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This article is concerned with the study of frictionless contact between a rigid punch and a transversely 
isotropic functionally graded layer. The rigid punch is assumed to be axially symmetric and is supposed to be 
pressing the layer by an applied concentrated load. The layer is resting on a rigid base and is assumed to be 
sufficiently thick in comparison with the amount of indentation by the rigid punch. The graded layer is modeled 
as a non-homogeneous medium. The relationship between the applied load P and the contact area is obtained by 
solving the mathematically formulated problem through using the Hankel transform of different order. Numerical 
results have been presented to assess the effects of functional grading of the medium and the applied load on the 
stress distribution in the layer as well as on the relationship between the applied load and the area of contact. 
 
Key words:  functionally graded material, transversely isotropic medium, Hankel transform, contact problem, 

Fredholm integral equation. 

 
1. Introduction  

 
 When a deformable solid is pressed onto another solid, then depending upon the nature and shapes of 
the solids as well as on the intensity of the applied load, the area of contact between the solids changes and 
there occurs a significantly different distribution of stress within and outside of the contact area. The 
determination of the stresses within and outside of the contact area as well as the relationship between the 
applied load and contact area dimension has been the subject of study in solid mechanics for a long time 
which started through the initial investigation of Hertz [1] in 1882. A change in the area of contact due to 
compressive loading on two bodies in contact depends largely on the shapes of the bodies. Contact areas may 
increase, decrease and sometimes may even remain stationary. Accordingly, contact problems have been 
classified as advancing (increase of contact area), receding (decrease of contact area) and stationary (contact 
area remaining the same). A second kind of classification of contact problems, namely, frictional or 
frictionless contact problems, may also be made based on the consideration of frictional force at the contact 
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surface. However, in our present discussion we shall assume that the contact surfaces are smooth and there is 
no frictional force there. Since contact is the principal method of applying loads to a deformable body, study 
of contact problems in various kinds of deformable media is important as well as necessary. Owing to their 
applications in a great variety of structural systems, such as foundations, pavements in roads and runways, 
automotive disk brake systems and in many other technological applications, considerable progress has been 
made with the analysis of contact problems in solid mechanics. Among several works done, we may mention 
a few: Johnson [2]; Gladwell [3]; Hills et al. [4]; Raous et al. [5]; Barik et al. [6, 7, 8]; Chaudhuri and Ray 
[9]; Comez et al. [10, 11]; Gecit [12]; Fabrikant [13]. Various types of contact problems are discussed in 
books and journals, e.g. Kit et al. [14]; Ke et al. [15, 16, 17, 18]; Nowacki [19]; Birinci et al. [20]; El-borgi 
et al. [21, 22]; Patra et al. [23, 24]; Jing et al. [25]; Yan et al. [26]; Adiyaman et al. [27], Jie et al. [28], 
Giannakopoulos and Suresh [29, 30], Suresh [31]. 
 Most of the solids are supposed to be elastically homogeneous in the sense that elastic coefficients 
have constant values for a particular solid but vary from one solid to another. Besides, there exists a class of 
materials in which the elastic coefficients are position dependent in the solid. This class contains lots of 
materials which exist naturally and also materials artificially manufactured as per need. In solid mechanics, 
many of the engineering materials, such as composites and a large variety of bonded materials and structural 
components, are generally modeled as non-homogeneous continua. A functionally graded material (FGM) is 
a new kind of a non-homogeneous composite in which a gradual change in the volume fraction of 
constituents from one location to an other in a component. The concept of FGMs was initially proposed in 
1984 by a group of scientists in Sendai, Japan (Yamanouchi et al. [32]; Koizumi [33]). Since then, 
considerable attention has been paid to intensive research on FGMs. Due to the continuously varying 
material properties in space on the macroscopic scale, FGMs are usually superior to conventional fibre-
matrix materials in mechanical behavior, especially under thermal loads. It has also been found that properly 
treated composite materials or functionally graded or non-homogeneous materials are a better choice for 
their strength and stability in comparison with isotropic and homogeneous materials. This observation 
demands investigations of various problems in functionally graded media with those characteristics. 
 The present investigation aims to find the elastostatic solution of an axially symmetric frictionless 
contact between a transversely isotropic layer and a rigid cylindrical, spherical and conical indentors which 
are loaded by a concentrated force P. Using the operator theory, we derive a general solution that is 
expressed in terms of the three potentials. These functions satisfy differential equations of the second order 
and are quasi-harmonic functions. Making use of these fundamental solutions, the punch problem in the 
aforesaid three cases, is investigated. The solution of the problem has been reduced to the solution of one 
Fredholm type integral equation of second kind which requires numerical treatment. The numerical results 
are discussed and presented graphically to show the influence of indentation in the layer on various states of 
interest. 
 
2. Formulation of the problem 

 
 We consider a graded layer of transversely isotropic material and of thickness H lying on a rigid 
base. On the free surface of the layer, a rigid punch of axisymmetric character is placed with its axis of 
symmetry normal to the free surface of the layer. We also assume that the punch is pressed towards the layer 
by an applied concentrated force of magnitude P. The cylindrical coordinate system  ,θ,r z  with the z - axis 

along the inward drawn normal to the free surface of the layer will be used to specify the position of a point 
in the layer. 
 We shall make the following assumptions in our discussion: 
(a) the axis of symmetry of the transversely isotropic material is along the z-axis, 
(b) there is no force of gravity, 
(c) linear theory of elasticity holds, 
(d) the thickness of the layer is sufficiently large in comparison to the indented depth of the punch. 
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 We also suppose that for the graded layer, the material is modeled as a nonhomogeneous 
transversely isotropic material with a gradient oriented along the z-direction. The functional grading is 
assumed to follow the law 
 

      .exp α ,   0
ij ijA z A z 0 z H    (2.1) 

 

where  ijA z  are the anisotropic coefficients of the graded medium and 0
ijA  are those for the homogeneous 

medium and α is a real number. 
 Because of axisymmetric structure of the indentor, the field variables will be independent of θ  and 
the displacement vector (u, 0, w) will be function of r and z only. The geometry of the problem is shown in 
Figs 1a, b, c. 
 

 
 

Fig.1a. Geometry of the problem for a flat ended cylindrical punch. 
 

 
 

Fig.1b. Geometry of the problem for a spherical punch. 
 

 
 

Fig.1c. Geometry of the problem for a conical punch. 
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 The strain displacement relations, linear stress-strain relations and equations of equilibrium 
(Lekhnitskii [34]) are respectively given by 
 

  θθ ,   ,  ,  rr zz rz
u u w u w

e e e 2e
r r z z r

   
    
   

, (2.2) 

  

  θθ θθ

σ

σ
     

σ

σ         

rr rr11 12 13

12 11 13

zz zz13 13 33

44zr rz

eA A A 0

eA A A 0

eA A A 0

A e0 0 0

    
    
    
    
    

    

, (2.3) 

  

   θθ
σ σ

σ σrr rz
rr

1
0

r z r

 
   

 
, (2.4) 

  

  
σ σ σrz zz rz 0
r z r

 
  

 
. (2.5) 

 
 Before further proceeding, it will be convenient to adopt non-dimensional variables by rescalling all 
lengths by the problem's length scale a 
 

   ,  ,  ,  ,  , 
r z w u H h

r z w u H h
a a a a a a

           , 

  

         A
 ,  , , θ, ,   ,  , , ,  

A

ij 1 j 33
1 j 33ij 0 0 0

44 44 44

A
i j r z A j 1 2 3 A

A A


     . (2.6) 

 
 In the analysis below, for notational convenience, we shall use only non-dimensional variables and 
politely remove their dashes (  ' ) and hats ( ^ ). 
 The equation of equilibrium in terms of nondimensional displacement components u and w may be 
expressed as follows 
 

  
2 2 2

1 2 22 2 2

u 1 u u w u u w
c 2 c c 0

r r r z z rr r z

                            
, (2.7) 

 

    
2 2 2

3 2 4 32 2

w 2 u u w 1 w u u w
c 2 c c c 0

r z r z r r r r zz r

                                
 (2.8) 

where 

  , , , 33 1311
1 2 3 4

13 13 13 13

4A 4A4A 2
c c c c

1 2A 1 2A 1 2A 1 2A
   

   
. (2.9) 

 
 The boundary conditions for the problem are 
 
     , ,   w r 0 f r 0 r 1   , (2.10) 

 
   , ,   w r H 0 r 0  , (2.11) 
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   , ,  rz r 0 0 r 0   , (2.12) 

 
   , ,   zz r 0 0 r 1   , (2.13) 

 
   , ,  rz r H 0 r 0   . (2.14) 

 
 In addition to the boundary conditions, the displacement components should satisfy the regularity 

condition ,   u w 0  as  2 2r z  . At the surface of contact of the material with the indentor 0 r 1  , 
the boundary condition will depend upon the shape of the indentor. If h is the indented depth of the solid into 
the material then 
(a) for a cylindrical indentor the condition will be  
 
     ,w r 0 f r h  . (2.15) 

 
(b) for a conical indentor having    as the semi-vertical angle, the condition is 
 
       , cot γ w r 0 f r h a r    . (2.16) 

 
(c) for a spherical indentor having radius R, the condition is 
 

     , -
2r

w r 0 f r h
2R

  . (2.17) 

 
3. Method of solution 
 
 To solve the partial differential Eqs (2.7) and (2.8) we shall apply Hankel transforms of order zero 
and one with respect to the variable r. Utilizing the symmetry condition, we shall suppose that the 
displacement components u and w can be expressed as 
 

       , ,1 1

0

u r z F z J r d


     , (3.1) 

  

       , ,2 0

0

w r z F z J r d


     (3.2) 

 
where 0J  and  1J  are Bessel functions of first kind of orders zero and one respectively and the unknown 

functions    ,  , ,  1 2F z F z   are to be determined from the boundary conditions. Substituting from Eqs (3.1) 

and (3.2) into Eqs (2.7) and (2.8) and inverting the related Hankel transforms we find 
 

     2 2
2 2 1 1 2 2c D c D c F 2D c F 0        , (3.3) 

  

     2 2 2
3 3 2 2 4 1c D c D c F 2D c F 0          (3.4) 
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where   .
d

D
dz

   

 
 In deriving Eqs (3.3) and (3.4) the following relationships have been used 
 

     
2

2
1 12 2

1 1
J r J r

r rr r

         
  

, 

 

     1 0
1

J r J r
r r

       
, 

 

       
2

2
0 1 02

J r J r J r
rr

 
    


. (3.5) 

 
 The solutions of the system of differential Eqs (3.3) and (3.4) are found to be 
 

     , k
4

m z
1 k

k 1

F z A e


   , (3.6) 

 

     , ( ) k
4

m z
2 k k

k 1

F z a A e


     (3.7) 

 
where   ρ , .,kA k 1 4   are arbitrary functions of the transformed parameter ρ , which are to be 

determined from the boundary conditions (2.10) - (2.14) and ( , ., )km k 1 4   are the roots of the following 
characteristic equation 
 

    4 3 2 2 2 2 2 2 2 4
2 0m 2 m 2 m 2 m 0              , (3.8) 

with  

   δ, say
2 2

1 3 2 1 3 2 2 4

3 3

c c c 4 c c c 2c 2c

c c

    
  , (3.9) 

 

  
c

β , 
c

2 41
0 2

3 3

c

c
   , (3.10) 

 
and the coefficients ( , ., )ka k 1 4   are given by 
 

       , , .,2 k 4
k 2 2

3 k k 2

2m c
a k 1 4

c m m c

 
    
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. (3.11) 

 
 It follows from Eq.(3.8) that 
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2

2 2 2 2
1 3 2 1m m i

2 4

 
            ,  

 

  
2

2 2 2 2
2 4 2 1m m i

2 4

 
            , (3.12) 

 
with    
 

  β δ β2 2 2
1 0   (3.13) 

 
where ,3 4m m  denote the respective complex conjugates of , 1 2m m . 
 Using Eqs (3.6), (3.7), (3.1) and (3.2) in the boundary conditions (2.10) - (2.14) we obtain 
 

      ( ) ,    
4

k k k
k 1

m a A 0 r 0


         , (3.14) 

 

          ,       k
4

m H
k k k

k 1

m a A e 0 r 0



         , (3.15) 

 

        ,       k
4

m H
k k

k 1

a A e 0 r 0



    , (3.16) 

       ( ) ,    
4

k k 0
k 10

a A J r d f r 0 r 1




       , (3.17) 

  

            ,        
4

2
13 33 k k 0

k 10

A A a A J r d r 1




            . (3.18) 

 
Equatios (3.14) - (3.16) yield 
 

        , k , ,k k 4A g A 1 2 3      (3.19) 

 
where  

    4 32

4 32

4 2 3

m H m Hm H
1 4 2 3

m H m Hm H
4 2 3

b b b
1

g b e b e b e
A

a e a e a e



  



,  

 

    4 31

4 31

1 4 3

m H m Hm H
2 1 4 3

m H m Hm H
1 4 3

b b b
1

g b e b e b e
A

a e a e a e


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

, 
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    41 2

41 2

1 2 4

m Hm H m H
3 1 2 4

m Hm H m H
1 2 4

b b b
1

g b e b e b e
A

a e a e a e


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

, 

 

  31 2

31 2

1 2 3

m Hm H m H
1 2 3

m Hm H m H
1 2 3

b b b

A b e b e b e

a e a e a e

 , 

 
and          ,   , .,  k k kb m a k 1 4      . (3.20) 

 
 From Eqs (3.18) and (3.17) we get, respectively 
 

        ,      4 0

0

D A J r d 0 r 1


      , (3.21) 

 

       * ( ),       4 0

0

D A J r d f r 0 r 1


       , (3.22) 

 

with           
3

k k 4
k 1

D l g l


      , (3.23) 

 

    2
k 13 33 kl A A a      , (3.24) 

 

        *
3

k k 4
k 1

D a g a


      . (3.25) 

 
If we write       4B D A    , (3.26) 

 
Equations (3.21) and (3.22) respectively become 
 

     ,     0

0

B J r d 0 r 1


     , (3.27) 

 

    ( ) ( ),     0

0

G B J r d f r 0 r 1


        (3.28) 

where     
*( )

( )

D
G

D


 


 . (3.29) 

 
 Introducing a function ( )t  such that 
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    ( )
  cos

1

0

B 2
t t dt


  

   , (3.30) 

 
we find that Eq.(3.27) is automatically satisfied and we get 
  

           cos  
1

4

0

2
A t t dt

D


   

   . (3.31) 

 
 Now Eq.(3.28) can be written as 
  

       , ( ),      
r 1

2 2
0 0

dt
t x L x t dx f r 0 r 1

r t

 
      
   

  , (3.32) 

 
which is an Abel type integral equation. After some calculations we get the integral equation in   as 
 

         ,  ,            
1

0

2
t x L x t dx g t 0 t 1     

 . (3.33) 

 
 This equation determines the function ϕ. Here 
 

    ( )
,

t

2 2
0

d rf r
g t dr h

dt t r
 


       for cylindrical indentor, 

 

  cot ,  h t 1
2

     
 

                 for conical indentor,                 (3.34) 

 

  ,
2t

h
R

                                 for spherical indentor, 

 

         , cos cos
0

2
L x t x t d



     
  , (3.35)                     

 

     ( )
2

G    


. (3.36) 

 

 Now the equilibrium condition demand 
 

   
*

* ,
a

zz

0

P 2 r r 0 dr 0     (3.37) 

 

where           * *,   
0
44

P a
P a

hA
  , 
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       ,zz 0

0

r 0 M J r d


     , (3.38) 

 

     ( ) cos ,  
1

0

2
M t t d t h      

  . (3.39) 

 
 Equation (3.37) is the relationship between the non-dimensional applied load P* and a*, the non-
dimensional radius of the contact area. 
 
5. Solution of the integral equations 
 
 The interval [0, 1] is sub-divided into n equal parts, each of length 1h  by the points, 

, , , ,0 1 0 1 2 0 1 n 0 10 x x x h x x 2h x x nh 1          where ,1nh 1  such that 

, , , ., .j 0 1x x jh j 0 1 n     Then by Simpson’s 1/3 formula we get 
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 (4.1) 

 
where , , , , .i it x i 0 1 n     
 
 Now, the integral Eq.(3.33) can be written as  
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
 (4.2) 

 
which is a set of n linear equations in n unknowns      ,  , .., .0 1 nt t t     

 This linear algebraic system of equations are solved numerically by utilizing Gaussian elimination 
method. 
 
5. Numerical results and discussion 
 
 The present study aims at investigating a frictionless contact problem in a finite transversely 
isotropic functionally graded layer. The main objective of the present discussion is to study the effects of 
material gradation and indentation on the load-contact area relationship as well as on normal stress 
distribution. 
 In our present discussion we have considered the transversely isotropic materials as cobalt, 
magnesium and titanium to illustrate theoretical results. The numerical values of the elastic coefficients for 
the materials are listed in Tab.1 (Freund and Suresh [35]). 
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Table 1. Basic data for three transversely isotropic materials. 
 

Quantity Unit Cobalt Titanium Magnesium 

 A11 
 A33 
 A44 
 A12 
 A13 

GPa  
GPa  
GPa  
GPa  
GPa  

.307 0  

.358 1  
.78 3  
.165 0  
.103 0  

.162 4  

.180 7  
.46 7  
.92 0  
.69 0  

.59 7  

.61 7  

.16 4  

.26 2  

.21 7  
                 
 Using the above numerical data we shall evaluate numerically the integral Eq.(3.33). Our numerical 
study will cover three different types of a rigid indentor, namely, cylindrical shaped, spherical shaped and 
conical shaped. 
 

 

 
 

Fig.2a.  The effect of indentation h on  ,zz r 0  for the flat -ended cylindrical punch (Titanium) (α = 0.1). 

(b) Variation of  ,zz r 0  for various materials with fixed indentation of the flat-ended cylindrical 

punch (h = 0.1, α = 0.1). (c) The effect of the graded parameter α on  ,zz r 0  for the flat-ended 

cylindrical punch with h = 0.1 (Titanium). 
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 We shall display our numerical results in Figs 2, 3 and 4 corresponding to cylindrical, spherical and 
conical shaped punches. Figure 2a shows the effect of indentation h on  ,zz r 0  for flat-ended cylindrical 

punch for various values of h in a transversely isotropic functionally graded medium like titanium. As 
expected, more indentation will require more normal stress. Figure 2b shows variation of  ,zz r 0  for three 

different materials with fixed indentation h of the flat-ended cylindrical punch. It is evident from Fig.2b that 
increase in rigidity will generate less normal stress. Figure 2c illustrates the effect of graded parameter α on 

 ,zz r 0 . It shows that normal stress  ,zz r 0  increases as the graded parameter α increases. 

 There are not much significant changes in the behavior of the stresses in the case of the spherical 
indentor from the corresponding results of the cylindrical punch as shown in Figs.3. But here we see that 

 ,zz r 0 0   as r 1 . 

 

 
 

 
 

Fig.3a.  The effect of indentation h on  ,   zz r 0  for the spherical punch (Titanium) (α= 0.1, R = 10). (b) 

Variation of  ,   zz r 0  for various materials with fixed indentation of the spherical punch (h = 0.1,α  

= 0.1, R = 10). (c) The effect of the graded parameter α on  ,   zz r 0  for spherical punch with h = 

0.1, R = 10 (Titanium). 
 
 In the case of the conical punch, some kind of dissimilarities from the above two punches are 
observed. Firstly, in this case the stresses act oppositely and have decreasing numerical values with 
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increasing h. This is shown in Fig.4a. Figure 4b shows a comparison between results of three materials for a 
fixed h. The results are similar to those in Fig.2b. Figure 4c shows the same effects as those of Figs 2c and 3c 
and e., the numerical values of  ,zz r 0  increase as α increases. Variations of normal stress with r have 

been also studied with different shapes of the conical punch by varying the semi-vertical angle. Results are 
shown in Fig.4d. 
 

 

 
 

Fig.4a. The effect of indentation h on  ,   zz r 0  for the conical punch (Titanium) (α . ,  γ π / )0 1 3  . (b) 

Variation of  ,   zz r 0  for various materials with fixed indentation of the conical punch 

( . ,α . ,  γ π / )h 0 1 0 1 3   . (c) The effect of graded parameter α on  ,   zz r 0  for the conical punch with 

. ,γ π /h 0 1 3   (Titanium). (d) Variation of  ,   zz r 0 for different γ  of the conical punch with 

. ,α .h 0 1 0 1   (Titanium). 
 
 Figures 5 shows the variation of the applied load P* with contact radius a* for all kinds of 
considered punches. Figure 5a shows that to produce same amount of indentation, a cylinder with greater 
radius will require a greater magnitude of the applied load. For materials like titanium, Figs 5a, c, e show that 
the effects of the graded parameter α on the applied load-contact area relationship for three different types of 
punches. It is clear from Figs 5a, c that as rigidity increases, a greater magnitude of the applied load will be 
required to produce same area of contact for cylindrical and spherical punches, while for the conical punch, 
as shown in Fig.5e, the result is just the opposite i.e., with increased rigidity, as load increases, contact area 
diminishes. The effects of anisotropy on the applied load are very much clear in Figs 5b, d, f for flat-ended 
cylindrical, spherical and conical punches respectively. 
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Fig.5a.  The effect of the graded parameter α on total force P* with contact radius with fixed indentation (h = 
0.1) for the flat-ended cylindrical punch (Titanium). (b) Variation of total force P* with contact 
radius (h = 0.1, α= 0.1) for the flat-ended cylindrical punch. (c) The effect of the graded parameter α 
on total force P* with contact radius with fixed indentation (h = 0.1, R = 10) for the spherical punch 
(Titanium). (d) Variation of total force P* with contact radius for various materials (h = 0.1, α = 0.1, 
R = 10) for the spherical punch. (e) The effect of the graded parameter α on total force P* with 
contact radius with fixed indentation ( . ,  γ π / )h 0 1 3   for the conical punch (Titanium). (f) 
Variation of total force P* with contact radius for various materials ( . ,  α . ,  γ π / ) h 0 1 0 1 3   for 
conical punch. 
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Conclusion 
 
 In the present study of frictionless contact between a transversely isotropic functionally graded layer 
and a rigid indentor pushed normally towards the layer, the gradation of the layer, the applied load on the 
indentor and the shapes of the indentor appear to produce significant effects on the normal stress distribution 
at the layer surface and on the load-contact area relationship. As, neither the expression of the surface normal 
stress, nor the load- contact area relationship is in its simple algebraic form, the effects are studied through 
numerical evaluations of the associated integrals based on the various parameter values of the medium. The 
important observations from the study are 
(a)  The normal stress distribution  ,   zz r 0  depends on the amount of indentation, the shape of the 

indentor as well as on the rigidity of the layer material 
(b)  The load-contact area relationship also depends on the shape of the indentor, the anisotropic character as 

well as on the functional gradation of the layer material. 
 
Nomenclature 

 
 Α  non homogeneity parameter  
 ijA   anisotropic coefficients for the graded elastic medium 

 0
ijA   anisotropic coefficients for the homogeneous elastic medium 

   , , ,rr rz zze e e e   strain components in polar co-ordinate system 

 H  thickness of the layer 
 (.)nJ   bessel functions of first kind with order n 

 P  applied concentrated load  
 R  radius of spherical indentor  
 , , r z   cylindrical coordinates 

 u, w  displacement components 
 γ   semi vertical angle of the conical indentor 

 , , ,rr rz zz      stress components in polar co-ordinate system 
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