) \ dy dy
2 n; n;
7, ey
v, = th;p _ M(pp\VItv 1+ 4k1rM\V2tv (_ dp} (_d_pJ (331)
iy, Su 2" (ni + 4) dy dy

where

oG-n)] [ [ )

Vip = 7 [i(f;z = )T Vop = - — 532
f]\r/lfl i(lfli +]) fo ni+1 _f,' ni+1
Ui )] [0 2 )] (3.33)

n; ni+1 ]
sy i(ni+]) r, 1 —r

s Von = .
(7‘073 _ }"-73 ):| 3 3 n;+1

and ¢, is the porosity of the porous layer, 4,y , are the first hindrance factors, y, 4, 5, are the
second hindrance factors for the capillaries of variable cross-sections. Here, the index M indicates maximum
values f;, f, or r, r, which correspond to the capillary thickness or capillary radius for the equivalent
capillaries of constant cross-section.

4. Flows through parabolic capillaries

Parabolic capillaries, depicted in Fig.4, are described by the formulae

where —gSyS+— 4.1

and
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profiles.
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a= , b= 5 .
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3
+h/2 ks
Jo I 5 =
+ '
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R
-h/2
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=

Fig.4. Schematic representation of convergent-divergent and divergent-convergent capillaries with parabolic

n; +3)uQ m+l
AprH:|:( ) fDH}

for the capillary fissure

= 2 N>

1

2k;

1

nl'+]
and
cnrsi(52)
N 3“'FpN h ’
nj+3 n; 1
0, =2kl 1 (APJDHJ '
J/DH — n;+1
(”"H)“(F@DH) h
where
1 3 3
F N

= J(xh
i argE ez B

ni+3 prH ?

Introducing formulae (4.1) and (4.2) into Eqgs (3.12),(3.13) or (3.14),(3.15) we will obtain — after integration
— the following expressions (see Eqs (A.7), (A.9), (A.11) and (A.13) in the Appendix):

4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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12
arctan[ﬁ;f”j
J(xh)= 2 x c (4.8)
2, (i-1)]” "
o MiJo arctanh[fo f’]
Jo
I n+3 3 _ fi .
FfPDH :F|:E: n +1:5:+(]_7j:| 5 (49)
— for the capillary tube
SuQvh
Apy = “an Ty (4.10)
na
I’li+4 MQDH ni+1 2h
Apipy :{( nic t vt Fpor > 4.11)
i rﬁ
and
T Apy
= BN 4.12
002 (2] w
nki”oniw 1 Apipu il
Oipn = o+l (n +4) ni+]( h (4.13)
! H(FIPDH)
where
1 5 5 5
T v = + + J(th (4.14)
o 61;31”0 24};21”02 1613}’03 167} ()
12
=7
arctan(u]
2 %
J(h)= N 77X )2 (4.15)
[_r” (r[ o )] arctanh(r" — ’J
rO
1 n.+4 3 7
F =F|—,~ =T I-+]. 4.16
D L n+12 +[ p H (4.16)

o

The functions F [] are so called “hypergeometric functions” and they are defined in the Appendix.

Taking into account Egs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we may

write
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nl-+3 n:

0, =—2 1+ it Fpv (Mp)* (A0 4.17)
f _3HF ni+1 h h ? '

N (m+3)(For)

or
4k T &

Oy =——11+ Lo PN Ap Tl ap (4.18)
tN suT n;j+1 h h

o | 2 oy 4) o)

The flow velocities through the thin porous layer composed of parabolic capillaries, modelled as the
equivalent matrix of constant cross-section capillaries, will be given, respectively, as

2 i i
Qf(Pp fM(pp\‘rII_ﬁ? 3klf]\r/l[\v2fp dp 5 dp
L= = 1+ — -, (4.19)
2fu 3u (ni+3) dy dy
(00 ”A%[(P Vi 4kirjlr/lji‘l/2t dp i dp
O == [+ L i S (4.20)
Ty Su 2" (n;+4)\ dy dy
where
! RN
— - o’p
Vip —fg—F, Vom —{f—O] PR (4.21)
MTpN M) (Fppi )
n; 4
1 7 ! 7, TN
Vip =7 — wtp{ij —— T (4.22)
M pN "M (szDH)

and y, 4,V , are the first hindrance factors, y, 4,y ,,, are the second hindrance factors for the parabolic

capillaries; the sense of the index M is the same as in the previous section.
5. Flows through hyperbolic capillaries

For capillaries of hyperbolic profiles, similar to the profiles shown in Fig.4, the geometric
description is as follows

fC(y)}:(ai‘byZ)l/z where —%Syﬁ-i——, (5.1)

()

and

. b= . (5.2)

Introducing formulae (5.1) and (5.2) into Eqs (3.12), (3.13) or (3.14), (3.15) we will obtain — the expressions
(see Egs (A.15), (A.17) and (A.19) in the Appendix):
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— for the capillary fissure
3uQ wh
Appy =L, (5.3)
2fi Jo
i
n+3)uQpy [+l h
Ap oy = s +3)u0, ey Fmoms G4
Zki nl-+1
and
2/ 1 Bra
==JiJo | TS 5.5
O ==1 [ ; (5.5)
2k i Ap o '
iJo H
QfDHz(n +3)H n,+1[ ;lD J ’ (5.6)
’ (Fio )
where
I n+3 3 2
F =F|————; =% - |; 5.7
— for the capillary tube
8 h
Apyy = SHGh T, (5.8)
1
I’li+4 MQDH m+l  2h
AP;DH:{( Jng g LihDH > (5.9)
nik; it
nl-+1
rO
and
T Apy
On = [—’j (5.10)
ul,\ h
nkzroni+4 1 AptDH it
ot =, v G (5.11)
2 (i + ) (Fyprr )
where
r-—1 41 J(*h) (5.12)
p 2}?2,,02 2r02
Foo_pld w4 30, (5.13)
thDH 2 2(m+ 0270 2] '
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where now

(5.14)

Taking into account Eqs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we may
write the following expressions

ni+]

21 15 3k; Ap Y| (A
0= féfo I+ iJo — (TPJ (7]]) (5.15)
H fi (m; +3)(thDH)
p AT A Yil(A
0 = 1+— L (—pj (—p) (5.16)
uT, 2% (n; +4)(Fiprr )" h h

The flow velocities through the thin porous layer composed of hyperbolic capillaries and modelled as the
equivalent matrix of constant cross-section capillaries, will be given, respectively, as

2 1 1
o 220 _JuVipm |, SkiSuVom( dp)'|( dp (5.17)
TS 30 (n+3) \ v dy)’
2 n; n;
r sy
o, 00 || thrv [_d_pj (_d_P] (5.18)
S 2" (n;+4)\ dy dy
where
5 J(‘o l’li+1 1
(fo v +1
Su F )n’
fur ( fhDH
Vin= . o= , (5.19)
(L LY
7 ~ nj+1
M I ) (o)
nj+1
} ) (Fypg )™
Vi =i Vo = ) (5-20)
l’ll‘ I
(Foprr )™

and vy, 4,V are the first hindrance factors, y, 4, 5, are the second hindrance factors for the hyperbolic

capillaries.
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6. Flows through hyperbolic cosine capillaries

For capillaries of hyperbolic cosine profiles, similar to the profiles shown in Fig.4, the geometric
description is given as follows

fo ()
r.(v)

+]
. (z) arccosh (Lj
{f; h 2
a=q"" Y
‘o (zj arccosh (ij
h r,

Note that the exponent value equal to +/ is adequate to the convergent-divergent capillary in Fig.4, whereas
the exponent value —/ is adequate to divergent-convergent capillary. Hence, Eqs (3.12), (3.13) or (3.14),

(3.15) for the exponent value equal to +1 (see Eqs (A.20)-(A.25) in the Appendix) will become:
— for the capillary fissure

} = [a cosh(by)]ﬂ where —% <y<+— (6.1)

and

(6.2)

3 h
Appy = KO Fuys (6.3)
4 f03 arccosh [fl]
o
L
Ap o = U3y | Lo+ )t 1m(Fyp ). (6.4)
2k; 2 2/(ni+1) ( fi J
fofi arccosh| =~
o
and
4f03 {arccosh(j}ﬂ /(A
_ 0 P /N
On = 3 N ( p } (6.5)
; n;+1
n+2 : it '2 Ji
- 2k fy S {arccosh(fo H ; [ AP o Jn,-u 6o
JDH — ni+ ni+ )
(e ) o+ 3)0 [ )L
where
17 sinh{arccosh(f"ﬂ
Fyy = 72 Jo +arctan {sinhl:arccosh (LII}, 6.7)

tm( Fypyg ) = m{ | oL S 6.8
w(Fon ) =1\ F| =g | (68
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— for the capillary tube

SuQh

Apiy = = T (6.9)
! {arccosh[}f"ﬂ
rO
1
ni+4 no ni+1 2 I’ll-+] h
Apipi {( n)k_ ’DH} 1) 1m(Fup ) (6.10)
' 3r0rl-3/(ni ) arccosh(r’J
rO
and
. 4{arccosh(’ﬂ
r.

Oy = 0/l (Ap’NJ, (6.11)

8“ ThN h

3ni+1nk rlh 3 {arccosh [rﬂ A it l
r, I P iprr |

Opn = L J (6.12)

ni+1 ni+1 n;+1

2 (4 1) (m + 4 |:Im(FthDH):| h
where

2
Ty =11 —é{tanh {arccosh [LJD tanh{arccosh [iﬂ (6.13)
rO rO

1 3 2m -1 1}
o el 6.14
m(Fypp ) m{ {2’ 2(ni+1)’2(ni+1)”’02}} o

Here, Irn(F ) is the imaginary part of the hypergeometric function.

Taking into account Eqs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we can
obtain

if; {arccosh[fiﬂ 3.2 kf f {arccosh(f H | Fy '
Jo)l),, Jo [A_pjn’

Ap
O = — [—j (6.15)
by (n,+ 1) (n, +3)|:Im(thDH)j| RN h
! {arccosh (l/’ﬂ 4-3"H o33 {arccosh EF’H Ty .
1y 7 i
0, = A - Ty (A—p) (A—I’J . (6.16)
STy 2 (m, + 1) (n; + 4) [ Im(Fypy ) ] L h
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The flow velocities through the thin porous layer (for the exponent value equal to+/ ) modelled as the matrix
of constant cross-section capillaries, will be given, respectively, as

2 n; nj
. 3k [ !
o) _ oV, |, 36S o, (_d_pj (_d_pj, (6.17)
3u (n; +3) dy dy
2 n; nj
7. 4ki" ! !
v, = CpVim, PP W 2n, (_d_pj E_d_pJ (6.18)
8p 2" (n+4)\ dy dy
where
2f; arccosh(fij 2" fri? arCCOSh(fiJ Fin
P Jo)] Vo = L Jo )] (6.19)
1fhe = 3 ’ 2fhe — ni+l pni-2 n+l '
! {arccosh(r"ﬂ 3ty {arccosh(’?j} Ty
r, A
Vi, = o Vom, = (6.20

K Ty (n; + ])ni+] rl-"i_3 [Im(EhDH ):IniH

and ;g .Yy, are the first hindrance factors, W, g , W,y —are the second hindrance factors for the

hyperbolic cosine capillaries.
Equations (3.12), (3.13) or (3.14), (3.15), for the exponent value equal to —/ (see formulae (A.26)-
(A.31) in the Appendix) will become:
— for the capillary fissure

Q0 h
8 f; arccosh ("j
/i
L
(n; +3)uQppy |m+! (n; +1)Hf,
Ap i { e o m(F g ) (6.22)
2(m+2) f; it arccosh(foj
/i
and
8f; {arccosh [?ﬂ A
O = AN [ pﬂvj, (6.23)
9“ FhN h
nj+1
2"i+? (n; +2)"i+1 k. £2"**| arccosh So "
i iJi A n;
i \P (DH
Oy = — —y ( . J (6.24)
(m+ 1) (o + 3)s " [ 1 Fpio )



2 2n +2° 2n; +2

Flows od DeHaven fluid in symmetrically curved ... 537
where now
Fj,y =sinh arccosh(Lj +ismh 3arccosh(£} (6.25)
fi)l 9 fi
I n+2 2m +3
Im(F Im< F| — 6.26
(Fpon )= L no+l nm+1’ ] (6.26)
— for the capillary tube
h
Apy = — M Jo (6.27)
4 7o
nr, arccosh[]
]/‘l.
L
nl.+4 uQ ni+1 2 nl.-i-] /’ll”o
Apipy = {( n)k' L ( e ) Im(Fypyr ), (6.28)
(2n; +5)r " arccosh(ri
rO
and
! {arccos(rgﬂ
T I (Apy
= — , 6.29
O n Fiy ( h j ( )
i’ll'+1
(2]’11- n 5)ni+1 T[:kl-l"l-zni+5 |:arCCOSh(r0J:| il
i Appy )"
Oipn = — ( L j (6.30)
(my + 1) (4 ) [ (g ) [0
where now
F,y = 3arccosh (—0 + 2sinh {2arccosh(—01| + ésinhl}iarccosh (r—"ﬂ . (6.31)
hi ’i Ti
1 ooma5 ani7 (nY
Im (Fypy ) = Im{ F| =, 222220 [ J } . (6.32)

Taking into account Eqgs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we can

write

oty
/15 {arccos (fl

9.2m 1 (n,- + 2)ni+1 kz’fiZ(ni+2) {arc cosh[?’ﬂ Fin

1+

Qf=

Ap
IREhy (g + 1) (4 3) 124 [1m(Fpr ) " ( h

n; A_p
i) e
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i
(2n; + 5)”’“ k"t [arccosh(lﬂoﬂ Fy
\p

! {arccos [r"ﬂ "
0= AN L [AJ [%ﬂw&m

WEy (n; +])""+1(nl. +4)r0""+5 [Im(EhDH )TIH h

The flow velocities through the thin porous layer (for the exponent value equal to —/) modelled as the
matrix of constant cross-section capillaries, will be given, respectively, as

2 n: n;
3k [ !
o, _LoopVin |, 3kifoVop [ dp Y[ _dp ’ (6.35)
' 3u (m; +3) dy &y
2 n; n
v dk.r !
0, =" PpWin |, Kt Vom [ _dp )" | _dp (6.36)
8u (m; +4) dy dy
where
4 arCCOSh(fO] 3-2ni71(ni +2)ni+1 fi2ni+4 arccosh(f"] Fiy
v = /DA Ji (6.37)
im, = > Wom, = ntl om ni+1 >
3F,y (n;+1) i f02 i+ [Im(thDH )]
8ro4 {arccos [’ﬁ"ﬂ (2ni +5 )niH ’”in[+5 {arCCOSh [%ﬂ Fy
5 I
Vi, = y > Vo, = (39

AN 4(”1‘ +])ni+] roni+5[Im(EhDH )Jni+1

and ;g4 .V, are the first hindrance factors, W, .V, are the second hindrance factors for the
hyperbolic cosine capillaries.

7. Flows through cosine curve capillaries

For capillaries of cosine curve profile, shown in Fig.5, where the capillary length % spans one
complete wavelength, the current capillary thickness or radius are given by

fe(¥) —aFbcos(ky)  where _ﬁ5y§+ﬁ (7.1
() 202
where
fi+f, i)
a= 2, p=] ? and k=T (72)
n+r, +F,- =7 h
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Fig.5. Schematic representation of convergent-divergent and divergent-convergent capillaries with a cosine

curve profile.

Introducing formulae (7.1) and (7.2) into Eqgs (3.12), (3.13) or (3.14), (3.15)-(3.6) we will obtain (see

Eqs (A.32)+(A.40) in the Appendix):
— for the capillary fissure

3u0 wh
My == Fuy (7.3)
e
(ni+3)“QfDH ni+1 (}’li+1)h
= Im( F 7.4
W [ 2k, PO m(Finoy ) (7:4)
and
4 1 Aij
L A 7.5
QfN 3“’ F;N[ h ]’ ( )
2ni+2nni+]kifA24 (f;f‘o )(”1+1)/2 1 AprH l’li+1
QfDH = ] n;+1 3 h (76)
(”i+ ) (”i+ )H [Im(F]thH)]
where

324211 +3f7

PNREUREI VALY -
(/if,)
2 11 1 f: *
n. — .

— _ | A A . 78
Im(F}thH) Im FI ni+l’2’2’ni+]’ ,(foj 5 ( )

— for the capillary tube
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2u0nh

Apy = ntN Ty (7.9)

1

(n +4)thDH ny+1 (nl- +1)h
AptDH=|: l Im(Fppp ) (7.10)
ik, 37"?3/(ni+])( 7. )1/2
and
n 1 (Apyw
=—— =5 |, 7.11
o = ILN( h 71D
m+l_n+27 3 (mi+1)/2 ni+1
3R ke (i) 1 Ap iy 712
QtDH - }’li+1 }’ll'+1 h ( ' )
(i + 1) (m; +4)u [Im(F]thDH)]
where

2 2

(r; +r0) 5v° = 2rr, + 51
Ty = ( 7 ) (7.13)

(r7,)
+]
3 11 n-2 r:

Im( F, =Im<{ F,| — e AR . 7.14
(Einprr) Nws 122+ [”o} (7.14)

Here, F;[...] is the Appell hypergeometric function and Im(F; ) is the imaginary part of this function.
Taking into account Eqs (3.22) and (3.28) and reusing the principle of superposition (3.6) or (3.9), we may write

4 3.2 it g f2 (fif, )(ni+1)/2 Fn (ApY'|(Ap
0 = 3 1+ — i+l g Rk (7.15)
HE | (1Y (o 3) ()]
n+l _ni+l;, 3 (m+1)/2 n;
T 2.3 1 ki, (rl.ro) Ty (Ap\'|(Ap
0, - IR — | == - | (7.16)
2ul.y (n +1)"" (n, +4)[Im(F1thDH )] BN h

The flow velocities through the thin porous layer composed of cosine curve capillaries, modelled as the
equivalent matrix of constant cross-section capillaries, will be given, respectively, as

2 n; nj
X 3k 1} : !
Uf:chpp\mﬁ 3KV [ dp " _dp (7.17)
3u (m;+3)  dy dy
2 n; nj
o= PV pse I+ 4k e [_d_pj [_d_pj (7.18)
8 2" (n;+4)\ dy dy

where
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2 2}’1!‘ Tcnl+1FN

= C.
fuFu ver (n, +1)ni+1 |:Im(F1thH )]

Vie = , (7.19)

}’ll‘+]

7~ N\ -/
~
S
&y
=
~
[\ Y

ro(n,~+1)/2
"i_7)/2
M

=N

4 2nl-—]3nl-+1 Tcnl’+1T
Ve :?’ Wae = g = ni+l g (mj+1)/2
"len (n;+1) I:Im(F]thDH)} \i

(n=7)/2

v

, (7.20)

<

and .,V are the first hindrance factors, y, ., y,, are the second hindrance factors for the cosine

curve capillaries.
8. Conclusions

In this paper an approximate mathematical method for obtaining the analytical relations between
pressure drops and volumetric flow rates in symmetrically corrugated capillary fissures and tubes is
presented and applied to study the flow of DeHaven fluids.

Taking into account the considerations on the flows through rectilinear capillaries of constant cross-
sections, a simple method to describe the flows through convergent-divergent (in general) capillaries with
variable cross-sections (rectilinear and curvilinear) was presented.

The presented method is an approximate method because it does not take into account the cross
flows which may appear in capillaries of variable cross-sections; these flows can have an essential effect on
the pressure drops in the cases of great changes of the cross-sections for very short capillaries.

The method is illustrated by five examples of capillary fissures or tubes with convergent-divergent
and divergent-convergent shape, namely: wedge and cone geometries, the parabolic, hyperbolic, hyperbolic
cosine and cosine curve.

Each case of the capillary geometry finishes with formulae for the flow velocity through a thin
porous layer. To compare the obtained velocities with the flow velocities through porous layer composed by
a uniform matrix of rectilinear capillaries hindrance factors have been introduced; the form of these factors
indicates that the pressure drops are the same independently of order of convergence and divergence in the
capillary.

These factors are always less than one what indicates that the flow velocity through the matrix of
corrugated capillaries is also less than the flow velocity through the matrix of rectilinear capillaries.

Appendix

In this Appendix we present analytical expressions for the integrals appearing in the previous
sections of the this paper.
The first of them, for rectilinear capillaries of variable cross-sections, are:
— for the convergent-divergent capillary



542 A.Walicka, J Falicki and P.Jurczak

dy 0 +h/2
Jn[Z/Z = ZIn n
i gt
where
0 0 I-n
. dy 1 T {akn—(a+éﬁJ ]
L P P Y P T R E T
+h/2 hf2
+h/2 J- dy _ 1 1 | _ 1 I—n _(a_l_%
"21p 0 (a+by)n (n—])b (a+by)n_1‘ (n—])b
and

+h/2 2 I-n % = .
Jn|_h/2_(l’l—])b|:a _(CZ-I- 2) 5

— for the divergent-convergent capillary

J|”M:+?2 dy 2 Ka_éﬁjﬁ_ﬂfn}
S P

here
m+3 for a fissure
n +1 3
n= P ;  if m=0 then n= 4
i+ for a tube
n +1

The next integrals, for parabolic capillaries, are as follows
for the Newtonian flows we have, respectively

J3=J- v Y b +321(J_r)

(a iby2 )3 4a(a ibyz)

and
+hj2 h 3h 3 +h/2
J3|—h/2 b2 7t 5 b2 + 8a° [(i)|—h/2’
4c{aiJ Sa (a+4J
J, = dy _ y N S5y N S5y N 5
164’

(aiby2)4 6a(aiby2)3 24a2(aiby2)2 16a3(aiby2)

and

1(%)

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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7 |+h/2 h N Sh N Sh N 5 [(i)|+h/2 (A9)
4l-p/2 bhz 3 bhz 2 ; bhz 16a3 —h/2
6a[ai} 24a2[aiJ 16a {ai4J
4 4
! arctan by iarctan bh
I(+):I dy _|ab \/E I(+)|+h/2= Jab 2ab (A.10)
) (a+by 2) ! s —arctanhi’
Jab J_ Jab 2Jab

for the additional flows we have

2
J = [— HZLF{i,n;i;¢bL} (A11)
(aibyz) a 2 2 a

where F [] is a hypergeometric function [44,45] defined by the Gauss series [46]

> (a).(b) 1)b(b+1
F[a,b;c;z]zz(?is)(s . _”a_f“a(acJ(ch)rz()zT N (A.12)

s=0 K

here, for convenience, we used the Pochhammer symbol notation for the shifted factorial

(a)s::{j(au)...(aﬂ—l) " SZ{I,Z,...,

0.

Accordingly, we have

which is used as a definition for the shifted factorial in the case when s is not necessarily a nonnegative
integer. Introducing in (A.11) the limits of integration we will obtain

2
o1 3 b(h
J[MP g L2 22 A13
| —h/2 a" 2 2 +a 2 ( )

The third integrals, for hyperbolic capillaries, are given by the following expressions:

for the Newtonian flows we have

d
J3:I(aibj2)3/2 :a(aij);yz)]/z (A.14)
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and
+h/2_ h
J3|—h/2 N b2 1/2
alat——
or
Je [V (%)
(aibyz) 2a(a+by ) a
and
+h/2 h 1 +h/2
J4|—h/2_ [ bh2J+Z (i)Lh/Z’
2a| at—
4
for the additional flows there are
dy y I n3 b7
T BE n/zF[??z*T
(ai Y ) a

and

The fourth and fifth integrals, for hyperbolic cosine capillaries, are as follows:

— the forth ones:
for the Newtonian flows we have

J; = Lj:% M+iarctan[sinh(by)]
[acosh(by)] a’b 2[cosh(by)} 2
and
/ ; sinh(bzhj bh
J[t oL —+arctan{sinh(—ﬂ
3|—h/2 b |: [bhj:|2 2
cosh| —
2
or
2
tanh (b
J, = L‘l:% ;Ltanh (&) [ tanh (by)
[acosh(by)] a’b
and

2
[, =]
J4|+h/2— 11— tanh( j,
3

—h/2 ~ 2b Y

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
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for the additional flows there are
7 hn—l b _ _
J, = T gy)F[i,] n.3 n;coshz(by):|, (A.24)
[acosh(by)] (n—1)a"b 2 2 2
where: i =+/—1, and the real value of the definite integral J, |J_rZZ is equal to
2sech”™ (bzhj 1 1-n3 bh
Jn|+h/2 =——"ZIm| F|—, —n; _n;coshz(—j ; (A.25)
~h/2 (n—1)a"b 2 2 2 2
here Im(F []) is the real value of the imaginary part of the hypergeometric function F [] ;
— the fifth ones:
for the Newtonian flows there are
J; = [[acosh(by) ] dy = ﬁ[smh(by) +isinh(3by)} (A.26)
4b 9
and
3a’ bh) 1 3bh
J 2 _ 24 sinh(—j + —sinh [—j A.27
sl 2b 2) 9 2 (&.27)
or
4 a’ . 1 .
J, = I[a cosh(by)] dy = g[ﬂay + 2sinh(2by) + Zsmh (4by)} (A.28)
and
4
3bh 1
J 2 _a | J0n + 2sinh(bh)+—sinh(2bh) | ; A.29
4 |—h/2 4b 2 ( ) 4 ( ) ( )
for the additional flows there are
. hn+1 b
J, = 4 — _ 108 (_ny)F[i,]+n;3+n;cosh2 (by)} (A.30)
[acosh(by)] (n=1)a"p L2 2 2
and the real value of the definite integral J,, |J:ZZ is equal to
2cosh”™ [bth 1 1+n 3 bh
Jn|+h/2 = —Im(F{— ﬂ;#;cosh2 (7J}J . (A31)

h/2 (n+1)a7”b 2’ 2

The last integrals, for cosine curve capillaries, are given by the following expressions:
for the Newtonian flows we have
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B dy B 1 +bsin(ky)
I3 _,[ _ 3 22 _ 7+
[a+bcos(ky):| Zk(a b ) [a+bcos(ky)}
PP ky (A.32)
3¢ #bsin(ky) 242 +b7 2 a=b tan(zj
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22 kh
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74 :J. T (2 2 ER IR P
[aibcos(ky)] 3k(a -b ) [aibcos(ky)] (a -b )[aibcos(ky)]
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Ao’ +qp?  gbsin(ky)  6a’+9ab’ 1 a=b tan(zj
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5 5 ibsin(khj 3 5 a’ —b? tan(khj
N 1la” +4b 2 +6a +9ab 1 arctan 4 ).
2(a’ —b2)2 {a;bco{";ﬂ (’ —b2)2 a’ - b’ ath
for the additional flows we have [44, 45]
dy —i
J, = —= —F[.] (A.36)
[aFbeos(ky)]"  (n-1)kva’ —b” [aFbeos(ky)] Y

where F] [] is the Appell hypergeometric function described here by the formula
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aFbcos(ky) aFbcos(ky)

FI[]zFI I—n;i,i;Z—n, , (A.37)
22 atbh a¥b

Generally, the Appell hypergeometric function £} (x, y) is defined by the following double hypergeometric
series [46]

}71 [a;bl,bz;c;x,y] — i i(a)m+n (bl)m (b2)n xmyn' (A38)

m=0n=0 (C)ern m!n!

It is easy to see that it is a bivariate generalization of the Gauss hypergeometric series defined by formula
(A.7). Introducing in (A.20) the limits of integration we will obtain

2
ANGE —rim(F,[.]) (A.39)
(n—])kx/az -b’ {a$bcos(k2hﬂ
where
I, aibcos(kzhj a$bcos(kzhj
Im(F;[...])=1Im| F, I—n;E,E;Z—n; T a%h ; (A.40)

here, Im(FI []) is the imaginary part of the Appell hypergeometric function F;|...].

Nomenclature

a,b — auxiliary constants in the formula describing a converging-diverging capillary

F —hypergeometric function
F; — Appell hypergeometric function

f. —half thickness of a capillary fissure

f; —inlet half thickness of a capillary fissure
f, —middle half thickness of a capillary fissure
h  — capillary length

— material coefficients for DeHaven fluids

— auxiliary exponent in integrals and hypergeometric functions

M —index indicating maximum values of f;, f, or r,r,
n
n; — flow behaviour indices for DeHaven fluids

p —pressure
Ap —pressure drop

Q — volumetric flow rate

O, —volumetric flow rate through the unit width of a capillary fissure
Q, — volumetric flow rate through a capillary tube

. —radius of a capillary tube
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7

- —inlet radius of a capillary tube

r, —middle radius of a capillary tube

v, —flow velocity through a thin porous layer modelled by capillary fissures
v, — flow velocity through a thin porous layer modelled by capillary tubes
p  — fluid viscosity
¢, —porosity of a porous layer
Vs vy, — first hindrance factor for a capillary fissure or tube, respectively

VW —second hindrance factor for a capillary fissure or tube, respectively
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