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The unsteady flow of a viscous incompressible electrically conducting fluid due to non-coaxial rotations of a 
porous disk subjected to a periodic suction and the fluid at infinity in the presence of applied transverse magnetic 
field has been studied. The fluid at infinity passes through a fixed point. The velocity field, shear stresses are 
obtained in a closed form. 
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1. Introduction 
 
 The flow of a viscous incompressible fluid due to non-coaxial rotations of a disk and the fluid at 
infinity has been studied by a number of researchers. An exact solution of this type of problem was obtained 
by Berker [1]. Coirier [2] studied the flow due to a disk and the fluid at infinity which are rotating non-
coaxially at a slightly different angular velocity. The non-Newtonian flow due to a disk and the fluid at 
infinity which are rotating non-coaxially at a slightly different angular velocity was studied by Erdogan [3]. 
An exact solution of the three dimensional Navier-Stokes equations for the flow due to non coaxial rotation 
of a porous disk and the fluid at infinity was studied by Erdogan [4, 5]. Murthy and Ram [6] studied the 
magnetohydrodynamic flow and heat transfer due to eccentric rotations of a porous disk and the fluid at 
infinity. The unsteady flow due to non-coaxial rotations of a disk, oscillating in its own plane and the fluid at 
infinity was studied by Kasiviswanathan and Rao [7]. Chakraborti et al. [8] studied the hydromagnetic flow 
due to non-coaxial rotations of a disk and the fluid at infinity with same angular velocity. The flow due to 
non-coaxial rotations of an oscillatory porous disk and the fluid at infinity about an axis passing through a 
fixed point parallel to the axis of rotation of the disk was investigated by Hayet et al. [9]. The flow due to 
non-coaxial rotations of an oscillating porous disk and the fluid at infinity which rotate about an axis passing 
through a fixed point parallel to the axis of rotation of the disk was studied by Guria et al. [10]. Hayet et al. 
[11] studied the unsteady MHD flow due to non-coaxial rotations of a porous disk and the fluid at infinity. 
 Hayet et al. [12] also investigated the peridic MHD flow due to non coaxial rotations of a porous 
disk and the fluid at infinity. Recently Ghosh et al. [13] studied the flow due to non coaxial rotations of a 
porous disk subjected to a periodic suction and the fluid at infinity. In the present paper, we have studied the 
MHD flow due to non coaxial rotations of a porous disk subjected to a periodic suction or blowing and the 
fluid at infinity in the presence of an applied tranverse magnetic field. 
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2. Formulation of the problem and its solution 
 
 Consider the unsteady flow of a viscous incompressible conducting fluid due to the rotation of a 
porous disk rotating about the z -axis with uniform angular velocity  . The fluid at infinity )( z  

rotates about an axis parallel to the z -axis passing through the point  ,1 1x y   with the same angular velocity 

 . A uniform magnetic field 0B  is imposed parallel to the z -axis [See Fig.1]. Due to the periodic suction 
the flow becomes three-dimensional. 
 

 
 

Fig.1. Geometry of the problem. 
 
 We assume the velocity components of the form  
  
  ).(=),,(=),,(= tVwtzgxvtzfyu   (2.1) 
 
 The boundary conditions of the problem are  
 
  atu = y, v = x, w= V( t ) z = 0   , 
   (2.2) 
       , , as1 1u = y y v = x x w= V t z .       

  
 The Navier-Stokes equations of motion are  
 
  . = 0 q , (2.3) 
  

     21 1
. = p

t


       

  
q

q q q J B , (2.4) 
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    2
0

1
= B V .


 

 
J B  (2.5) 

  
 Introducing Eq.(2.1), the Navier Stokes eqations become respectively  
 

   
2

2 2
02

1 p f f f
= x g B f z,t y

x z t z

    
               

, (2.6) 

 

     
2

2 2
02

1 p g g g
= y f V t B g z,t x

y z t z

    
                

(2.7) 

 

     2
0

V t1 p
= B V t

z t

 


   
 (2.8) 

  
where  u,v,w  are the velocity components along the coordinate axes,   is the fluid density,   is the 

kinematic coefficient of viscosity. 
z

p




 is a function of t  only, if we differentiate with respect to x  and y  

then it is zero. 
 The perodic suction velocity distibution of the form  
 

    i t
0V t = W 1 Ae       (2.9) 

  
where 0w  is a positive constant, >0  is very small and A is a real positive constant such that A 1  . 
Differentiating Eqs (2.6) and (2.7), we get  
  

   
2 2 3

2
02 3

g f f f f
V t B = 0

z z t zz z

     
     
     

, (2.10) 

 

   
2 2 3

2
02 3

f g g g g
V t B = 0

z z t zz z

     
     

     
, (2.11) 

  
 Combining Eqs (2.10) and (2.11), we get  
  

   
3 2 2

2
03 2

F F F F
V t i B = 0

z t zz z

     
           

 (2.12) 

where  
 
  F = f ig , i = 1.   (2.13) 
  
 The corresponding boundary conditions become  
 
       1 1F 0, t = 0, F , t = i x iy    . (2.14) 

   
 We assume  
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        i t
0 1F z,t = F z,t F z,t e   . (2.15) 

  
 Substituitng (2.15) in Eq.(2.12) and comparing the harmonics terms and neglecting the coefficients 

of 2 .  
 

  
3 2

20 0 0
0 03 2

d F d F dF
w i B = 0

zdz z

 
        

, (2.16) 

 

  
23 2

2 01 1 1
0 0 03 2 2

d Fd F d F dF
w i i B = w A

zdz z dz

 
           

. (2.17) 

  
 Introducing the non-dimensional variables  
 

  
2

20 0w 2 B
= z, S = , n = 1 , M =

2 2

 
 

  
, (2.18) 

  
Eqs (2.16) and (2.17) become  
 

   
3 2

20 0 0
3 2

d F d F dF
2 2S 2i M = 0

d
  

 
, (2.19) 

  

   
23 2

2 2 01 1 1
3 2 2

d Fd F d F dF
2 2S 2i M = 2 2SA

dz d
    

 
. (2.20) 

  
 The boundary conditions (2.14) become  
 
           0 0 1 1 1 1F 0 = 0, F = i x iy , F 0 = 0, F = 0.      (2.21) 

  
 Solving Eqs (2.19) and (2.20) subject to the boundary conditions (2.21) and using Eq.(2.13), we get  
 

  

 

        

      

cos sin

cos cos

sin sin ,

0 0
1 0 1 0

01
0 1 1 1 1 02

01
0 1 0 1 1 0

f
= y 1 e x e

2SA
x y e t e t

n 1

y x e t e t

   

  

  

     

           

          

 (2.22) 

 

  
        

      

sin cos

cos cos

sin sin

)0 0
1 0 1 0

01
0 1 0 1 1 02

01
0 1 0 1 1 0

g
= y e x (1 e

2SA
y x e t e t

n 1

x y e t e t

   

  

  

    

           

          

 (2.23) 
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where  
 

  0 0 1 1= 2S , = 2S       
 

  
 

,

1/ 2
22 2 2 2

0

2S M 2S M 4
=

4

 
       

 
  

 

 

  
   

,

1/ 2
22 2 2 2

0

2S M 2S M 4
=

4

 
        

 
  

 

 

  
 

,

1/ 2
22 2 2 2 4

1

2S M 2S M 4n
=

4

 
       

 
  

 

 

  
   

1/ 2
22 2 2 2 4

1

2S M 2S M 4n
= .

4

 
        

 
  

 (2.24) 

  
 The effect of variable suction introduces a transient part depending on  , A  and   superposed on 
the steady solution corresponding to uniform suction at the disk. If S = 0 , the problem recovers the solution 
for the steady Ekman layer on the disk. 
 
Case.I: When A=0 
 

   cos sin0 0
1 0 1 0

f
= y 1 e x e        


 

  

  sin cos)0 0
1 0 1 0

g
= y e x (1 e       

  
 
Case.II: When 1x = 0 , 1y = l   
 

  

 

      

    

cos

cos cos

sin sin ,

0
0

01
0 1 02

01
0 1 0

f
= 1 e

l

2SA
e t e t

n 1

e t e t

 

  

  

   

          

        

 (2.25) 
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        
      

sin

cos cos

sin sin .

0
0

01
0 1 0 1 1 02

01
0 1 0 1 1 0

g
= e

l

2SA
y x e t e t

n 1

x y e t e t

 

  

  

 

          

         

 (2.26) 

 

Case.III: When 2A= 0, M = 0 , the results (2.22) and (2.23) are the same as reference [7]. 

Case.IV: When 2
1 1x = 0, y = l , A= 0, M = 0  and f  by g  and g  by f , the results are the same as 

reference [4]. 
Case.V: If A= 0 , the problem is reduced to Hayet et al. [12]. 
 The flow very near the porous disk  
 

       

   

cos sin

cos sin ,

0 1 0 0 1 0 02

1 0 0 1 0 0

f 2SA
= t t

l n 1

t t


              

            

 (2.27) 

 

       

   

cos sin

sin sincos .

0 1 0 0 1 0 02

1 0 0 1 0 0

g 2SA
= t t

l n 1

t t


               

            

 (2.28) 

  

 The inclination of the fluid velocity vector with the y  axis near z = 0  becomes  tan 1= C / D , 

where  
 

  
     

   

cos sin

cos sin ,

2
0 1 0 0 1 0 0

1 0 0 1 0 0

C = n 1 2SA t t

t t

               

            
 

 

  
     

     

cos

sin cos sin

2 2
0 1 0 0

1 0 0 1 0 0 1 0 0

D = 1 2SA n 1 t

t t t .

           

                  
 

 

 If t = / 2, S 0, A 0,     the inclination of the fluid velocity to the y axis near the z axis will be  
 

  
     

     
tan

2
0 1 0 0 1 0 01

2
0 1 0 0 1 0 0

n 1 2SA
=

n 1 2SA


                

              

 (2.29) 

 
3. Results and discussion  
 
 I have presented the non-dimensional primary velocity lf /  and the secondary velocity lg /  

against   for several values of t , the magnitude of fluctuation of suction velocity A, the suction or 

blowing parameter S, the magnetic parameter 2M . Figure 2 shows the variations of the primary velocity for 
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several values of t . It is observed that the primary velocity decreases with an increase in t  near the disk 
and it is almost stationary away from the disk. The reverse effect is observed for secondary velocity. In Fig.3 
it is observed that both the primary and secondary velocities increase with an increase in A. Figure 4 shows 
that the effect of suction or blowing parameter. It is seen that suction creates thinning of the boundary layer. 
The crossing of the graphs shown in the figure is due to the presence of suction because suction result in 
thinning of the boundary layer near the disk and thickening of the boundary layer away from the disk. Figure 
5 represents the variations of lf /  and the secondary velocity lg /  for several values of the magnetic 

parameter 2M . It is found that lf /  increases but lg /  decreases with an increase in magnetic parameter. 
 

 
 

Fig.2. Variation of primary velocity for S = 1 , A= 2 , 2M = 10 , t = 0.1,  2n = 1.5 , 1x = 0 , 1y = 1 . 
  

 
 

Fig.3:Variation of primary velocity for S = 1 , 2M = 10 , t = / 4  , t = 0.1 , 2n = 1.5 , 1x = 0 , 1y = 1 . 
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Fig.4. Variation of primary velocity for 2M = 10 , t = / 4  , t = 0.1 , 2n = 1.5 , 1x = 0 , 1y = 1 . 
 
 

 
 

Fig.5. Variation of primary velocity for S = 1 , t = / 4  , t = 0.1 , 2n = 1.5 , 1x = 0 , 1y = 1 . 
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Fig.6. Variation of primary velocity for S = 1 , t = / 4  , t = 0.1 , 2n = 1.5 . 
 
 Using Eq.(2.22) and Eqs (2.35) and (2.36), we get the non-dimensional shear stress components x  

and y  at the disk as  

 

  
      

    
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sin cos ,

1 1
0 0 0 0 1 0 1 02

1 1 1
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0 0 1 0 1 0

1

x xf 2SA
= t t

y y yn 1

x
t t
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      
                        

 
           

  

(3.1) 

 

  

      

    

sin cos

sin cos .

1 1
0 0 0 0 1 0 1 02

1 1 1

1
0 0 1 0 1 0

1

x xg 2SA
= t t

y y yn 1

x
t t

y

      
                         

 
           

  

(3.2) 

 
 The non-dimensional shear stresses x  and y  due to the primary and the secondary flows at the 

disk are entered in Tab.1 for different values of m  and   with 2
1 1S = 1, = 5, = ,x = y = 1,M = 5

2


  .  
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Table 1. Shear stresses due to the primary and secondary flows for 2M = 5 . 
 

   x    y  

\ 2S M   
 5 10  15 5 10 15

-2.0   0.88   1.38   2.28  0.55   1.21   2.28  
-1   1.44   2.11   3.21   0.90   1.78  3.07  
0  2.71  3.49   4.70  1.83   2.86  4.25  
1  5.06   5.73   6.84   3.76   4.62   5.90  
2  8.13   8.64   9.53   6.24   6.88   7.96  

 

 It is observed that the shear stresses x  and magnitude of y  increase with an increase in both 

suction parameter and magnetic parameter. 
 
Conclusion 
 
 The unsteady flow of a viscous incompressible fluid due to non-coaxial rotations of a porous disk 
and the fluid at infinity subjected to a periodic suction in the presence of a magnetic field has been studied. It 
is seen that suction creates thinning of the boundary layer. The crossing of the graphs shown in the figure is 
due to the presence of suction because suction creates thinning of the boundary layer near the disk and 
thickening of the boundary layer away from the disk. It is found that the primary velocity increases but 
secondary velocity decreases with an increase in the magnetic parameter. 
 
Nomenclature 
 
 A  amplitude of the suction velocity 
 B  magnetic field vector 
 B0  applied magnetic field 
 C,D  constants 

/ , /f l g l    dimensionless velocity components in the x, z -axes, respectively 

 J  current density 
 l  distance between the axes of rotation 
 M2  magnetic parameter 
 n  rotational parameter 
 p  pressure 
 S  constant suction velocity 
 u, v, w  velocity components in the x, y, z -axes respectively 
 V  suction velocity 
 w0  constant 
 x,y,z  Cartesian coordinate system 
    angular velocity 
 η  dimensionless z coordinate system 
 ν  kinematic viscosity 
 ρ  density of the fluid 
    constant 
 ,x z    shear stress due to primary and secondary flows 

 ,0 1    constants 

 ,0 1    constants 

 ,0 1    constants 

    angle 
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