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This study examines the effect of thermal radiation, chemical reaction and viscous dissipation on a magneto-
hydro-dynamic flow in between a pair of infinite vertical Couette channel walls. The momentum equation 
accounts the effects of both the thermal and the concentration buoyancy forces of the flow. The energy equation 
addresses the effects of the thermal radiation and viscous dissipation of the flow. Also, the concentration equation 
includes the effects of molecular diffusivity and chemical reaction parameters. The gray colored fluid considered 
in this study is a non-scattering medium and has the property of absorbing and emitting radiation. The Roseland 
approximation is used to describe the radiative heat flux in the energy equation. The velocity of flow transforms 
kinetic energy into heat energy. The increment of the velocity due to internal energy results in heating up of the 
fluid and consequently it causes increment of the thermal buoyancy force. The Eckert number being the ratio of 
the kinetic energy of the flow to the temperature difference of the channel walls is directly proportional to the 
thermal energy dissipation. It can be observed that increasing the Eckert number results in increasing velocity. A 
uniform magnetic field is applied perpendicular to the channel walls. The temperature of the moving wall is high 
enough due to the presence of thermal radiation. The solution of the governing equations is obtained using regular 
perturbation techniques. These techniques help to convert partial differential equations to a set of ordinary 
differential equations in dimensionless form and thus they are solved analytically. The following results are 
obtained: from the simulation study it is observed that the flow pattern of the fluid is affected due to the influence 
of the thermal radiation, the chemical reaction and viscous dissipation. The increment in the Hartmann number 
results in the increment of the Lorentz force but a decrement in velocity of the flow. An increment in the radiative 
parameter results in a decrement in temperature. An increment in the Prandtl number results in a decrement in 
thermal diffusivity. An increment in both the chemical reaction parameter and molecular diffusivity results in a 
decrement in concentration. 
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1. Introduction   
 
 In fluid dynamics the word dissipation means conversion of energy from one form to other forms. 
The fluid flow requires kinetic energy and hence its velocity takes energy from the motion and transforms it 
into internal energy. The kinetic energy is dissipated, i.e., during the flow it is converted into internal energy. 
The increment of the velocity of the fluid results in heating up of the fluid.  
 The cited process is irreversible in case of a viscous fluid and is known as viscous dissipation. The 
characteristics of viscous dissipation effects depend on the non-dimensional quantity Eckert number. Viscous 
dissipation is applied in geophysical flows and industries. The work done for deforming an elastic material is 
stored as potential energy which can be recovered mechanically. The dissipation function is always positive 
when applied to a viscous fluid. But it may be either positive or negative when it is applied to elastic and 
viscoelastic materials. 
 Many scholars have studied a natural convection-magneto-hydrodynamic flow of vertical plates. 
Free convection at a vertical plate with transpiration is studied in [1]. Natural convection adjacent to a 
surface with three thermal boundary conditions is investigated in [2]. A numerical study for natural 
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convective cooling of a vertical plate is conducted in [3]. Thermal radiation has very wide applications in 
fluid dynamics, viz. aerospace, chemical, mechanical, industrial and environmental engineering and sciences.  
 The radiation effects on mixed convection along a vertical plate with a uniform surface temperature 
using the Rosseland flux model are investigated in [4]. The radiation effects on a magneto-hydrodynamic 
unsteady free convection flow over a vertical plate with variable temperature are studied in [5].The hydro 
magnetic flow of a viscous incompressible fluid past an oscillating vertical plate with radiation and variable 
mass diffusion is considered in [6]. Even though the effects of viscous dissipation are significant and 
important, they have not been considered in any of the above studies. 
 The influences of viscous heating dissipation effects in natural convective flows have been 
investigated in [7]. The thermal radiation effects on a hydro-magnetic-free convection flow past an 
impulsively started vertical plate with a variable surface temperature and concentration is analyzed in [8]. 
Recently, the effects of thermal radiation on natural conductive heat and mass transfer of a viscous 
incompressible grey absorbing emitting fluid flowing past an impulsively started moving vertical plate with 
viscous dissipation are studied in [9]. Very recently the boundary layer steady flow and heat transfer of a 
viscous incompressible fluid due to a stretching plate with viscous dissipation effect in the presence of a 
transverse magnetic field has been studied in [10]. 
 Magneto-hydrodynamic flow through a vertical Couette plates oscillating in its own plane has many 
industrial applications. An exact solution of the Navier Stokes equation concerned with flow of a viscous 
incompressible fluid past a horizontal plate oscillating in its own plate is given in [11]. Natural convection 
effects on Stokes problem was first studied in [12]. Free convective effect on an impulsively started or 
oscillating plate has been studied in [13]. An exact solution to the flow of a viscous incompressible unsteady 
flow past an infinite vertical oscillating plate with a variable temperature and mass diffusion is studied in 
[14]. Free convection flow of a viscous incompressible fluid past an infinite vertical oscillating plate with a 
uniform heat flux in the presence of thermal radiation was studied in [15]. The effects of chemical reaction 
and diffusion in an isothermal laminar flow along a soluble flat plate are studied in [16]. The effects of 
chemical reaction and mass transfer on flow past an impulsively started infinite vertical plate with a constant 
heat flux are analyzed in [17]. The effects of chemical reaction on a moving isothermal vertical infinitely 
long surface with suction are studied in [18]. The effects of homogeneous first order chemical reaction and 
mass diffusion on unsteady flow past an impulsively started semi-infinite vertical plate with a variable 
temperature in the presence of thermal radiation have been studied in [19].  
 The effects of magnetic field on the flow of a fluid between two vertical parallel Couette plates have 
been studied. The fluid considered here has the following properties viz., unsteady, viscous, incompressible, 
electrically conducting, Newtonian, thermal radiating and chemical reacting. Free stream velocity of the fluid 
is assumed to be fluctuating. Furthermore, it is assumed that temperature and concentration of the fluid also 
fluctuate with time. Although the effects of thermal radiation, chemical reaction and viscous dissipation are 
very important and significant, they have not been considered [20]. 
 To fill some of the gaps of the fore-cited works the present study is taken up. The main objective of 
this paper is to study the effect of the thermal radiation, the chemical reaction and viscous dissipation on the 
flow pattern. 
 

2. Theoretical experiment, mathematical model and analysis  
 

 Consider a flow is identical in parallel Couette channel walls. Here the fluid flow is bounded by two 
infinite vertical channel walls separated by a distance  h . The fluid considered is an: unsteady, 
incompressible, viscous, electrical conducting, Newtonian, chemical reacting and radiating fluid. 
The geometrical representation of the model and the coordinate system are shown in Fig.1. The x  axis is 
taken along the infinite channel walls and the y  axis is taken normal to the channel walls. The vertical 

moving channel wall is located at y 0   along x  where the temperature is '    wT  and the concentration is
'   wC . The other but stationary channel wall is located at 'y h  where the temperature is '

hT  and the 
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concentration is '   hC . It is assumed that the radiation heat flux in the 'x  direction is negligible as compared 

to that in the 'y  direction. 

 Initially, at '  t 0 , the stationary channel wall and the fluid are at the same temperature '  hT ; and 

concentration level of the fluid '
hC  is the same at all points. At a later time, 't 0 , the temperature of the 

moving wall and concentration of the fluid do raise to '  wT  and '  wC , respectively.  
 The magnetic field of uniform strength is applied perpendicular to the channel walls and the induced 
magnetic field of the fluid is negligible. Hence the magnetic Reynolds number is small and this is a valid 
assumption on laboratory scale under the assumption of a small magnetic Reynolds number [21].The influence 
of density variation with both temperature and concentration in the body force term or Boussinesq’s 
approximation is not constant. This approximation involved neglecting all variable fluid properties for density 

variation with approximation of  ''  hg T T    and  '   'c hg C C   . Furthermore, it is considered that the fluid 

is gray in color, has a radiation absorbing nature, emits radiation, and is a non-scattering medium. The 
Roseland approximation is used to describe the radiative heat flux in the energy equation. 
 In nature, there is no pure air and water due to the presence of foreign masses. The foreign masses 
may exist either naturally or mixed with air or water. The foreign masses in air or water cause some kinds of 
chemical reaction and hence heat is generated. It is important to study such kinds of chemical reactions to 
improve a number of technologies such as food preservation, polymer production, manufacturing of ceramics 
and glassware. 
 The free stream velocity has the form 
 

           i t
oU t U 1 e       . (2.1) 

 

In Eq.(2.1),  0U  is the mean constant free stream velocity;   is the frequency; and   t  is the time. 
 Based on the following model assumptions, the governing equations of the model are derived: 
(1) All fluid properties except density in the thermal and concentration buoyancy force term are constant. 
(2) The influence of the density variations in other terms of the momentum, energy and concentration 

equations are negligible. 
(3) The Eckert number Ec and the magnetic Reynolds number are small so that the induced magnetic field 

can be neglected. 
(4) The external electric field is supposed to be zero. 
(5) All the physical variables are independent of '.x  
 

 
 

Fig.1. Flow configuration and coordinate representation of the model. 
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 The problem of the model, based on the model assumptions, can be governed by the following set of 
equations. The momentum equation of the problem is given by 
 

     ' '' ' '   
   '  '

' ' '

2

h c h2

u U u J X B
g T T g C C

t t y

     
                  

.                                (2.2) 

 
 In Eq.(2.2), the vector cross product   JxB  represents the Lorentz force. This term is a body force 

corresponding to the magneto hydrodynamic flow. The total magnetic field is represented by  B . The density 
of the current is represented by  J . Using Ohm’s law, the expression for the density of current can be 
constructed as     J E v x B   . Upon substituting   E 0 , since the electric field is assumed to be 

negligible, the expression for J  reduces to ( '  )J v x B  . Also, the expression for the Lorentz force reduces 

and takes the form as   '2JxB B u  . In view of these result, Eq.(2.2) reduces to 
 

     
' '

' '' ' ' ( )
' '

' ' '

2 2

h c h2

u U u B u U
g T T g C C

t t y

    
         

  
.                      (2.3) 

 
 The third and fourth terms on the right hand side of the momentum Eq.(2.3) denote thermal and 
concentration buoyancy effects, respectively; and the fifth term is the magneto hydrodynamic effect due to 
the Lorentz force.  
 The energy equation of the model can be expressed as  
  

  
' ' '

  
' ' ''

22
r

2
p p

qT T 1 u

t C y C yy

           
                             

.                                       (2.4) 

 
 The second term on the right hand side of the energy Eq.(2.4) denotes radiation and the third term is 
viscous dissipation and is always positive when applied to a viscous fluid.  
 The concentration equation of the model can be expressed as 
 

  '' '
( ' )

' '

2

r h2

C C
D k C C

t y

  
      

.                                                                 (2.5) 

 
 The first term on the right hand side of the concentration Eq.(2.5) is molecular diffusivity and second 
term on the right hand side is generative chemical reaction. 
 Based on Fig.1 the boundary conditions for Eqs (2.3) – (2.5) can be chosen as follows 
 

  ' ,     'y 0 u   ' '    i t
oU 1 e   ,                                                                 (2.6) 

 

  
' '' ' '   '  ( ) i t

w w hT T T T e     ,                                                                            (2.7) 
 

  
' '' ' '   ' ( ) i t

w w hC C C C e     ,                                                                          (2.8) 
 

  ' '' ,   ' ,  ' , '   h hy b u 0 T T C C    .                                                            (2.9) 
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 It is assumed that the radiation heat flux is to be presented in the form of an unidirectional flux in the 
'y  direction. Using the Roseland approximation for radiative heat transfer and the Roseland approximation for 

diffusion and also following other works [22], the expression for the radiative heat flux    rq can be given as 
 

  
'

'

4

r
s

4 T
q

3k y

    
      

.                                                                                 (2.10)            

 
 Here in Eq.(2.10), the parameters    and sk represent the Stefan Boltzmann constant and the 
Roseland mean absorption coefficient, respectively.  

 Now on assuming that the temperature differences within the fluid flow are sufficiently small, '4T  in 

Eq.(2.10) can be expressed as a linear function of '  hT  using the Taylor series expansion. The Taylor series 

expansion of '4T  about '  hT , after neglecting the higher order terms, takes the form  
 

  ' '' '4 3 4
h hT 4T T 3T  .                                                                            (2.11) 

 
 Using Eqs (2.10) and (2.11) in Eq.(2.4), it can be obtained that 
 

   
'

' '' ' ' '
 

' '' '

232 2
h 0

h2 2
p s p p

16 T QT T 1 T u
T T

t C 3k C C yy y

               
                                         

.     (2.12) 

 
 In Eq.(2.12), the third term denotes heat absorption of the fluid. 
 
3. Non-dimensionalization of the model 
 
 In order to solve Eqs (2.3) – (2.5) of the model it is convenient to deal with its dimensionless form. 
Hence, the dimensionless form of the model is found by introducing the following non-dimensional 
quantities 
 

  '/ ;   / ;   / ; / ; ;  / ;3 2
h s 0 0y y h R 4 T k u u U U U U t t h                 

  

     ' ' ' '; Gr ; Sc / ;  Pr / ; 2 2
c w h 0 w h 0Gc g h C C U g h T T U D                     

 

    

       ' ' '/ ;  ' /2 2
h w hM B h C C C C C        ; 

    

  ' '
pEc / C Δ ;  Δ2

o w hU T T T T   ;          ' ' ' '/ ( )h w hT T T T      ; 

 
 After substituting the above non-dimensional quantities in Eqs (2.3) – (2.5) and after simple 
algebraic manipulations, the non-dimensional form of the model takes the following form 
 

  Gr ( )
2

2
2

u U u
GcC M u U

t t y

  
        
  

,                                                 (3.1) 
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  Ec
22

2o
2

p

Q1 4R u
1 h

t pr 3 C yy

                   
,                                           (3.2) 

 

  Sc
22

r
2

K ChC C

t Dy

 
  

 
.                                                                       (3.3) 

 
 The corresponding boundary conditions (2.6) – (2.9) take the form  
 

  , , ,it it ity 0 u 1 e 1 e C 1 e           ,                                          (3.4) 
 
  , , ,y 1 u 0 0 C 0     .                                                                    (3.5) 
  
 The system (3.1) – (3.3) together with the boundary conditions (3.4) – (3.5) forms the non-
dimensional form of the present model. 
 The variables and parameters used in this study and their physical meanings are given in the 
Appendix.  
 
4. Analytical solution of the model problem 
 
 If the amplitude of oscillations ( 1 ) is very small then the solutions of flow velocity  u , 
temperature field   and concentration C  near to the moving plate can be assumed as the sum of steady and 
small oscillating components. Thus, the following 
 

       , it
0 1u y t u y u y e   ,                                                                        (4.1) 

  

       , it
0 1y t y y e     ,                                                                                (4.2) 

  

       , it
0 1C y t C y C y e   .                                                                                    (4.3) 

 
 Here in Eqs (4.1) – (4.3) ,   0 0u  , and   0C represent mean velocity, mean temperature and mean 
concentration, respectively. 
 Also, the free stream velocity takes the form  
 

  itU 1 e   .                                                                                                   (4.4) 
 
 Substituting Eqs (4.1) - (4.4) into Eqs (3.1) - (3.3); equating harmonic and non-harmonic terms and 
neglecting higher orders of   the following system of equations is obtained 
 

  Gr2 2
o 0 0 0u M u GcC M      ,                                                                    (4.5) 

 

     Gr  2 2
1 1 1 1u i M u GcC i M        ,                                        (4.6) 

 

  " r o
0

K C h
C 0

D
  ,                                                                                            (4.7) 
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  Sc
2

r
1 1

K h
C C i 0

D

 
     

 
 ,                                                                          (4.8) 

 

  Ec '
Pr

2
20 0

0 0
p

Q h1 4R
1 u

3 C

        



,                                                             (4.9) 

 

  Ec ' '
Pr

2
0

1 1 0 1
p

Q h1 4R
1 i 2 u u

3 C

 
           

 
   

.                                                     (4.10) 

 
 Further, the new boundary conditions corresponding to Eqs (3.4) – (3.5) are obtained as 
 
  , , , , , ,0 1 0 1 0 1y 0 u 1 u 1 1 1 C 1 C 1         ,                       (4.11) 
 
  , , , , , ,0 1 0 1 0 1y 1 u 0 u 0 0 0 C 0 C 0         .                               (4.12) 
 
 The variables , , , ,0 1 0 1 0u u C   and 1C  are still coupled in Eqs (4.5) – (4.10). To solve (4.5) – (4.10) 

we assume the Eckert number Ec to be very small for incompressible fluid and assume that   
 

          Ec 2
0 1F y F y F y o Ec   .  

 
 Here F  stands for any variable   , , , ,  and 0 1 0 1 0 1u u C C  . These variables can be expanded in powers 
of Ec as follows 
 
       0 00 01u y u y Ecu y  ,                                                               (4.13) 

 
       Ec1 10 11u y u y u y  ,                                                                             (4.14) 

 
       Ec0 00 01y y y     ,                                                                        (4.15) 

 
       Ec1 10 11y y y     ,                                                                            (4.16) 

 
       Ec0 00 01C y C y C y  ,                                                                           (4.17) 

 
       Ec1 10 11C y C y C y  .                                                                       (4.18) 

 
 Upon substituting Eqs (4.13) – (4.18) in to Eqs (4.5) – (4.10) and equating terms free from Ec and 
with coefficients Ec and neglecting higher orders of Ec the following equations are obtained 
  

  " Gr2 2
00 00 00 00u M u GcC M      ,                                                                         (4.19) 

 

  " Gr2
01 01 01 01u M u GcC     ,                                                                                  (4.20) 
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   " Gr2
10 10 10 10u u i M GcC      ,                                                                  (4.21) 

 

   " Gr2
11 11 11 11u u i M GcC      ,                                                            (4.22)     

 

  "
2

r 00
00

k C h
C 0

D
  ,                                                                                                (4.23) 

 

  "
2

r 01
01

k C h
C 0

D
  ,                                                                                                (4.24) 

 

  " Sc
2

r
10 10

k h
C C i 0

D

 
    

  
,                                                                              (4.25) 

 

  " Sc
2

r
11 11

k h
C C i 0

D

 
    

  
,                                                                              (4.26) 

   

  "
Pr

2
0 00

00
p

Q h1 4R
1 0

3 C

        
,                                                                        (4.27)  

   

  '
Pr

2
20

01 00
p

Q h1 4R
1 u

3 C

            
,                                                                         (4.28) 

 

  "
Pr

2
0

10 10
p

Q h1 4R
1 i 0

3 C

                
,                                                                   (4.29) 

 

  " ' '
Pr

2
0

11 11 00 10
p

Q h1 4R
1 i 2u u

3 C

                 
.                                          (4.30) 

 
 Equations (4.19) - (4.30) are subjected to the new boundary conditions as given below 
 
  , ,00 10 00 10 00 10 01 11 01 11 01 11y 0 u u C C 1 u u C C 0                 ,   (4.31) 
 
  , 00 01 10 11 00 01 10 11 00 01 10 11y 1 u u u u C C C C 0                 .       (4.32) 
  
 Solving Eqs (4.19) - (4.30) together with the boundary conditions (4.31) - (4.32), the analytical 
solutions are obtained 
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  y y
11 1 2C p e p e 0     .                                                                     (4.44) 

 
 Also  , , ( , )u y t y t  and ( , )C y t  are given by 
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     , y y y y it
1 2 1 2y t c e c e k e k e e         ,                                                                (4.46) 

 

     , my my y y it
1 2 1 2C y t d e d e h e h e e       .                                                              (4.47) 

 
 Various symbols used here and above are given in the APPENDIX. 

 
5. Simulation study                               

 
 In this paper the flow pattern of the fluid which is affected due to the influence of the thermal 
radiation, the chemical reaction and viscous dissipation on a magneto-hydro-dynamic flow in infinite vertical 
Couette channel walls have been analyzed. Perturbation technique is used to solve the governing equations 
of the flow model. The effects of physical parameters like the Grashof number based on temperature, the 
modified Grashof number based on concentration difference, the Schmidt number, the thermal radiation 
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parameter, the chemical reaction parameter, the Prandtl number, Hartmann number, Eckert number and 
molecular diffusivity on the solution of the model have been analyzed. 
 For simplicity, only graphical representations of temperature profile for different values of the 
radiation parameter, temperature profile for different values of the Prandtl number, velocity profile for 
different values of the Hartmann number and also of concentration profile for different values of the 
chemical reaction parameters and molecular diffusivity have been presented and discussed. 
 

 
Fig.2. Velocity profile of the model for different values of the Hartmann number M. 

 
 In Fig.2, the simulated results of the influence of the Hartmann number on velocity are presented. 
The graph is drawn in the   yu  plane representing, respectively, the distance between the channel walls and 
velocity. Other parameters are held constant. From the figure it is observed that if the value of the Hartmann 
number M is increased, then the Lorentz force of the fluid flow will increase and as a result the velocity also 
will decrease. 
 

 
Fig.3. Temperature profile of the model for different values of the radiative parameter R . 



Effect of thermal radiation, chemical reaction and viscous ... 797 

 
 In Fig.3, the simulated result of the influence of the radiation parameter R  on the transfer of 
temperature is presented. The graph is drawn in the   y  plane representing, respectively, the distance 
between the channel walls and temperature. Other parameters are held constant. The result shows that for a 
fixed value of the thermal radiation parameter   R , the temperature     starts from a constant value at the 
moving channel wall. Also as y  increases the temperature decreases till it reaches a minimum value. 

However, thereafter the temperature decreases with the increase of   y  and ultimately the temperature reaches 
an upper constant value. Nevertheless, the measure of temperature at the moving channel wall is always at a 
higher value than that at the stationary channel wall. 
 

 
 

Fig.4. Concentration profile of the model for different values of the chemical reaction parameter kr . 
 
 In Fig.4, the simulated result of the influence of the chemical reaction parameter     Kr on 
concentration is presented. The graph is drawn in the 0yc  plane representing, respectively, the distance 
between the channel walls and concentration. Other parameters are held constant. The result shows that for 
a fixed value of the chemical reaction parameter  kr , the value of fluid concentration denoted by   0c  starts 

from a maximum constant value at the moving channel wall and as  y  increases the concentration   0c  
decreases and reaches a zero constant value at the stationary channel wall. Nevertheless, the measure of 
fluid concentration at the moving channel wall is always at a higher value than that at the stationary 
channel wall. 
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Fig.5. Concentration profile of the model for different values of molecular diffusivity D . 

 
 In Fig.5, the result of the simulated graph of the influence of molecular diffusivity on concentration 
is presented. The graph is drawn in the    0yc  plane where y  is the distance between the channel walls and 

0c  is the concentration. From the simulated graph it can be concluded that as the molecular diffusivity D  

increases the concentration of the fluid  0c  decreases. This is due to viscous dissipation. The effect of viscous 
dissipation of the fluid flow is to increase energy by heating up the fluid yielding greater temperature 
consequently this results in increasing the buoyancy force. The increase in temperature causes an increase in 
velocity of the flow. Therefore, the concentration decreases as molecular diffusivity increases. 

 

 
Fig.6. Temperature profile of the model for different values of the Prandtl number Pr. 

 
 In Fig.6, the result of the simulated graph of the Prandtl number on temperature profile is presented. 
The graph is drawn in the     y  plane where y  is the distance between the channel walls and   is 
temperature. From the simulated graph it can be concluded that as the Prandtl number increases the 
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temperature decreases. The Prandtl number Pr is considered to be directly proportional to the viscosity  v  
but inversely proportional to the thermal diffusivity    . That is Pr  /v  . This theoretical fact has been 
verified successfully through the simulation study. 
 Whenever the value of Pr increased, the simulation study results also in an increase of the viscosity 
and as a result a decrease in the velocity. However, whenever the value of Pr is decreased, it also results in a 
decrease of viscosity and as a result an increase of the velocity and the same can be observed in the 
simulated graphs. Similarly, whenever the value of Pr is increased, the simulation study results in a decrease 
of the thermal diffusivity and as a result a decrease of the thermal boundary layer. However, whenever the 
value of Pr is decreased, it also results in an increase of the thermal boundary layer and the same can be 
observed in the simulated graphs. The Eckert number is the ratio of the kinetic energy of the fluid flow to the 
difference of the channel walls temperature. The Eckert number and temperature are directly proportional. 
 
6. Conclusions 
 
 In this paper the effects of the thermal radiation, the chemical reaction and viscous dissipation on 
MHD flow in an infinite vertical Couette channel walls are analyzed. The flow pattern of the fluid is affected 
due to the influence of these physical parameters. The effects of physical parameters viz. The Hartmann 
number, chemical reaction parameter, thermal radiation parameter, Prandtl number, Eckert number and 
molecular diffusivity on flow variables viz. velocity, temperature and concentration are discussed. The 
solution of the governing equations is obtained using perturbation techniques. Mat lab code is used to solve 
the ordinary differential equations and to simulate the graphs. The following results are obtained: 
(i)  An increment in the value of the Hartmann number  M is due to the Lorentz force of the fluid flow but 

as a result the velocity of the flow will decrease. 
(ii)  An increment in the radiative parameter results in a decrease in temperature. 
(iii)  An increment in the Prandtl number results in decreasing thermal diffusivity. 
(iv)  An increment in both the chemical reaction parameter and molecular diffusivity results in a decrease in 

concentration. The latter decrement in concentration is due to viscous dissipation. 
 
Nomenclature 
 
  C   dimension less concentration 
    pC   specific heat at constant pressure 

 '  hC   concentration at channel wall at   y h  

 '  wC   concentration at channel wall at y 0  

  D   mass diffusivity 
 Ec     Eckert number 
   Gc   modified Grashof number 
 Gr    thermal Grashof number 
   g   acceleration due to gravity 
  J   electric current density 
   rk   chemical reaction parameter 

 M     Hartmann number 
 Pr     Prandtl number 
    R   radiation parameter 
 Sc     Schmidt number 

 '   T   temperature of the fluid in the boundary layer 
 '   wT   temperature of the moving channel wall 

 '  hT   temperature of the stationary channel wall 

   t   time 
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   U   dimensionless free stream velocity 

 '  U   free stream velocity 

 '  u   velocity component in 'x  direction 
   rq   radiative heat flux 

 'v   velocity component in 'y  direction 
  ,   x y   dimension less Cartesian coordinates 

 ' ',  x y    Cartesian coordinates 
     thermal diffusivity 
      thermal expansion coefficient 
  c   concentration expansion coefficient 

     amplitude of free stream velocity 
      dimensionless temperature 
     thermal conductivity 
     dynamic viscosity 
     kinematic viscosity 
     electric conductivity 
    frequency of oscillation 
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