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The purpose of this paper is to study the two dimensional deformation in a thermoelastic micropolar solid
with cubic symmetry. A mechanical force is applied along the interface of a thermoelastic micropolar solid with
cubic symmetry (Medium I) and a thermoelastic solid with microtemperatures (Medium II). The normal mode
analysis has been applied to obtain the exact expressions for components of normal displacement, temperature
distribution, normal force stress and tangential coupled stress for a thermoelastic micropolar solid with cubic
symmetry. The effects of anisotropy, micropolarity and thermoelasticity on the above components have been
depicted graphically.
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1. Introduction

A micropolar continum is a collection of inter-connected particles in the form of small rigid bodies.
The deformation in such materials is characterized by both translational and rotational motion. In this
motion, the force at a point of the surface element of the body is completely determined by the stress vector
at that point. Micropolar solids may represent the materials that are made up of dipole atoms and are
subjected to surface and body couples. Polymeric materials, rocks, wood and fibre glass are few examples of
such materials. Eringen and Suhubi [1] and Suhubi and Eringen [2] developed a non linear theory of micro-
elastic solids. Later Eringen [3-5] developed a theory for the special class of micro-elastic materials and
called it the "linear theory of micropolar elasticity". Under this theory, solids can undergo macro-
deformations and micro-rotations. Materials affected by micromotions and microdeformations are known as
micromorphic materials. Thermoelasticity is the study of equilibrium of bodies, treated as thermodynamic
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systems, whose interactions with the surroundings are restricted to the mechanical work, heat exchange and
external forces. The change of body temperature is caused not only by the external and internal heat sources
but also by the process of deformation itself. The micropolar theory was extended to include thermal effects
by Nowacki [6], Eringen [7], Tauchert et al. [8], Tauchert [9], Nowacki and Olszak [10]. One can refer to
Dhaliwal and Singh [11-12] for a review on the micropolar thermoelasticity, as well as to Eringen and
Kafadar [13] in "Continuum Physics" series in which the general theory of micromorphic media has been
summed up.

In the cubic symmetry, the materials have nine planes of symmetry whose normals are on the three
coordinate axes and on the coordinate planes making an angle ©/4 with the coordinate axes. With the
chosen coordinate system along the crystalline directions, the mechanical behavior of a cubic crystal can be
characterized by four independent elastic constants A4;, 4,, A; and A,. A wide class of crystals such as Si,

Cu, Ni, Fe, Au, Al etc., which are some frequently used substances, belong to cubic materials. Minagawa and
Arakawa [14] discussed dispersion curves for waves in a cubic micropolar medium with reference to
estimations of the material constants for diamond. Kumar and Ailawalia [15-18] and Ailawalia and Kumar
[19] studied some source problems in a micropolar thermoelastic medium possessing cubic symmetry.
Othman et al. [20] presented the effect of inclined load in a micropolar thermoelastic medium possessing
cubic symmetry under three theories. Kumar and Partap [21] discussed the elastodynamic behavior of
axisymmetric vibrations in a homogeneous isotropic micropolar thermoelastic cubic crystal plate. Lotfy and
Yania [22] investigated the effect of the magnetic field and mode I crack in a micropolar thermoelastic cubic
medium. Abbas et al. [23] studied the thermoelastic interaction in a thermally conducting cubic crystal
subjected to ramp-type heating.

Grot [24] discussed a theory of thermodynamics of elastic bodies with microstructure whose
microelements possess microtemperatures. Riha [25] studied heat conduction in materials with
microtemperatures. Iesan and Quintanilla [26] studied a theory of thermoelasticity with microtemperatures.
Iesan [27] proposed the theory of micromorphic elastic solids with microtemperatures. Exponential stability
in thermoelasticity with microtemperatures was studied by Casas and Quintanilla [28]. Scalia and Svandze
[29] gave the solutions of thermoelasticity with microtemperatures. Iesan [30] discussed thermoelasticity of
bodies with microstructure and microtemperatures. Aouadi [31] discussed some theorems in the isotropic
theory of microstretch thermoelasticity with microtemperatures. Quintanilla [32] discussed thermoelastic
bodies with inner structure and microtemperatures. Scalia et al. [33] studied basic theorems in the
equilibrium theory of thermoelasticity with microtemperatures. Quintanilla [34] discussed the growth and
continuos dependence in thermoelasticity with microtemperatures. Steeb et al. [35] studied time harmonic
waves in a thermoelastic material with microtemperatures. Chirita et al. [36] studied the theory of
thermoelasticity with microtemperatures. Kumar and Kaur [37] studied the reflection and refraction of plane
waves at the interface of an elastic solid and microstretch thermoelastic solid with microtemperatures.
Ciarletta et al. [38] studied a homogeneous strongly elliptic thermoelastic medium with microstructures.

The present investigation is to determine the components of normal displacement, temperature
distribution, normal force stress and tangential coupled stress in a thermoelastic micropolar solid with cubic
symmetry due to mechanical source. The solution is obtained using normal mode analysis and effects of
anisotropy, micropolarity and thermoelasticity on the above components are depicted graphically.

2. Formulation of the problem

We consider a normal force of magnitude P; acting along the interface of a micropolar thermoelastic
cubic crystal (medium 1) occupying the region —-wo<y<( and a thermoelastic medium with

microtemperatures (medium II) in the region 0 < y <o as shown in Fig.1.
We restrict our analysis to the plane strain parallel to the xy plane with a displacement vector for

micropolar thermoelastic solid with cubic symmetry (medium I) as u' = (u{uéO) , microrotation vector as
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0) and micro-temperature vector as w’ = (w]” , wg , 0) .
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Fig.1. Geometry of the problem.

¢=(0, 0, ¢3) and displacement vector for a thermoelastic solid with microtemperatures (medium II) as

The field equations and constitutive relations in the absence of body forces, body couples and heat

sources for medium I and medium II are given by:

For medium I, i.e., a micropolar thermoelastic medium with cubic symmetry, given by Kumar and Ailawalia

[15] as
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For medium II, i.e., thermoelastic medium with microtemperatures, the equations are given by Steeb et al.

[35] as
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where L is the standard length and c¢; is the longitudinal wave velocity in medium II given by
Ay+2
012 _N Hz.
P2
Using the above non dimensional variables in Eqgs (2.1)-(2.7), it may reduce these equations to (after
dropping superscripts)
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3. Analytic solution

The solution of the physical variable under consideration can be decomposed in terms of normal

modes and can be considered in the following form

I I V/EN /| B | = 7 = =1 = =
(u[ a];'n(pj’acjjaml’jnu[ awl' acjj aq[j )(x;y;t):(uj n];'a(PjaGl'jnml’jauj s
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where ® is the complex frequency, a is the wave number in the y -direction and LT,-[ (y),Y_"l- (3),03(»),

(_51-1]- (), my; (¥), LTiH »), v_vl-H ), 65-[ (»), %H (») are the amplitudes of field quantities.
Using normal modes in Eqs (2.17)-(2.20), we get

(a’3D2 —h42)L711 +hy3Dit; +d,Dé; —hy,T) =0,

h43DL711 + (a’ID2 —hys )7«72] - h46$3 - d5DTI =0,

_d6DL_l]I + h477/_lzl + (D2 — h48 ) (I)3 = 0,

_h491/_lll — hj()DT/_lZ[ + (D2 — h51 )7_-'1 = 0
where

h42:a2d1+(1)2, h43:iad2, h44:iad5, h45:(12d3 +(D2,

h47 :iad6, h48 =a2 +d7 +d8(x)2, h49 :iaﬁ)dlo, h50 :(Ddlo,
and constitutive relations (2.21)-(2.22) become
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Eliminating 1/72[ (»), &;(»), T;(») between Egs (3.1)-(3.2), we get the following eight order

differential equation for u, 1[ () as
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(D*—PD’ + 0D’ —RD? + S )i} (v)=0 (3.8)
where

i
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In a similar manner we can show that u 2[ ), 63 (»), T;(p) satisfies the equation
(D* - PD’ +0D* ~RD? +S)( (») , 6:(3) , T,(»)) =0, (3.9)
which can be factorized as follows
(D7 =17 )(D? =55 ) (D7 =55 )(D* =17 )i} (1) =0 (3.10)

where l,f ; (n=1,2,3,4)are roots of Eq.(3.10).
The series solution of Eq.(3.10) has the form

i (y)= Z[ a,0)e ”y} G.11)
i (y)= Z[ a,0)e ”y} (3.12)
n=1

L(y)= i[L (a.0)e™" |, (3.13)
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b;(») = Z[ a,0)e ”y} (3.14)

where L, (a,0), L, (a, 0), L (a,®) and L, (a,®) are specific functions depending upon @, ©.
Using Eqgs (3.11)-(3.14) in Egs (3.1)-(3.4), we get the following relations

L,(a,0)=R;,L, (a.0), (3.15)
L,(a,0)= Ry, L, (a.0), (3.16)
L, (a,0)=Rs,L, (a,0). (3.17)
Thus we have
4 e
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4
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Lr l
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Ry, = - [dgl, + hy7 Ry, ] ’

" (17 —hys]
Ry, =liad;; —1,d Ry, —d 3Ry,
Rs, =liad 4Ry, —1,d;5+dsRs,],
Rs, =[-1,d;7Rs,].

Adopting the same methodology, the solutions for medium II (i.e., a thermoelastic solid with
microtemperatures), are of the form

5
il ()= [Mm (a,(o)e_rmy}, (3.24)
m=1
5
il (v)= Y[ M, (aw)e ™ | (3.25)
m=1
J— 5 "
T(v)= Y[ M, (a0)e ], (3.26)
m=1
5
W (v)= Y[ My, (a)e "], (3.27)
m=1

wl ( Zj“[ (a.0)e my} (3.28)

m=1
where r ; (m=1,2,3,4,5) are the roots of the characteristic equation,
(D’O +4D® + BD® + CD? + ED? +F)u (") =0 (3.29)

and

_ 1
h123h18h20
+hghophsy + hyghishyghg } = hyghyghyshs; + h20h18h326 ],

[_hzs {h13 (h20h35 +highsy + hjo +hyghaghss —hy7hyy ) +
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_ 1
T2
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2
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—hs; {h14h16 (h20h35 + hyshsy +hi )} —hig {h35h34 + hoghsshss + hyshsshsy + hyshy, +
~hsohyy (s + 1)+ hy7 (hyghys —hsy )} +hy4hsshsg (h20h35 +hyghsy + hjo) +
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1
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where

= M I :k4+k5+k6
6= T T oo
L1y L'cjo,Ty
_ 2, 2 _ 2, 2
=2 .
hss =a"hyy +hy +hyy,  hzs =iahy,,

MM

[HlmMm (a, (D)e_rmy}’

c_sily(y)= [H5mM (a,co)e ’”y}
m=1
(y) mZ][HM am)e my}
0= 5[ b ()|,
m=1
gh()= Z[Hé’m (a,0)e” ’”y}

m=1

[h13h14”

= (hyghz; + hsshsr ),

Im

[(hy4h36 —

2 .
(hzs’”m —hy, _lahu”mH]m)
H2m = h s
37

h13h37)rm +h35h3;]

ky __ ks __ ks

3 hyg =— s by =— ;
L'cjorTy L'cjorTy L'cjorTy
hy; =a’ +oh hyy=a’hyg +ohy +h
33— a4 T Oh;, 34 @ Mg T QN + Ny,
hs; =iahyy,  hsg =—iahyg,  hyg =iahy;,

Thus Eqs (3.24)-(3.28) and constitutive relations in medium Il may be expressed in the form

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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_ (gt = (hsshag + hyshyDIH 3y + Byshggh H 1, + haghy

H3 >
[y 7hagt — (hsghyg + h3ghs;)]

m b

_ [H2m + h40H3m ]rm

H,
[h3s —hygryn ]

m b

Hy, =[iahy, —1,hy3H}, —Hy,, ],
Hyg,, =liahysH}, = 1,061,
H;,, =—iahyH3,, +hy;r,Hyp, s
Hg,, = hzyr,,H3,, —iahy,yH,, .
4. Applications
In this section we determine the parameter L,; (n=1,2,3,4) and M, ; (m=1,2,3,4,5). In the

physical problem, we should suppress the positive exponential that are unbounded at infinity. Constants
L;,Ly,Ls,L, and M;,M,, M3, M,,M; have to be selected such that the boundary condition at the surface

y =0 takes the form

_ 1 i+iax , I _ I, I _ I, I _ I,
ny_ny_P[e ’ ny—ny, ul_ul ) uz_uz,
« 0T, « OT.
—n. I _ 2. /. I/
me =0 KZL=K;—2 =0 qu=0; T=T
y oy

where P, is the magnitude of mechanical force.

Using the expressions for ol , o of Tyl ol b ul

/Y
o OysOyes Oyes Uy up suy,uy my 1.1, g, g, from Eqgs
(3.18)-(3.23) and (3.30)-(3.37) in the above boundary conditions, we obtain the following non homogenous
linear equations as

4 5
[R4I1LVI]_ Z[H5mMm] = _P] >
)

n m=1

4 5
Z[R5nLn]_ Z [HémMm] =0 b
n=I m=1

iI[Ln]—i_l[MmH,

SRt (M1,

n=1 m=1
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4

Z[RénLn]:(),

n=I

4 5
K] Z[lnRZnLn]_KZ Z[rmHZmMm]: 07

n=1 m=1

5
> [HyuM, =0,
m=1

5
> [HyuM,]=0,
m=1

Zi;[Rann]—Zj_;[HzmMm]:o_

After solving the above system of nine equations, we get the values of constants
L Ly, Ly, Ly ,M; M, M;,M, and M; and hence obtain the components of normal displacement,

temperature distribution, normal force stress and tangential couple stress for a thermoelastic micropolar solid
with cubic symmetry at the interface of a thermoelastic solid with microtemperatures.

5. Special cases

1) Substituting 4; =(A; +2u; +k), A, =h;, 43 =(n; +k), A;=n;, B; =y, we obtain the expression for
the micropolar thermoelastic solid (MTS).

2) Neglecting the micropolarity effect, i.e., B; = j =0 and A; = 4,, the corrosponding expression are obtain
in a thermoelastic solid with cubic symmetry (TCC).

3) Taking, A4;=(A;+2y,), A, =xA;, A;=n;, A;=pn;, B;=0 in the expression obtained in the previous
step, the expressions for normal displacement, temperature distribution and normal force stress are
obtained for thermoelastic solid(TS).

6. Numerical results and discussions

In order to illustrate the theoretical results obtained in the preceding section, we take the following
values of parameters for the micropolar solid with cubic symmetry as [15]

A =19.6x10""N/m?,  A,=56x10""N/m?,  A;=11.7x10""N /m?,
A, =11.7x10""N /m?,  B;=0.98x107°N.

For micropolar thermoelastic solid , we take the following values of relevant parameters in case of
Magnesium crystal like material as [15]

A=94x10""N/m?, w=4.0x10""N/m?, p,=1.74x10°kg /m*, k=10""Nm™,
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v=0.779x10°N,  j=0.0000002x10"%m?, ¢ =0.104x10* Nm/Kg /K,

T,=298K, K,=17xI10°Ns"'K~!,  v,=0.0268x10°N / m’K.
The values of relevant parameters for the thermoelastic solid with microtemperatures are [35]

Ay=217x10""N/m?, u,=3278x10""N/m?, p,=174x10°kg/m’,
b=1389x10""N, K,=17x10°Ns"'K™', a,T,=18x10°Jm> K",

0, =0.0268x 10 Nm ™K., k;=2x10"Wm™,  ky=01x10"Wwm™,
ky=04x10"wm™ 'K, k,=03x10""WmTK™,  ks=05x10"WmT K,

ks =0.7x10"Wm™, L=1.0x10""m.

The computations are carried out for the value of non-dimensional time #=0.2 in the range
0<x<10.0 and on the surface y=1.0. The numerical values for normal displacement, temperature

distribution, normal force stress and tangential coupled stress are shown in Figs 2-5 for mechanical force
with magnitude

P=10, o=o,+&, o,=-03, &=0.1 and a=09 for

(a) Micropolar thermoelastic solid with cubic symmetry (MTCC) by solid line with centered symbol .
(b) Thermoelastic solid with cubic symmetry (TCC) by solid line with centered symbol m

(¢) Micropolar thermoelastic solid (MTS) by dashed line with centered symbol A.

(d) Thermoelastic solid (MTS) by dashed line with centered symbol x .

7. Discussions

The variations of normal displacement for MTCC, TCC and TS are similar in nature. The variation
for MTS are opposite in nature as observed from Fig.2. It is also observed that the variations of normal
displacement for MTCC and MTS are mirror images of each other. The variations of temperature
distribution are quite similar in nature for the thermoelastic medium with cubic symmetry (MTCC and TCC)
as well as for the thermoelastic medium without cubic symmetry (MTS and TS). These variations of
temperature distributions are shown in Fig.3.

It can be observed form Fig.4 that the variations of normal force stress are opposite in nature for the
micropolar thermoelastic medium (MTCC and MTS). These values of normal force stress are less in
magnitude for TCC. The values for all medium coincides at x =3.0 and x =7.0. The variations of tangential
couple stress are exactly mirror images of each other as observed from Fig.5.

8. Conclusion

Anisotropy and micropolarity show a significant effect on all the quantities. The variations of
temperature distribution are similar in nature for the anisotropic medium(MTCC and TCC) and isotropic
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medium(MTS and TS). Due to the anisotropic effect, the variations of normal force stress are opposite in
nature for the micropolar thermoelastic medium (MTCC and MTS). The values of the quantities coincide for
different media atx=7.0.

3,00E+01

2,00E+01 £ /’\ f

' /
1,00E+01 / \ X/ ’\ /

0,00E+00

Normal displacement

\ /
_2,00E+01 \\-/ ‘
-3,00E+01
Fig.2. Variation of normal displacement with horizontal distance.
20
15
o 1 '_‘)'/'\\
2 5 r \ .‘ g —— MTCC
S .
52 0 — N/ . TCC
x
E _5& 2)</ 4 10— -mrTs
0 %X ‘/ \>_//' ceixee TS

Fig.3. Variation of temperature distribution with horizontal distance.
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Fig.4. Variation of normal force stress with horizontal distance.
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Fig.5. Variation of tangential couple stress with horizontal distance.
Nomenclature
Medium-I
A15A2>A37 .
— material constants
A4,B3

* . .
c; - specific heat at constant strain
j —microinertia

K; - coefficient of thermal conductivity



Response of thermoelastic micropolar cubic crystal ... 21

m,, - tangential couple stress

T; —thermodynamic temperature

i! - displacement vector
o, - coefficient of linear thermal expansion
p; —density

ol —stress tensor

v; - constitutive coefficient

Medium-II
K5 - coefficient of thermal conductivity
k[akzakjakzla . . .
— constitutive coefficients
k5 . k6 . (11 N D2

qél — first heat flux moment tensor

T, -—thermodynamic temperature

u'’  — displacement vector
wl! — microtemperature vector
a,, - coefficent of linear thermal expansion

A3, ny; —Lame’s constants

p, —density
cg — stress tensor
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