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An investigation made on the effect of Hall currents on double-diffusive convection of a compressible 
synovial (couple-stress) fluid in the presence of a horizontal magnetic field through a porous layer is considered. 
The analysis is carried out within the framework of linear stability theory and normal mode technique. A 
dispersion relation governing the effects of viscoelasticity, compressibility, magnetic field and porous layer is 
derived. For the stationary convection, a synovial fluid behaves like an ordinary Newtonian fluid due to the 
vanishing of the viscoelastic parameter. The stable-solute gradient, compressibility, and magnetic field have 
postponed the onset of convection, whereas Hall currents and medium permeability have not postponed the onset 
of convection, moreover, a synovial fluid has a dual character in the presence of Hall currents, whereas in the 
absence of Hall current in synovial fluid have postponed the onset of convection, which is in contrast in case of 
thermal convection couple-stress fluid with same effects. These analytic results are confirmed numerically and 
the effects of various parameters are depicted graphically. It has been observed that oscillatory modes are 
introduced due to the presence of viscoelasticity, magnetic field, porous medium and Hall currents which were 
non- existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.  
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1. Introduction 
 
 The derivation of the basic equations of a layer of a fluid heated and soluted from below in a porous 
medium, using Boussinesq approximation, has been given in a treatise by Joseph [1]. The study of a layer of 
a fluid heated and soluted from below in a porous medium with Hall currents is motivated both by its 
theoretical and practical applications in engineering. Hall currents are effects whereby a conductor carrying 
an electric current perpendicular to an applied magnetic field develops a voltage gradient which is transverse 
to both the current and the magnetic field.  
 A normal synovial fluid is clear, pale yellow, viscid, and does not clot. Studies of mammalian 
synovial fluids have found considerable similarities among species, although notable differences do exist. 
The majority of investigative work determining the composition of a synovial fluid has been performed on 
the bovine synovial fluid mainly because large quantities of it are available. A synovial fluid is a plasma 
dialysate modified by constituents secreted by the joint tissues. The major difference between the synovial 
fluid and other body fluids derived from plasma is its  high content of hyaluronic acid (mucin). The exact 
source of the hyaluronic acid has been the subject of debate. It is generally assumed, however, that both 
fibroblasts beneath the synovial membrane intima and synovial membrane-lining cells produce this 
mucopolysaccharide constituent of the synovial fluid. The synovial fluid is believed to have two main 
functions: to aid in the nutrition of articular cartilage by acting as a transport medium for nutritional 
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substances, such as glucose, and to aid in the mechanical function of joints by lubrication of the articulating 
surfaces. 
  A couple-stress fluid is  used to study the mechanisms of lubrications of synovial joints. A human 
joint is a dynamically loaded bearing which has an articular cartilage as the bearing and the synovial fluid as 
the lubricant. When a fluid film is generated, squeeze-film action is capable of providing considerable 
protection to the cartilage surface. The shoulder, ankle, knee and hip joints are the loaded-bearing synovial 
joints of the human body and these joints have a low friction coefficient and negligible wear. Normally, the 
synovial fluid is a viscous, non-Newtonian fluid and is clear or yellowish. The normal volume of the 
synovial fluid obviously varies from joint to joint. In a dog, the average is 0.24ml, where as the normal 
synovial fluid complement levels in humans are approximately 10% of the serum values. [2]. Many theories 
based on extensive investigations of the physical properties and abilities of the synovial fluid to act as a 
lubricant have been presented to explain the mechanisms of joint lubrication. It appears that the low 
frictional resistance to join motion is due to a combination of mechanisms. Each mechanism complements 
the others and depends on the tissues involved and the load imparted to the joint [3].  
 The theory of couple-stress fluids initiated by Stokes [4], is a generalization of the classical theory of 
viscous fluids; an excellent introduction to this theory is available in the monograph “Theories of Fluids with 
Microstructure-An Introduction” written by Stokes [5] himself. The synovial fluid has been modeled as a 
couple-stress fluid in human joints by Walicki and Walicka [6].  
 In recent years, instability in a couple-stress fluid saturated porous layer heated and soluted from 
below has been investigated. The investigations included external constraints such as suspended particles, 
magnetic field and/or rotation. Sunil et al. [7] considered the effect of suspended particles on the stability of 
a couple-stress fluid layer heated and soluted from below in a porous medium. Malashetty et al. [8] studied 
the Soret effect on double-diffusive convection in a couple-stress liquid using both linear and non-linear 
analysis. In another study, Malashetty et al. [9, 10] analyzed the double-diffusive instability of a couple-
stress fluid saturated a porous layer. Singh and Kumar [11, 12] studied rotatory thermosolutal convection in a 
couple – stress fluid and magneto-thermosolutal convection in a compressible couple- stress fluid. Singh and 
Kumar [13] studied magneto and rotatory thermosolutal convection through a porous medium. The effect of 
Hall currents was investigated by Sharma and Rani [14], Sunil et al. [15], Singh [16], as well as Jaimal et al. 
[17]. 
 During the survey, it has been noticed that the Hall current effects are completely neglected in the 
studies of couple-stress fluids. Keeping in mind the importance of couple-stress fluids, convection in fluid 
layer soluted and heated from below through porous medium with Hall currents effects, the present paper 
attempts to study the effect of Hall current on thermosolutal convection of a couple-stress fluid through 
porous medium.  
 
2. Formulation of the problems 
 
 Consider an infinite layer of an compressible finitely conducting (electrically and thermally) couple-
stress fluid through porous medium, heated and soluted from below, confined between two horizontal planes 
situated at z = 0 and z = d, acted upon by a uniform horizontal magnetic field ( , , )H H 0 0 , gravity field 

( , , )g 0 0 g . The fluid layer is heated from below such that a steady adverse temperature gradient 0 1T T

d


 

, where and0 1T T  are the constant temperatures of the lower and upper boundaries with 0 1T T  are 
maintained. 
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Fig.1. Geometrical representation of uniform compressible couple-stress fluid. 
    
 Since the non-linear theories attempt to allow for the finite amplitudes of the perturbations, we 
suppose that various physical variables describing the flow suffer small (infinitesimal) increments and, as a 
consequence, we neglect all product and power (higher than the first), of the increments and retain only 
terms that are linear and the linear stabilizing theory, for mathematical simplicity, is applied. Then, the 
linearized hydromagnetic equations relevant to the problem are   
 

     . 2 e

0 0 1 0 0

1 q 1 1 1
q q p g 1 q H H

t k 4

                                  
,       (2.1) 

 
  . q 0  ,                                                                                        (2.2) 
 

   . 2T
E q T k T

t


   


,                                                                                        (2.3) 

 

   . 2C
E q C k C

t

    


,                                                                                                (2.4) 

 
Maxwell’s equation yields 
 
  . H 0   ,                                                                                                                         (2.5) 
 

     . 2dH c
H q H H H

dt 4 Ne


          

                                                      (2.6) 

 
where   /s sE 1 c c    , here, , c  and ,s sc  stand for the density and specific heat of the fluid and 

solid ( porous matrix) material, respectively; v , is the kinematic viscosity. The equation of state (Veronis, [18]) is 
 

     0 0 01 T T C C                                                                                            (2.7) 

z = 0

z = d 

Heated and Soluted From Below 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………

),0,0( HH


),0,0( gg 


Porous Layer

y-axis

x-axis

Uniform Compressible 

Couple-Stress Fluid 



966                                                                                                                                                                             M.Singh 

where, the suffix zero refers to the values at the reference level z 0  and so the change in density  , 

caused by perturbations   and  in temperature and concentration is given by  
 
   0       .                                                                                                      (2.8) 

 
 The equation of state Eq.(2.7), contains a thermal coefficient of expansion   and an analogous 
solvent coefficient  . Here E  is the solute parameter analogous to E. The steady state solution is   
 
  ( , , )0 0 0q ,   ( , , )H 0 0H ,   0T z T   ,   0C z C   ,    0 1 z z         (2.9) 

 
where   and   are both positive. Here, we consider the case, in which both boundaries are free as well as 
perfect conductors of heat. Since the boundaries are maintained at constant temperature, the perturbation in 
the temperature is zero at the boundaries and concentration at a boundary is kept fixed, therefore the 
appropriate boundary conditions are 
 

  at and .2W D W X DZ 0 z 0 1          
          
  sin0W W z  .                                                                          (2.10) 
 

 After using the boundary conditions, Eqs (2.1)-(2.6) become 
 

       . 2 e

0 1 0 0

1 q 1 1
p g q h H

t k 4

                      
,                     (2.11) 

 

  . q 0  ,                                                                                                                           (2.12) 
 

  2

p

g
E w k

t c

 
         

,                                                                                        (2.13) 

 

  2E w k
t

      


,                                                                                                       (2.14) 

 

     . 2h c
H q h h H

t 4 Ne

 
           

,                                                         (2.15) 

 

  .h 0  .                                                                                                     (2.16) 
 

3. Dispersion relation 
 
      Analyzing the disturbances into normal modes, we assume that the perturbation quantities are of the form 
 

     , , , , , ( ), ( ), ( ), ( ), ( ) exp.z x yw h W z K z z z X z ik x ik y nt                               (3.1) 

 

where ,x yk k  are the wave numbers along the x-axis and y-axis, respectively; 
v u

x y

 
  

 
, and 

y x
h h

x y

 
  

 
, respectively. Using expression (3.1), Eqs (2.11)-(2.16), in a non dimensional form become 
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   
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D a E q W

k
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                                                                                   (3.7) 

 

where we have to put *, / , /2a kd nd v x d x    , * */ , /y d y z d z   and */D d dz . Here /1p v  , 

/2p v  , /q v   , / 2
l 1P k d , and / 2

0F d v   . We shall suppress the star (*), for convenience 

hereafter. Eliminating , and K   in Eqs (3.2)-(3.7) and using the proper solution sin0W W z  , we obtain 
the dispersion relation as  
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where  

  

, , , ,

, and / .

2 24 4
2e

1 1 1 l4 4 2
0

2
2 2 2

1

H dg d g d
R S Q P P

v v 4 v

cH
M x a i

4 Ne

    
    

    

 
         

   

 
 



968                                                                                                                                                                             M.Singh 

4. Stationary convection 
 
 For the stationary convection, put ,1i 0  in Eq.(3.8), we get 
 

           
 
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 (4.1) 

 
 The above relation is the modified result of the Rayleigh number 1R , as a function of the parameters

, , , and1 1Q S M P F , and dimensionless wave number x. For fixed (accounting for the compressibility 

effects), , , , and1 1Q S M P F , we find that  
 

  c c
G

R R
G 1

    
                                                                                    (4.2) 

 

where cR  and cR denote the critical Rayleigh numbers in the absence and presence of compressibility. The 
cases G < 1 and G = 1 correspond to negative and infinite value of the Rayleigh number which are not 
relevant in the present study. Since the critical Rayleigh number is positive and finite, so G > 1 has the effect 
of compressibility postponed the onset of thermosolutal convection. 
 For the case of stationary convection, to study the effect of Hall currents, the magnetic field, synovial 

fluid, stable solute gradient and medium permeability, we examine the nature of , ,1 1 1

1 1

dR dR dR

dQ dS dM
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and1 1dR dR

dP dF
. Equation (4.1) yields 
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        

,(4.3) 

 
which is negative and shows that magnetic field has not postponed the onset of double-diffusive convection 
in the compressible synovial fluid in a porous medium. 
Expression 
 

   1

1

dR G

dS G 1
    

,                                                                                              (4.4)  

 
is positive and shows that the stable solute gradient has postponed the onset of convection in the 
compressible synovial (couple-stress) fluid.      
If expression 
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  (4.5) 

 
is negative, therefore Hall currents have not postponed  the onset of convection in the double-diffusive 
compressible synovial fluid in a porous medium.                
If expression 
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(4.6)  

 
is negative, therefore medium permeability has not  postponed the onset of convection.  
Expression 
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        

  (4.7)       

 
shows that the synovial fluid has postponed or has not postponed the onset of convection according as 

   or1 x M 1 x M    . It is to be noted that in the absence of Hall currents, Eq.(4.7), gives 
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       

, (4.8) 

 
which is positive and shows that the synovial fluid has postponed the onset of convection. Thus the synovial 
fluid has a dual character, in the absence of Hall currents it has postponed (stabilized) the onset of 
convection, while in their presence it may or may not be postponed (stabilized).  
 The dispersion relation Eq.(4.1), is also analyzed numerically, for the various values of M, P, F, 

and1 1Q S . It is also evident from Figs 1-6 that the stable solute gradient, magnetic field, synovial fluid 
parameters have stabilizing effects on the system, where as Hall currents, medium permeability have 
destabilizing effects on the system. Figure 1 show the geometry of the problem which I have used. In Figs 2-
6, the Rayleigh number is analyzed with wave number and found that in Fig.2, as values of 1Q  increased, the 
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values of Rayleigh number is increased, shows that magnetic field has stabilizing effect on the system. In 
Fig.3, as values of 1S  is increased, gives the same result as 1Q  and F in Fig.6, shows that stable solute 
gradient as well as couple-stress parameters have stabilizing effects on the system. In Fig.4 as values of M 
increased value of Rayleigh number decrease, shows that Hall current parameter have destabilizing effect on 
the system. In the Fig.5 as values of P increased gives the same results as in case of Hall currents, shows that 
medium permeability have destabilizing effect on the system. 
 

 
 

Fig.2.  Variation of Rayleigh number (R1), with wave number X(=1-5), for Q1(=10, 50, 100), when M=10, 
S1=10, P=2, F=5, =3.14 and G=9.8. 

 

 
 

Fig.3.  Variation of Rayleigh number (R1), with wave number X(=1-5), for S1(=05, 25, 50), when M=10, 
P=02, Q1=10, F=05, =3.14 and G=9.8. 
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Fig.4.  Variation of Rayleigh number (R1), with wave number X(=1-5), for M(=10, 20, 30), when S1=10, 

P=2, Q1=10, F=5, =3.14 and G=9.8. 
 

 
 

Fig.5.  Variation of Rayleigh number (R1), with wave number X(=1-5), for P(=2, 4, 6), S1=10, M=10, 
Q1=10, F=5, =3.14 and G=9.8. 
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Fig.6.  Variation of Rayleigh number (R1), with wave number X(=1-5), for F(=5, 10, 15), when Q1=10, 

S1=10, M=10, P=2, =3.14 and G=9.8. 
 
5. Stability of the system and oscillatory modes 
 
 Multiplying Eq.(3.2) by W*(the complex conjugate of W), integrating over the range of z and 
makings use of Eqs (3.3) to (3.7), together with boundary condition (2.10), we get  
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   (5.1) 

 
where integrals 1 12I I , are positive definite. Putting r ii      and equating the real and imaginary parts 
of Eq.(5.1), we have  
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 (5.2) 
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, (5.3) 
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 In the absence of the solute gradient and magnetic field, Eqs (5.3) reduces to 
 

  
2

2
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. (5.5)       

 
 It may be inferred from Eqs (5.2) and (5.3), that i  may be positive or negative, which means that 
the system may be stable or unstable, while in the absence of the solute gradient and magnetic field, Eq.(5.5) 
predicts that i 0   necessarily because all the terms in the brackets are positive definite, which implies that 
oscillatory modes are not allowed in the system.  
                                                                     
6. The case of overstability 
 
 In the present section, we discuss the possibility whether instability may occur as overstability. Since 
for overstability, we wish to determine the critical Rayleigh number for the onset of instability (via a state of 
pure oscillations), it will suffice to find conditions for which Eq.(3.8) will admit solutions with 1  being 

real. Equating real and imaginary parts of Eq.(3.8), and eliminating 1R  between them, we obtain 
 

  4 3 2
4 1 3 1 2 1 1 1 0A C A C A C A C A 0     ,                                                               (6.1) 
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where b 1 x  . Other coefficients are positive very lengthy and do not effect the system. Here, 4A  is 

positive and 3A  is positive in Eq.(6.1) if  
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,            (6.2) 

 
are sufficient conditions for the non-existence of overstability, the violation of which does not necessarily 
imply the occurrence of overstability. 
 
7. Concluding remarks 
 
 Combined effects of various parameters, i.e. the stable solute gradient, magnetic field, Hall currents, 
medium permeability and compressibility, have been investigated in double-diffusive convection of a 
synovial (couple-stress) fluid. The concluding remarks are as follows:  
(i):  For stationary convection, a synovial(couple-stress) fluid behaves like an ordinary Newtonian fluid, due 

to the vanishing of the viscoelastic parameters. 
(ii):  From Eq.(4.2), it is clear that the effect of compressibility has onset of convection only for G > 1. 
(iii): The presence of the magnetic field (and therefore Hall currents), and medium permeability effects 

introduce oscillatory modes in the system, in the absence of Hall currents, oscillatory modes are not 
allowed in the system and the principle of exchange of stability is valid here. 

(iv): In ordinary (stationary convection) of a synovial fluid, we found that the stable-solute gradient and 
magnetic field have postponed the onset of convection, whereas Hall currents and medium permeability 
have not postponed the onset of convection. A synovial fluid has postponed as well as has not 
postponed the onset of convection in the presence of Hall currents. But in the absence of Hall currents 
synovial fluid has only postponed the onset of convection so couple-stress has dual character. 

(v):  Results are depicted graphically here (i.e. Figs 2-6). We found that the stable-solute gradient, magnetic 
field, and synovial fluid have stabilizing effects on the system, whereas Hall currents and medium 
permeability have destabilizing effects on the system.  
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(vi): The sufficient conditions for the occurrence of overstability are min , ,
Ek

k E
E

    

max ,
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               
, violation of which does not necessarily imply the occurrence of 

overstability.  
 
Nomenclature 
 
 0C and 1C   concentration at the bottom surface at z = 0 and upper surface at z = d 

 c, 1p , 2p    speed of light, the Prandtl number, magnetic Prandtl number 

 d  fluid thickness 
  , ,0 0 gg   acceleration due to gravity 

 ( , , )H 0 0H   magnetic field 

 2 2
x yk k k   and n   resultant wave number and growth rate, which is in general a complex constant 

 N, e and q  electron number density and change of an electron and Schmidt number. 
 lP , and F  dimensionless medium permeability and dimensionless couple-stress parameter 

 , , , and1 1 1R S Q P M   Rayleigh number, stable solute gradient, magnetic field, medium permeability and Hall 

currents parameters 
 cR  and cR   critical Rayleigh number in the presence and absence of compressibility 

 0T  and 1T   temperature at the bottom surface z = 0 and upper surface at z = d 

 , andp    perturbation in pressure and density 

  , and 1k   medium porosity and medium permeability 

 , and    perturbation in temperature T and concentration C 

  ,  , and    thermal diffusivity , coefficient of thermal expansion and electrically resistivity  

 e ,  , and    magnetic permeability, magnitudes of uniform temperature and concentration gradients  

 and    z- components of the vorticity and Hall current density 
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