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This paper provides a numerical analysis of selected parameters of fracture mechanics for double-edge 
notched specimens in tension, DEN(T), under plane strain conditions. The analysis was performed using the 
elastic-plastic material model. The study involved determining the stress distribution near the crack tip for both 
small and large deformations. The limit load solution was verified. The J-integral, the crack tip opening 
displacement, and the load line displacement were determined using the numerical method to propose the new 
hybrid solutions for calculating these parameters. The investigations also aimed to identify the influence of the 
plate geometry and the material characteristics on the parameters under consideration. This paper is a 
continuation of the author’s previous studies and simulations in the field of elastic-plastic fracture mechanics [4-
6, 16, 17, 31]. 
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1. Introduction (based on [4-6]) 
 
The stress distribution near the crack tip for elastic-plastic materials – the HRR solution and the 
O’Dowd and Shih theory [4-6] 
 
 The basic solution used for determining the stress distribution in elastic-plastic materials was first 
published in 1968 [1, 2]. It is now known as the Hutchinson-Rice-Rosengren (HRR) solution 
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where r and  are the polar coordinates of the coordinate system located at the crack tip, ij are the stress 
tensor components, J is the J-integral, n is the RO exponent,  is the RO constant, 0 is the yield stress, and 
0 is the strain related to 0 through 0 =0/E. The functions  ,ij n   and  nI n  are found by solving a 

fourth-order non-linear homogenous differential equation separately for the plane stress and plane strain 
conditions [4-6]. 
 The HRR solution, which is valid for the states of plane stress and plane strain, contains only the first 
term of the infinite series [4-6]. Many numerical analyses have shown that the results obtained for the plane strain 
conditions by means of the HRR solution are different from those calculated using the finite element method 
(FEM) [4-6] (see Fig.2). The difference can be eliminated by adding more terms to the HRR solution [4-6]. 
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Fig.1. The comparison of the FEM results with those obtained through the HRR solution for DEN(T) 
specimens under plane stress and plane strain (based on [4-6]). 

 
 There have been many attempts to deal with the difference between the analytical and real 
descriptions of the stress field. The numerical solution is considered to provide the actual stress distribution. 
The approach proposed by O'Dowd and Shih [7, 8] is quite simple in nature. They assume that the FEM 
results are exact and that the difference between the numerical and the HRR results can be calculated. They 
propose that the stress field near the crack tip should be described using the following formula [4-6] 
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where (ij)HRR is the HRR solution [4-6],  ˆ ;ij n   are the functions determined numerically and Q is the 

parameter that takes into account the difference between the HRR and numerical solutions [4-6] 
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where ()FEM is the value of stress calculated using the FEM and ()HRR is the value of stress determined 
from the HRR solution [4-6]. Both terms should be calculated for the distance r=2J/0 in the direction 
characterized by =0 [4-6]; when =0, the function  ˆ 0    (in Eq.(1.2)) is equal to 1 [4-6].  

 Various numerical calculations have confirmed that for the plane stress state the Q-parameter is equal 
to zero, whereas for the plane strain state the Q-parameter is generally less than zero (see Fig.2) [4-6]. 
 The O'Dowd and Shih theory to describe the stress field in front of the crack tip seems to be the right 
solution when plane strain is predominant and when we know the value of the Q-stress. Catalogs of 
numerical solutions have been presented in many scientific papers, e.g., [4-6]. These papers presents 
numerical solutions and their approximations used to estimate the Q-stress in relation to the J-integral, the 
material characteristics, and the relative crack length a/W. Figures 3a) and 3b) compare the Q=f(J) and 
Q=f(log(J/(a0))) curves, respectively, for a single-edge notched plate in bending, SEN(B), a centre cracked 
plate in tension, CC(T), and a single-edge notched plate in tension, SEN(T) with a specified geometry for 
which the Q-stress was identified [4-6]. The comparison also includes recent data concerning a double-edge 
notched plate in tension, DEN(T). 
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a)  b)  
 
Fig.2.  The J-Q trajectories for DEN(T) specimens in tension under a) plane stress; b) plane strain (with 

measurements made at six different distances from the crack tip) – based on [4-6]. 
 

a)  b)  
 
Fig.3.  The comparison of a) the J-Q trajectories and b) the Q=f(log(J/(a0))) trajectories for CC(T), 

SEN(B), SEN(T), and DEN(T) specimens in plane stress and plane strain (with measurements made 
at the same distance from the crack tip, r=2J/0) – based on [4-6]). 

 
Selected fracture criteria based on the Q-stress theory [4-6] 
 
 The O'Dowd and Shih theory [7, 8] has been used to formulate the fracture criteria, assess the stress 
distribution near the crack tip, and solve various engineering problems in the field of elastic-plastic fracture 
mechanics [4-6]. To apply the O’Dowd and Shih approach, an engineer needs to know only the Q-stress 
(which is calculated numerically) [4-6], the material characteristics, and the element geometry [4-6]. As can 
be seen from Figure 3, the Q-stress is dependent on the geometry and material of the plate. A complete 
catalog of numerical solutions is required to employ the O’Dowd and Shih theory while solving engineering 
problems [4-6]. Some types of specimens have already been discussed in the literature [4-6], but there is not 
much information on the behavior of DEN(T), C(T), SEN(4PB) or CCSP(BT) specimens. 
 The J-Q theory has been used in various engineering programs, including SINTAP [9] and FITNET 
[10]. The Q-stress is necessary to formulate the fracture criterion and assess the fracture toughness of a 
structural component [4-6]. Thus, the O’Dowd and Shih theory can be applied to solve many engineering 
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problems [4-6]. Some of the formulae used to determine fracture toughness are presented below [4-6]. Using 
the J-Q theory, O’Dowd [11] proposed the following fracture criterion 
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where JC is the actual fracture toughness of a structural element characterized by a geometrical constraint 
defined by the Q-stress (whose value is usually less than zero), JIC is the fracture toughness of the element in 
plane strain at Q=0, and c is the critical stress according to the Ritchie-Knott-Rice hypothesis [12], [4-6].  
The fracture criterion proposed by O’Dowd and Shih was discussed by Neimitz et al. in [13, 14]. They 
modified the O’Dowd and Shih formula (Eq.(1.4)) by replacing the critical stress, c, with the maximum 
crack opening stress, 22_max, which is calculated numerically using a large-strain formulation. The formula 
proposed in [13, 14] has the following form [4-6] 
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 Neimitz et al. [14] studied the behavior of a single-edge notched plate in bending (SEN(B)) under 
plane strain conditions. They used a finite element method and a large-strain formulation to estimate the 
maximum crack opening stress max for several materials (differing in the RO exponent and yield stress) and 
several crack lengths [14, 15]. 
 
The maximum crack opening stress - 22_max [15-18] 
 
 The O’Dowd and Shih theory and the fracture criterion expressed by Eq.(1.5) require that the 
maximum crack opening stress be determined first. In the FEM analysis, the crack opening stress reaches a 
maximum when strains are finite. In a real structural element with a crack, stresses around the crack tip are 
finite [16-18]. Figure 4 compares the FEM results obtained for small- and large-strain cases [16-18]. 
 

a) b)  
 

Fig.4.  a) The stress distribution near the crack tip for SEN(B) specimens - curves generated through the 
finite element analysis assuming small and finite strain and the HRR formula (based on [13-18]); b) 
The influence of the J-integral on the maximum crack opening stress (normalized by yield stress) for 
DEN(T) plates with a specified geometry differing in yield stress. 

 

 The stress infinity problem is a result of the assumption that the crack tip is perfectly sharp and it 
remains sharp when under load [16-18]. When the large strain is assumed to be relaxed, the crack tip blunts and 
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stresses in front of the crack tip become finite. The crack opening stress reaches a maximum at a distance of 
r=(0.5 to 2.0)J/0, and its value is dependent on the material properties, the specimen geometry, and the 
external loading [16-18]. The finite element analysis of the stress and strain fields around the crack tip when the 
finite strains are used is complex in character [16-18]. The level and position of maximum stresses depend on 
the FE mesh details. It is thus necessary that the mesh be properly selected. This problem is not observed when 
strain is small. This issue has been discussed in several articles [16-18]. From the numerical analysis it is 
evident that the maximum crack opening stress depends on the external load, the material properties, and the 
geometry of the structural element [13-18]. Some numerical results concerning SEN(B) and CC(T) specimens 
were presented in [13-18]. Other basic geometries presented in the EPRI [19], SINTAP [9] or FITNET [10] 
procedures have not been analyzed in this respect. Therefore, to simplify engineering analyses, especially those 
involving evaluation of fracture toughness or description of the stress field near the crack tip in elastic-plastic 
materials, engineers need catalogs of numerical solutions, where the Q-stress or the maximum crack opening 
stress for different geometries is provided. This paper includes such catalogs for DEN(T) plates. They will 
complement the catalogs for SEN(B) and CC(T) specimens published earlier in [14-17]. 
 
Engineering application of elastic-plastic fracture mechanics 
 
 The HRR solution presented above [1, 2] was also a basic thesis in the EPRI procedures [19]. The 
authors of the EPRI procedures [19] provide not only commands that allow us to estimate the strength of 
structural elements with cracks using failure assessment diagrams (FAD) or crack driving force (CDF) 
diagrams but also hybrid patterns based on analytical considerations and numerical solutions, which enable 
estimation of the J-integral, the crack tip opening displacement (CTOD), and the load line displacement vLL. 
The main idea for this approach is that engineering analysis does not require performing numerical 
calculations. The authors of the EPRI procedures [19] suggest that hybrid calculations of the J-integral, the 
crack tip opening displacement, , and the load line displacement, vLL, be performed using Eqs (1.6)-(1.8) 
based on the decomposition of the quantity for the elastic and plastic parts 
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where the subscript ‘el’ denotes the elastic part of the quantity and the subscript ‘pl’ refers to the plastic part of 
the quantity; b is the uncracked ligament of the specimen (b=W-a); h1, h2, h3 are the functions determined 
numerically by the EPRI authors [19] and presented in the EPRI procedures [18] for different geometries, 
different relative crack lengths, and different strain hardening exponents, n (exemplary values of the functions 
h1 and h3 for DEN(T) plates provided in Tab.1); P is the external load and P0 is the limit load, which can be 
calculated for DEN(T) plates using the following formulae [19] 
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where W is the width of the specimen (plate). 
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Table 1. The values of the functions h1 and h3 for DEN(T) plates in plane strain (based on the EPRI 
procedures [19]). 

 

h1 h3 
a/W n=3 n=5 n=10 n=20 a/W n=3 n=5 n=10 n=20 

0.125 0.922 1.13 1.61 2.44 0.125 0.20 0.372 0.911 2.29 
0.250 1.38 1.65 1.82 1.92 0.250 0.698 1.11 1.92 2.73 
0.375 1.92 1.92 1.68 1.12 0.375 1.40 1.87 2.20 1.67 
0.500 2.48 2.43 2.12 1.51 0.500 2.37 2.79 2.68 1.94 
0.625 3.45 3.42 3.00 2.27 0.625 3.74 3.9 3.23 2.19 
0.750 7.17 8.44 10.90 17.40 0.750 7.03 7.63 9.04 13.50 
0.875 39.00 78.40 341.00 3820.00 0.875 24.10 40.40 149.00 1560.00 

 
 The numerical calculations presented in [20-21] and [31] show that the formulae given in the EPRI 
procedures [19] are not always exact and the results obtained with them differ from those obtained through the 
finite element analysis. Some of the differences were discussed in [21], where the authors verified the limit load 
solutions for SEN(T) specimens. Another example is Ref. [20], where an analysis of hybrid solutions is performed 
to estimate the values of the J-integral for SEN(B) specimens using the EPRI procedures [19]. The author 
indicated the differences between the numerical solution and the EPRI solution [19] and proposed a slightly 
different approach, omitting the decomposition of the J-integral for the elastic and plastic parts. 
 

a)  b)  
 

Fig.5.  The values of the functions h1 and h3 for DEN(T) plates obtained through numerical calculations 
using the EPRI algorithm (the approximate values of the function h1 for the saturation level: 
a/W=0.05, h1=0.67; a/W=0.20, h1=1.63; a/W=0.50, h1=2.40; a/W=0.70, h1=5.60; the approximate 
values of the function h3 for the saturation level: a/W=0.05, h3=4.8; a/W=0.20, h3=4.05; a/W=0.50, 
h3=4.30; a/W=0.70, h3=6.62).  

 

 The EPRI procedures [19] show that for the DEN(T) type of plate and the configuration of materials 
listed above, the values of the functions h1 , h2 and h3 should be constant at any level of external loading. The 
numerical calculations carried out by the author of this paper point to the fact that the values of these 
functions change with external load, particularly in the range P/P0=0; 0.5÷0.7, where the changes are clear. 
Then, an increase in external load causes the functions to reach saturation (see Fig.5 for h1 and h3 functions). 
 The saturation of the functions h1 and h3 (Fig.5) differs from that achieved according to the EPRI 
procedures [19] (see Tab.1). It is thus necessary to verify the solutions proposed in 1981 [19] and this 
requires intensive numerical analysis. This paper will verify the solutions given in the EPRI procedures [1] 
and the verification will include calculations of the limit loads for DEN(T) plates in plane stress and plane 
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strain. The paper will also review the formulae to estimate the J-integral, crack tip opening displacement and 
the load line displacement for plane strain. The choice of plane strain is not accidental – a plane strain state is 
required to experimentally determine fracture toughness under laboratory conditions. Finally, the paper will 
present a broad catalog of ready-to-use numerical solutions for selected configurations of material properties 
and geometric characteristics of the DEN(T) plate to estimate the limit loads, the Q-stress, the maximum 
crack opening stress, the J-integral, the crack tip opening displacement, and the load line displacement as a 
function of the normalized external load, with no need for FEM calculations. All the numerical results 
presented here can be used in engineering analysis. 
 
2. Details of the numerical calculations (based on [4-6, 15-18]) 
 
 The numerical analysis was conducted for DEN(T) specimens with the width W=40mm and the 
length L satisfying the condition that L2W (see Fig.6a). As different relative crack lengths were considered, 
i.e., a/W={0.05, 0.20, 0.50, 0.70}, different levels of ‘in-plane’ constraints were obtained. That affected the 
fracture toughness, the stress distribution near the crack tip, the Q-stress, and the maximum crack opening 
stress [15]. The total length of the plate under study was L=176 mm. The plane strain analysis was carried out 
according to the ADINA recommendations [22, 23] for specimens with a thickness of B=1m or B=1mm 
under plane stress. The analysis of the state of plane stress involved determining only the limit loads. 
 

a)              b)  
 

c)             d)  
 

Fig.6.  a)The DEN(T) specimen with a hatched region modeled using the FEM; b) A finite element model 
of a quarter of the DEN(T) plate; c) The finite element mesh of the region near the crack tip;  
d) A model of the crack tip with finite elements used in the FEM calculations. 
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 The model of the elastic-plastic material was used to determine the Q-stress, the maximum crack 
opening stress, the J-integral, the CTOD or the load line displacement. Young’s modulus was E=206GPa and 
Poisson’s ratio was =0.30. Four values of the yield stress and four values of the strain hardening exponent 
were analyzed: 0={315, 500, 1000, 1500}MPa and n={3.36, 5, 10, 20}, respectively [4-6, 15-17]. The wide 
range of properties considered in the numerical analysis of the model materials correspond to the 
characteristics of ferritic steels, structural steels and high strength steels [15]. In the FEM simulations, the 
elastic-plastic material was modeled using the deformation theory of plasticity and the modified von Misses 
yield criterion. In the model, the stress–strain curve was approximated as follows 
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where  =1. 
 The limit load was calculated for an elastic-perfectly plastic material [21]. 
 The choice of the DEN(T) specimen was intentional because DEN(T) specimens are used in the 
FITNET procedures [10] to model real structural elements. In the FITNET [10] or SINTAP procedures [9], 
there are no solutions to determine the limit loads or the stress intensity factors for DEN(T) specimens. In the 
EPRI procedures [19], a hybrid method is given to calculate the J-integral, the CTOD, and the load line 
displacement. However, the limit load solutions provided in the EPRI [19] are different from the FEM results 
[21]. The critical values of the J-integral can also be determined through the laboratory testing of DEN(T) 
specimens [24]. 
 All the numerical computations were performed using the ADINA SYSTEM 8.8 [22 ,23]. Because 
of the specimen symmetry, only a quarter was modeled (see Fig.6a). All the calculations were conducted for 
the state of plane strain [4-6, 15-17]. The finite element mesh was filled with nine-node plane strain FEs with 
mixed formulation of interpolation [4-6] (each finite element had nine points of numerical integration) [4-6]. 
Small strain and small displacement were assumed to calculate the Q-stress, the J-integral, the crack tip 
opening displacement, and the load line displacement [4-6]. New hybrid formulae were proposed for these 
three parameters. The maximum crack opening stress was determined assuming that the strain and the 
displacement were large [15-17].  
 The size of the finite elements in the radial direction decreased towards the crack tip, while the size 
of the elements in the angular direction was constant. The crack tip region was modeled using 3650 
semicircles [4-6, 15-17]. The first of them was at least 20÷50 times smaller than the last one. This means that 
the first finite element behind the crack tip was smaller 3076÷10210 times than the width of the specimen. 
The crack tip was modeled as a quarter of an arc with the radius rw=(15)10-6m, i.e., (1/400001/800)W [4-
6, 15-17]. The whole DEN(T) specimen was modeled using 3149÷3428 finite elements and 12803÷13921 
nodes. External load was applied to the bottom edge of the specimen. Figure 6 presents the numerical model 
used in the numerical calculations. The model was built according to the literature (see Brocks et al. [25-26] 
and Graba and Gałkiewicz [18]). It should be noted that the same numerical model of the specimen was used 
to determine the limit loads and calculate the stress distribution for small and large strains. 
 In the numerical analysis of an elastic-plastic material, the J-integral was calculated with the “virtual 
shift method”, which uses the virtual crack growth concept to compute the virtual energy change [22, 23]. In 
the analysis, eight contours were considered. They covered the crack tip area with a radius of 10, 15, 20, 25, 
30, 35, 40 or 45 finite elements near the crack tip; the results obtained for each of the contours were 
convergent [15, 18, 25-26]. 
 The crack tip opening displacement (CTOD), denoted also as T, was determined in accordance with 
the method proposed by Shih [27]. The diagram for the determining the CTOD, T, is given in Fig.7. The 
CTOD was calculated through numerical analysis for an elastic-plastic material, in the same way as the load 
line displacement. 
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Fig.7.  The concept of Shih’s proposal [27] to determine the crack tip opening displacement (CTOD), 

denoted also as T. 
 
 Plane stress was calculated using numerical analysis for an elastic-perfectly plastic material, which is 
required to determine the limit loads. At this stage, the same numerical model was used. Only 9-node plane 
stress finite elements with default formulation of interpolation were used. 
 To summarize, the limits loads were determined numerically using 32 DEN(T) specimens under 
plane stress or plane strain, which differed in the crack length (different a/W) and the yield stress. This 
calculations were made with the assumption of an elastic-perfectly plastic material. In the analysis for an 
elastic-plastic material, 64 DEN(T) specimens were used to calculate the Q-stress and the basic fracture 
parameters (J-integral, CTOD, vLL), assuming that strain was small [4-6]. Other 64 DEN(T) specimens were 
used to calculate the maximum crack opening stresses and their position near the crack tip [15-17]. 
 
3. Numerical results 
 
Limit load for plane strain and plane stress 
 
 The first step of the analysis was to estimate the limit loads. The numerical estimation of the limit 
loads was based on the results of the observations of the increasing plastic zone and the graphs presenting 
external load versus load line displacement. The determined values of the limit loads were compared with the 
values determined using “the twice  elastic slope method”. The values of the limit load obtained for plane 
stress and plane strain are presented in Tab.2. 
 
Table 2. Numerically estimated limit load for DEN(T) specimens under plane stress and plane strain. 
 

 plane stress (B = 1mm) plane strain (B = 1m) 

0 
[MPa] 

a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70
P0 [kN] P0 [kN] P0 [kN] P0 [kN] P0 [kN] P0 [kN] P0 [kN] P0 [kN] 

315 24.70 22.35 14.37 8.55 28563.97 26083.73 20311.97 15211.66 
500 39.18 35.45 22.81 13.57 45335.93 41398.11 32233.58 24149.73 

1000 78.19 69.58 45.62 27.14 90672.02 82796.32 64467.13 48185.29 
1500 117.45 106.11 68.44 40.71 135979.90 124159.80 96642.58 72370.87 

 
 Figure 8 shows the influence of the relative crack length and the yield stress on the limit load. From 
the numerical results it is clear that if the same value of the specimen thickness is the reference value, the 
values of the limit load for plane strain are greater than those for plane stress. Greater values of the limit load 
are observed at higher values of the yield stress. An increase in the crack length causes a decrease in the 
value of the limit load. All the above conclusions are natural. The analysis of the numerical results indicates 
proportional dependence of the limit load on the yield stress, which can be observed in Fig.8b. The 
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relationship between the limit load, P0, and the relative crack length, a/W, for DEN(T) plates is nonlinear, 
especially for plates with very short and short cracks, a/W=0.05 and a/W=0.20, respectively, (see Fig.8a). 
 

a)  b)  
 
Fig.8.  The influence of the yield stress 0 (a) and the relative crack length a/W (b) on the limit load P0 for 

DEN(T) specimens under plane stress (a) and plane strain (b). 
 
 The numerical results of the limit load were compared with the values determined using Equations 
(5) and (6) for plane stress and plane strain, respectively [19]. Table 3 shows the differences between the 
numerical solutions and the EPRI results [19], which were obtained as 

  _ _ _ %0 FEM 0 EPRI 0 EPRIP P P 100   where P0_EPRI is the value of the limit load calculated using Eqs (1.9) 

or (1.10) (for plane stress or plane strain, respectively), and P0_FEM is the limit load determined by the Finite 
Element Method (FEM). 

 
Table 3.  The difference between the EPRI solutions [1] and the numerical results of the limit load for 

DEN(T) specimens in plane stress and plane strain. 
 

 plane stress (B = 1mm)  plane strain (B = 1m)  
0 

[MPa] 
a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 

   %100_0_0_0  EPRIEPRIFEM PPP    %100_0_0_0  EPRIEPRIFEM PPP

315 -10.65% -4.00% -1.20% -2.05% -7.43% -4.87% -1.10% -4.64%
500 -10.70% -4.07% -1.21% -2.06% -7.44% -4.88% -1.12% -4.62%

1000 -10.90% -5.85% -1.22% -2.07% -7.44% -4.88% -1.12% -4.85%
1500 -10.78% -4.27% -1.22% -2.08% -7.46% -4.90% -1.18% -4.73%

 
 As can be seen, the difference between the numerical solution and the EPRI solution [19] obtained 
for very short cracks (a/W=0.05) is the greatest; it is nearly 11% in the case of plane stress and 7% in the 
case of plane strain. An increase in the crack length leads to a decrease in the difference between the 
numerical solution and the EPRI solution [19]. For plates with a relative crack length (a/W=0.50), the 
difference is about 1.2%. An increase in the crack length (a/W=0.70) causes an increase in the difference 
between the numerical solution and the EPRI solution [19] to nearly 5%. It should be noted that the values of 
the limit load obtained with the EPRI solution are greater than those estimated numerically, as shown in this 
paper. The average difference is 5%. 
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Q-stress  
 
 The values of the Q-stress were calculated for elastic-plastic materials using small strain and small 
displacement assuming the state of plane strain. All the numerical results were calculated for six different 
distances from the crack tip: r={1, 2, 3, 4, 5, 6}J/0 [4-6]. The numerical analysis shows that the Q-stress 
decreases with increasing distance from the crack tip (see Fig.8). It can be noted that the Q-stress decreases 
when the external load increases; in this paper the external load is expressed by the J-integral [4-6]. An 
increase in the external load causes an increase in the difference between the Q-stress calculated at the 
selected measurement points (see Fig.8) [4-6]. 
 

a)            b)  
 
Fig.9.  The ‘J-Q family curves' for DEN(T) specimens calculated at six different distances r: a) DEN(T), 

a/W=0.05, 0=500MPa, n=10; b) DEN(T), a/W=0.20, 0=1000MPa, n=10. 
 
 For an engineer who deals with the evaluation of the fracture toughness and strength of a cracked 
structure, the most interesting results should be those obtained for the distance r=2.0J/0. The values of the 
Q-stress calculated at this point are used in the fracture criteria presented above (Eqs (1.4) or (1.5)) [4-6]. At 
this point, the maximum crack opening stress is often observed [15-17]. The analysis of the numerical results 
for the Q-stress at the distance r=2.0J/0 should include the influence of the relative crack length, the yield 
stress, and the strain hardening exponent (see Figs 10-12) [4-6].  
 Figure 10 shows that the Q-stress reaches a more negative value for the same level of the J-integral if 
the crack length decreases. The Q-stress drops more rapidly for short cracks than for long ones in the range 
of small external loads (Fig.10). The Q-parameter decreases if the yield stress increases – this conclusion 
refers to all the DEN(T) specimen that were used in the research project (Figs 11). Comparing the J-Q 
trajectories for different values of the ratio 0/E, we can see that the biggest differences are observed for 
materials with a small strain hardening exponent (n=3 – strongly hardening materials) and the smallest for 
materials characterized by a large strain hardening exponent (n=20 – weakly hardening materials). The 
analysis of all the results leads to the conclusion that the larger the crack length, the larger the differences 
(see Annexes A-D). It can be noted that for smaller yield stress, the J-Q trajectories lie lower and the changes 
in the Q-parameter are more rapid when the external load increases (see Fig.11) [4-6].  
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a)  b)  
 
Fig.10.  The influence of the crack length on the J-Q trajectories for DEN(T) specimens: a) DEN(T), 

0=1000MPa, n=10; b) DEN(T), 0=500MPa, n=5 (results for the distance r=2J/0). 
 

a)  b)  
 
Fig.11.  The influence of the yield stress on the J-Q trajectories for DEN(T) specimens: a) DEN(T), 

a/W=0.20, n=20; b) DEN(T), a/W=0.50, n=10 (results for the distance r=2J/0). 
 
 The influence of the strain hardening exponent on the J-Q trajectories seems quite interesting. For 
the analyzed geometry, i.e., DEN(T) plates, it is clear that when the strain hardening exponent increases, the 
Q-stress decreases; the exception is the specimens with the relative crack length a/W=0.70 (see Fig.12d). For 
strongly hardening materials, the values of the Q-stress are higher. The cutting of the J-Q trajectories is 
observed (Fig.12d) for the specimens with long cracks (a/W=0.70). First, higher values of the Q-stress are 
reported for the specimens made of a weakly hardening material, but when there is an increase in external 
load, the trend changes and higher values of the Q-stress are observed for the specimens made of a strongly 
hardening material (Fig.12d) [4-6]. 
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a)  b)  
 

c)  d)  
 
Fig.12.  The influence of the strain hardening exponent on the J-Q trajectories for DEN(T) specimens:  

a) DEN(T), a/W=0.05, 0=1000MPa; b) DEN(T), a/W=0.20, 0=500MPa; c) DEN(T), a/W=0.50, 
0=1500MPa; d) DEN(T), a/W=0.70, 0=1000MPa (results for the distance r=2J/0). 

 
 At this point, it is worth noting that for the specimens with long cracks (a/W=0.70), the J-Q trajectories 
were different in nature from those obtained for the specimens with the relative crack length a/W0.50 (see Figs 
10 and 12). This problem was discussed by Chao [28], who stated that it could be due to the fact that the bending 
stress near the crack tip was not taken into consideration in the analysis of the stress field [4-6].  
 
The maximum crack opening stress and its position near the crack tip 
 
 The maximum crack opening stress is treated as a measure of in-plane constraints – limitations 
imposed by a material undergoing plastic deformation when subjected to external loading [30]. This 
parameter – the maximum crack opening stress – is necessary to calculate the actual fracture toughness 
assuming an appropriate fracture criterion [13-14, 15-17]. 
 The analysis of the results will be conducted in order to evaluate the influence of the material 
properties and the relative crack length [15-17]. Figure 14 presents the influence of the strain hardening 
exponent on the o=o(J) trajectories, where o=22_max/0. For a material characterized by a lower value of 
the strain hardening exponent, the o=o(J) trajectories lie higher [15-17]. Higher values of the maximum 
crack opening stress are observed for strongly hardening materials. For the o=o(J) trajectories, the level of 
saturation was achieved, as discussed in [13-17]. For weakly hardening materials, the level of saturation of 
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the o=o(J) trajectories is achieved earlier than for strongly hardening materials. For very strongly hardening 
materials (n=3.36), an increase in the external load (expressed by the level of the J-integral) causes the 
maximum crack opening stress to increase nonlinearly [15-17]. 
 

a)         b)  
 
Fig.13.  The comparison of the crack opening stress distributions for selected DEN(T) plates at different 

levels of load expressed by the J-integral: a) graph for the physical coordinates near the crack tip – 
x22 [mm]; b) graph for the normalized distance from the crack tip - =(x220)/J. 

 
 Figure 15 shows the influence of the yield stress on the o=o(J) trajectories. The graphs were 
generated on the basis of the results obtained for strongly and very weakly hardening materials [15-17]. When 
the material is characterized by higher values of the yield stress, the o=o(J) trajectories lie lower. The 
influence of the yield stress was analyzed for very strongly and strongly hardening materials with the strain 
hardening exponent n=3.36 and n=5, respectively (Fig.15a) [15-17]. The level of the maximum crack opening 
stress does not depend on the yield stress when the strain hardening exponent n is n=10 and n=20 (Fig.15b). 
 

a)               b)  
 
Fig14. The influence of the strain hardening exponent n on the o=o(J) trajectories for DEN(T) plates. 
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a)            b)  
 

Fig.15. The influence of the yield stress 0 on the o=o(J) trajectories for DEN(T) plates. 
 
 The shape of the o=o(J) trajectories does not depend on the relative crack length. Figure 16a shows 
no effect of the relative crack length on the o=o(J) trajectories for strongly hardening materials (n=3.36). A 
negligible impact of the crack length is observed for weakly and very weakly hardening materials (n=10 and 
n=20), as can be seen from Fig.16b [15-17]. 
 

a)  b)  
 

Fig.16. The influence of the relative crack length a/W on the o=o(J) trajectories for DEN(T) plates. 
 
 The analysis of the o=o(J) trajectories requires assessing the change in the position of the 
maximum crack opening stress, denoted as r22_max, resulting from an increase in the external load [15-17]. It 
should be noted that the physical distance between the position of the maximum crack opening stress and the 
crack tip increases with increasing the external load [15-17]. However, due to the fact that the fracture 
criteria [13, 14] use the normalized distance between the crack tip and the position of the maximum crack 
opening stress, denoted as o=(r22_max0)/J, the analysis will be done for selected graphs showing the 
relationship o=o(J). An increase in the external load causes a decrease in the normalized position of the 
maximum crack opening stress, and the o=o(J) trajectories tend to achieve the saturation level (Figs 17 
and 18) [15-17]. From Fig.17a it is evident that the more strongly hardening materials, the lower the values 
of the normalized position of the maximum crack opening stress. The greater the degree of the material 
hardening, the lower the curves o=o(J) lie (Fig.17a) [15-17]. An increase in the yield strength is 
accompanied by an increase in the normalized position of the maximum crack opening stress (Fig.17b); the 
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higher the yield strength, the higher the curves o=o(J) lie. It should be noted that the normalized position 
of the maximum crack opening stress is slightly affected by a change in the crack length (Fig.18) [15-17]. 
 

a)  b)  
 

Fig.17.  The influence of the strain hardening exponent n (a) and the yield stress 0 (b) on the o=o(J) 
trajectories for DEN(T) plates. 

 
Table 4.  The values of the maximum crack opening stress o=22_max/0 for the saturation level of the 

o=o(J) trajectories for DEN(T) plates in plane strain state.  
 

0=315MPa   0/E=0.00153 0=500MPa   0/E=0.00243 
n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70

3.36 8.38 8.49 8.87 8.71 3.36 7.19 7.55 7.57 7.59 
5 5.44 5.54 5.62 5.61 5 4.98 5.07 5.08 5.14 
10 3.31 3.37 3.40 3.56 10 3.17 3.20 3.27 3.40 
20 2.51 2.55 2.67 2.81 20 2.45 2.50 2.62 2.77 

0=1000MPa   0/E=0.00485 0=1500MPa   0/E=0.00728 
n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70

3.36 6.10 6.21 6.19 6.26 3.36 5.48 5.56 5.57 5.59 
5 4.36 4.43 4.47 4.48 5 4.04 4.10 4.14 4.14 
10 2.96 3.04 3.07 3.24 10 2.85 2.95 3.07 3.24 
20 2.39 2.53 2.85 2.96 20 2.37 2.71 2.87 2.94 

 

Table 5.  The values of the normalized position of the maximum crack opening stress o=x22_max0/J near 
the crack tip for the saturation level of the o=o(J) trajectories for DEN(T) plates in plane strain. 

 

0=315MPa   0/E=0.00153 0=500MPa   0/E=0.00243 
n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70

3.36 0.199 0.195 0.167 0.172 3.36 0.252 0.191 0.206 0.209 
5 0.263 0.357 0.371 0.368 5 0.362 0.394 0.405 0.400 
10 0.588 0.621 0.644 0.648 10 0.623 0.641 0.685 0.699 
20 0.758 0.771 0.856 0.871 20 0.787 0.806 0.892 0.951 

0=1000MPa   0/E=0.00485 0=1500MPa   0/E=0.00728 
n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70 n a/W=0.05 a/W=0.20 a/W=0.50 a/W=0.70

3.36 0.244 0.209 0.268 0.247 3.36 0.261 0.248 0.283 0.286 
5 0.427 0.459 0.465 0.445 5 0.455 0.500 0.514 0.496 
10 0.665 0.718 0.747 0.836 10 0.697 0.779 0.855 0.945 
20 0.818 0.924 1.077 1.180 20 0.841 1.086 1.177 1.230 
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Fig.18. The influence of the relative crack length a/W on the o=o(J) for DEN(T) plates. 
 

a) b)  c)  
 

d) e)  f)  
 

Fig.19.  The influence of the relative crack length a/W, the strain hardening exponent n and the yield stress 0 
on the o and o parameters for DEN(T) plates under plane strain. 
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 The fact that the trajectories o=o(J) and o=o(J) achieve the saturation level was taken into 
account in the proposals for the fracture criteria [13, 14]. Tables 4 and 5 show the values of the maximum 
crack opening stress o and the value of its normalized position near the crack tip o. It is clear that for the 
saturation level of the trajectories o=o(J) and o=o(J), both parameters – o and o – are slightly 
dependent on the crack length (see Figures 19a and 19d, respectively) [15-17]. The reduction in the degree of 
material hardening causes that the values of the parameters o and o for the saturation level decrease and 
increase, respectively (see Figs 19b and 19e, respectively) [15-17]. An increase in the yield strength is 
accompanied by a decline in the value of the parameter o and a slight increase in the value of the parameter 
o (see Figs 19c and 19f, respectively) [15-17]. 
 
Estimation of the selected fracture parameters – the J-integral, the CTOD, and the load line 
displacement 
 
 Except for the parameters of geometric constraints – the Q-stress, the maximum crack opening stress 
– there are other parameters such as the J-integral, the CTOD, and the load line displacement that require 
special attention. These parameters were briefly discussed above. Researchers often use them in the analysis 
of engineering problems. Two of these parameters, i.e., the J-integral and the crack tip opening displacement 
(denoted by T), can be used to determine the actual fracture toughness (denoted by KC in [9, 10]), as 
recommended in the SINTAP [9] or FITNET [10] procedures. The J-integral is a parameter that controls the 
stress field in front of the crack tip [1, 2]. The load line displacement denoted as vLL may be necessary for the 
assessment of the limit loads when the DEN(T) plate is used to represent idealized complex structural 
elements. 
 The analysis of elastic-plastic materials involved discussing the influence of the yield stress, 0, the 
strain hardening exponent, n, and the relative crack length, a/W, on the value of the J-integral, CTOD and the 
load line displacement vLL. The analysis was performed for the J-integral, the CTOD and the load line 
displacement as a function of the external load, P, normalized by the limit load, P0. The analysis results are 
illustrated in Figs 20-22. As can be seen, the higher the yield stress of the material, the greater the values of 
the J-integral, the CTOD and the load line displacement vLL at the same level of the normalized external load 
P/P0. For higher values of the yield stress, all the parameters – the J-integral, the CTOD and vLL – grow 
faster with a change in the external load (see Figs 20a, 21a and 22a, respectively). 
 The rate of change (the rate of growth) of the J=f(P/P0), T=f(P/P0) and vLL=f(P/P0) curves depends 
on the strain hardening exponent, n. The less strongly hardening the material is, the higher the values of the 
J-integral, the CTOD and vLL for a load exceeding the limit load. The J=f(P/P0), T=f(P/P0) and vLL=f(P/P0) 
curves plotted for materials characterized by n=10 and n=20 change more rapidly; there is an increase in the 
relevant parameters (Figs 20b, 21b and 22b, respectively). 
 When the influence of the relative crack length, a/W, is analyzed, it should be noted that for 
longer cracks, the values of the J-integral and the CTOD are higher at the same level of the 
normalized external load P/P0 (Figs 20c and 21c, respectively). However, in the case of the load line 
displacement vLL, the opposite situation is observed; the obvious conclusion is that the shorter the 
crack, the higher the values of the load line displacement vLL at the same level of the normalized 
external load P/P0 (Fig.22c). The similar conclusions shown in [31]. 
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a)        b)  c)  
 
Fig.20.  The infuence of the yield stress, the strain hardening exponent and the relative crack length on the J-

integral for DEN(T) plates in plane strain.  
 

a) b)  c)  
 
Fig.21.  The infuence of the yield stress, the strain hardening exponent and the relative crack length on the 

CTOD for DEN(T) plates in plane strain.  
 

a) b)  c)  
 
Fig.22.  The infuence of the yield stress, the strain hardening exponent and the relative crack length on the 

load line displacemnt vLL for DEN(T) plates under plane strain.  
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3. Approximation of the selected numerical results 
 
 All the numerical results presented in this paper can be very useful in solving engineering problems. 
However, the use of data in the form of tables and graphs can be tedious. That is why the numerical results 
were approximated using relatively simple mathematical formulae. 
 
Approximation of the limit loads for DEN(T) plates 
 
 From the EPRI procedures [19] it is evident that the limit load is a function of the yield stress, 0, 
and the specimen geometric dimensions: the thickness, B, the crack length, a (or a/W), and the width, W 

 

, , ,0 0
a

P f B W
W

   
 

,  (3.1) 

 
which can be written as 
 

,0 0
a

P B f W
W
      
 

.  (3.2) 

 
 If we assume the specimen thickness B=1 mm for plane stress and B=1 m for plane strain, in the 
above expression, only the function f(a/W, W) is unknown. The next step of the approximation procedure 
involves normalizing all the numerical results of the limit loads by the product of the yield stress and the unit 
thickness (B=1mm or B=1m) and generating a graph showing the relationship between the expression 
P0/(0B) and the length of the uncracked ligament of the specimen (denoted as b) - Fig.23.  
 As shown in Fig.23, the relationship between the expression P0/(0B) and b is slightly non-linear. 
The function f(a/W, W), which appeared in Eq.(13), can thus be expressed as: 
 

 the linear approximation 
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a
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W
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   for plane stress with R2=0.9925,  (3.3) 
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   for plane strain with R2=0.9934.  (3.4) 

 
 the polynomial approximation 
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for plane stress with R2=1  (3.5) 
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for plane strain with R2=1  (3.6) 
 

 the power function approximation 
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 for plane stress with R2=0.99810224 (3.7) 

 

  ., . . 0 44179772a
f W 15 517326 450 13333 b

W
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 for plane strain with R2=0.99998906 (3.8) 

 
 In the above equations, b is the uncracked ligament calculated as b=(W-a)=(W-a/WW). 
 

a)  b)  
 
Fig.23.  The auxiliary graphs used in the approximation of the numerical results of the limit loads for 

DEN(T) plates: a) plane stress; b) plane strain. 
 

 Using Eq.(3.2) and any of Eqs (3.3)-(3.8) requires introducing the yield stress, 0, in [MPa], the 
thickness, B, in [m] and the length of the uncracked ligament, b, in [m]. The result of the limit load, P0, is 
given in [kN]. The use of Eqs (3.3) and (3.4) led to average errors of 3.92% and 1.97% for plane stress and 
plane strain, respectively. When Eqs (3.5) and (3.6) were used, the errors were 0.2% and 0.03% for plane 
stress and plane strain, respectively. The use of Eqs (3.7) and (3.8) gave a load estimation error of 1.33% and 
0.07% for plane stress and plane strain, respectively. 
 The TableCurve 3D program [29] can also be used to propose a different approximation formula to 
calculate the limit loads, P0. Figure 24 shows the limit load, P0, versus the yield stress, 0, versus the relative 
crack length, a/W. In the TableCurve 3D program [29], the limit loads for plane stress and plane strain were 
approximated using the function in the following form 
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  (3.9) 

 

where the coefficients A1, A2, A3, A4, A5, A6 are given in Tab.6. 
 The use of Eq.(3.9) requires the knowledge of the relative crack length, a/W, and the yield stress, 0, 
given in [MPa]. The result will be calculated in [kN]. Formula (3.9) will correctly estimate the limit load for 
plates with the material and geometric characteristics considered in this paper. It is important to note that the 
data were obtained for the reference thicknesses B=1mm (plates under plane stress) and B=1m (plates under 
plane strain). The conversion of a result to another thickness requires the multiplication of the result by the 
value of the thickness inserted in the appropriate unit - in [mm] for plane stress and in [m] for plane strain. 
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a)  b)  
 
Fig.24.  The calculated limit loads as a function of the yield stress and the relative crack length: a) plane 

stress; b) plane strain. 
 
Table 6.  The coefficients of Eq.(3.9) for calculating the limit load for DEN(T) plates under plane stress and 

plane strain. 
 

 A1 A2 A3 A4 A5 A6 R2 
plane stress -1.9027    0.0827  23.9696  8.432e-07  -32.033   -0.0797 0.999 
plane strain -1975.46   95.01   19613.52  -2.645e-06   -26157.12  -64.805   1.000 
 
Approximation of the J-Q trajectories 
 
 The Q-stress in SEN(B), CC(T) and SEN(T) plates can be calculated on the basis of the external 
load, the material properties, and the plate geometry using various mathematical formulae available in the 
literature [4-6]. The results of the numerical computations of the J-Q trajectories presented in this paper were 
approximated using a simple J-Q catalog and the universal formula (21), which allowed us to calculate the 
Q-stress taking into consideration all the parameters affecting the Q-stress [4-6]. Before the approximation, all 
the results were shown as graphs Q=f(log(J/(aσ0))) [4-6]. Then, all the graphs were approximated by means of 
a simple mathematical formula, taking into account the material properties, the external load, and the specimen 
geometry. All the approximations were made for the results recorded at the distance r=2.0J/σ0 [4-6, 15]. 
 Each of the obtained trajectories Q=f(log(J/(aσ0))) was approximated with a third order polynomial 
in the form [4-6] 
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  (3.10) 

 
where the coefficients A1, A2, A3, A4 are dependent on the strain hardening exponent, n, the yield stress, 0, 
and the crack length, a/W. The fitting of formula (14) to the numerical results for the worst case was 
R2=0.951. For different values of the strain hardening exponent, n, the yield stress, 0, and the ratio a/W, 
which were not included in the numerical analysis, the coefficients A, B, C and D can be evaluated using a 
linear or quadratic approximation [4-6, 15].  
 The results of the numerical approximation (all the coefficients of approximation of the numerical 
results obtained with Eq.(3.10)) are presented in Tabs 7-10. 
 Figure 25 compares the numerical results and their approximations (Eq.(3.10)) for the J-Q 
trajectories for several cases of DEN(T) specimens. 

250

500

750

1000

1250

0 [MPa]
00.1

0.2
0.3

0.40.5
0.6

a/W

0 0

25 25

50 50

75 75

100 100

125 125

P
0
 [k

N
]

P
0
 [k

N
]

250

500

750

1000

1250

0 [MPa]
00.1

0.2
0.3

0.40.5
0.6

a/W

0 0

25000 25000

50000 50000

75000 75000

100000 100000

125000 125000

150000 150000

P
0
 [k

N
]

P
0
 [k

N
]



A numerical analysis of selected elastic-plastic fracture … 71 

a)  b)  
 

Fig.25.  The comparison of the numerical results and their approximations (Eq. (3.10)) for the J-Q 
trajectories for DEN(T) specimens: a) DEN(T), 0=1000MPa, n=10, a/W={0.20, 0.50}; b) DEN(T), 
0=500MPa, n=5, a/W={0.05, 0.70} (results for distance r=2J/0). 

 
Table 7. The coefficients of Eq.(3.10) for DEN(T) specimens with the crack length a/W=0.05.  
 

a/W = 0.05 
0 = 315MPa 0/E = 0.00153 0 = 1000MPa 0/E = 0.00485 

n A1 A2 A3 A4 R2 n A1 A2 A3 A4 R2 
3.36 -2.07367 -0.89215 0.06735 0.11350 0.988 3.36 -1.61359 -0.80480 -0.20500 -0.02610 0.987

5 -2.03309 -0.78086 0.21320 0.17939 0.986 5 -1.84529 -1.33116 -0.67673 -0.15905 0.994
10 -1.94706 -1.10762 -0.42521 -0.05233 0.996 10 -1.78590 -1.14660 -0.65380 -0.18826 0.997
20 -1.75505 -0.79796 -0.38239 -0.08733 0.998 20 -1.66455 -0.73656 -0.39118 -0.14631 0.997

0 = 500MPa 0/E = 0.00243 0 = 1500MPa 0/E = 0.00728 
n A1 A2 A3 A4 R2 n A1 A2 A3 A4 R2 

3.36 -1.88890 -0.89944 -0.08240 0.04711 0.988 3.36 -1.54215 -0.94765 -0.41828 -0.09489 0.994
5 -1.95881 -1.06858 -0.24585 0.00375 0.989 5 -1.72690 -1.21018 -0.61030 -0.14763 0.997

10 -1.89073 -1.19587 -0.62361 -0.14589 0.997 10 -1.68748 -0.90117 -0.38556 -0.10917 0.996
20 -1.72213 -0.81693 -0.45979 -0.13738 0.999 20 -1.61152 -0.53061 -0.09475 -0.04854 0.995

 
Table 8. The coefficients of Eq.(3.10) for DEN(T) specimens with the crack length a/W=0.20. 
 

a/W = 0.20 
0 = 315MPa 0/E = 0.00153 0 = 1000MPa 0/E = 0.00485 

n A1 A2 A3 A4 R2 n A1 A2 A3 A4 R2 
3.36 -2.47366 -2.13286 -1.11055 -0.22243 0.996 3.36 -1.77026 -1.19761 -0.49603 -0.08822 0.992

5 -2.54393 -2.46772 -1.47359 -0.32322 0.999 5 -1.72418 -0.94326 -0.32122 -0.05836 0.991
10 -2.12863 -1.64934 -1.03481 -0.25525 1.000 10 -1.48214 -0.17632 0.19798 0.03791 0.992
20 -1.90141 -1.08278 -0.70365 -0.20207 0.999 20 -1.35798 0.33459 0.57005 0.11015 0.994

0 = 500MPa 0/E = 0.00243 0 = 1500MPa 0/E = 0.00728 
n A1 A2 A3 A4 R2 n A1 A2 A3 A4 R2 

3.36 -2.31522 -2.13297 -1.17072 -0.24361 0.998 3.36 -1.50169 -0.79934 -0.25750 -0.04083 0.994
5 -2.31777 -2.16440 -1.27027 -0.28244 0.998 5 -1.49805 -0.56724 -0.06858 -0.00391 0.994

10 -1.95283 -1.31720 -0.77653 -0.20126 0.997 10 -1.38530 -0.00799 0.35391 0.07946 0.994
20 -1.74884 -0.72173 -0.39705 -0.13488 0.997 20 -1.33615 0.35823 0.64807 0.13937 0.995
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Table 9. The coefficients of Eq.(3.10) for DEN(T) specimens with the crack length a/W=0.50. 
 

a/W = 0.50 
0 = 315MPa 0/E = 0.00153 0 = 1000MPa 0/E = 0.00485 

n A1 A2 A3 A4 R2 n A1 A2 A3 A4 R2 
3.36 -2.02121 -1.20031 -0.55211 -0.11394 0.994 3.36 -1.61618 -0.63416 -0.19976 -0.04378 0.993

5 -1.77084 -0.70633 -0.31624 -0.08370 0.994 5 -1.32823 0.03146 0.17593 0.01647 0.993
10 -1.57618 -0.39747 -0.20198 -0.07725 0.995 10 -1.02601 0.68308 0.52993 0.07003 0.992
20 -1.47576 -0.28518 -0.18420 -0.08353 0.994 20 -0.84870 1.01421 0.69381 0.09180 0.990

0 = 500MPa 0/E = 0.00243 0 = 1500MPa 0/E = 0.00728 
n A1 A2 A3 A4 R2 n A1 A2 A3 A4 R2 

3.36 -0.98080 0.31452 0.38727 0.07388 0.995 3.36 -0.88938 0.36453 0.42929 0.08772 0.995
5 -0.79935 0.87375 0.74924 0.13834 0.995 5 -0.84132 0.71592 0.69292 0.13818 0.994

10 -0.53230 1.62610 1.22887 0.22313 0.995 10 -0.70112 1.28797 1.09810 0.21449 0.992
20 -0.26647 2.21535 1.57465 0.28182 0.993 20 -0.49749 1.81996 1.43653 0.27571 0.991

 
Table 10. The coefficients of Eq.(3.10) for DEN(T) specimens with the crack length a/W=0.70. 
 

a/W = 0.70 
0 = 315MPa 0/E = 0.00153 0 = 1000MPa 0/E = 0.00485 

n A1 A2 A3 A4 R2 n A1 A2 A3 A4 R2 
3.36 -0.75061 0.61378 0.30881 0.01992 0.996 3.36 -0.16067 1.45602 0.91748 0.15493 0.994

5 -0.66643 0.67104 0.28101 0.00473 0.994 5 0.07737 2.00341 1.23119 0.20593 0.993
10 -1.06174 -0.29755 -0.33049 -0.11106 0.988 10 0.46139 2.70876 1.60031 0.26221 0.991
20 -1.22360 -0.75792 -0.62374 -0.16668 0.982 20 0.73075 3.13806 1.80663 0.29151 0.987

0 = 500MPa 0/E = 0.00243 0 = 1500MPa 0/E = 0.00728 
n A1 A2 A3 A4 R2 n A1 A2 A3 A4 R2 

3.36 -0.59335 0.87503 0.57452 0.08511 0.992 3.36 -0.25460 1.21163 0.80169 0.14064 0.990
5 -0.37133 1.19640 0.65879 0.08433 0.988 5 -0.16460 1.57475 1.04507 0.18392 0.989

10 -0.50978 0.77432 0.34920 0.01759 0.975 10 0.10626 2.20998 1.42207 0.24755 0.988
20 -0.55892 0.53992 0.16972 -0.02127 0.966 20 0.20226 2.46975 1.58246 0.27467 0.986

 
Approximation of the maximum crack opening stress for the saturation level of the o=o(J) curves 
 
 The approximation of the maximum crack opening stress was performed using three-dimensional 
graphs, which present, in the form of a curved plane, the change in the maximum crack opening stress 
o=22_max/0 (for the saturation level of the o=o(J) trajectories) as a function of the strain hardening 
exponent, n, and the yield strength, 0, normalized by Young's modulus, E (Fig.26). 
 The function selected for the approximation is dependent on two variables – the exponent n in the 
RO law and the yield strength, 0, normalized by Young's modulus, E 
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  (3.11) 

 
where the approximation coefficients A1..A10 are provided in Tab.11. 
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Table 11.  The approximation coefficients of formula (3.11) required to calculate the maximum crack 
opening stress o for DEN(T) plates under plane strain. 

 

a/W A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 R2 

0.05 1.985 15.56 -182.26 35.88 61071.1 -2630.22 -23.40 -4.80106 169542.8 -1127.76 0.986

0.20 2.101 13.69 -183.61 54.87 75028.6 -3270.73 -57.53 -5.48106 165453.0 6.70 0.992

0.50 2.394 9.16 -190.78 87.14 100976.1 -4190.57 -103.71 -8.63106 272417.7 -574.82 0.984

0.70 2.316 14.60 -160.04 39.92 86055.8 -3730.67 -13.72 -7.27106 227198.2 -506.77 0.987
 

 When Eq.(3.11) is employed, the user needs to know the exponent n in the RO law, the yield stress, 
0, Young’s modulus, E, and the relative crack length, a/W. It should be noted that these values were 
obtained for the reference thickness B=1 m. 
 

a) b)  

c) d)  
 

Fig.26.  The relationship o=o(n, 0/E) for DEN(T) plates – influence of the strain hardening exponent n and 
the yield stress 0 normalized by Young’s modulus E on the maximum crack opening stress 
o=22_max/0 for various values of the relative crack length a/W, for the saturation level of the 
o=o(J) trajectories: a) a/W=0.05; b) a/W=0.20; c) a/W=0.50; d) a/W=0.70. 

 
New elastic-plastic formulae for determining the J-integral, the CTOD, and the load line displacement vLL 
 
 The incompatibility of the numerical results with the results obtained using the algorithm proposed 
by the authors of the EPRI procedures [19] indicates that it is vital to propose a new hybrid solution to 
estimate the values of the J-integral, the CTOD, and the load line displacement without the need for 
numerical calculations. The new formulae, based on the discussion presented in [19], can be used to 
determine the J-integral, the CTOD, and the load line displacement; it is possible to omit the decomposition 
of the elastic and plastic parts of the parameters [31]. The formulae can be written as follows 
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where P0 is the limit load determined numerically (presented in Tab.2 and Eqs (3.2)-(3.8)) while the functions 
h1

*, h2
* and h3

* are dependent on the strain hardening exponent, n, and the relative crack length, a/W [31]. 
 The analysis of the results reveals that the values of the functions h1

*, h2
* and h3

* are strongly 
dependent on the degree of material hardening expressed by the value of the strain hardening exponent, n, 
the relative crack length, a/W, and the external load, P/P0. It can be noted that for the case when the external 
load is equal to or greater than the limit load, P0, the h1

*=f(P/P0), h2
*=f(P/P0) and h3

*=f(P/P0) trajectories 
achieve the saturation level – compare the conclusions in [31]. The hybrid method provided in the EPRI [2] 
procedures to estimate the J-integral, the CTOD, and the load line displacement is based on the fixed values 
of the functions h1, h2 and h3 [2], which do not depend on the external load. In his earlier studies [20], the 
author indicates that the values of the functions h1, h2, and h3 change with a variation of the external load. 
The similar conclusions shown in [31]. 
 

a) b)  c)  
 

Fig.27.  The infuence of the yield stress, the strain hardening exponent and the relative crack length on the 
functions h1

*, h2
* and h3

* for DEN(T) plates under plane strain conditions (different configurations of 
the material properties and the relative crack length).  

 

 It is quite interesting to note that the functions h1
*, h2

* and h3
* are not dependent on the yield strength 

(Fig.27a). The values of the functions h1
*, h2

* and h3
* decrease with increasing external load, P/P0, and they 

achieve the saturation level for external loads, P/P01.0 (Fig.27). The values of the three functions increase 
with increasing crack length (e.g., Fig.27c). There is a lack of correlation between the functions h1

*, h2
* and 

h3
* and the yield stress, 0, which slightly simplifies the mathematical description of the h1

*=f(P/P0), 
h2

*=f(P/P0) and h3
*=f(P/P0) curves. The similar observation were observed in the analysis of three-point 

bending specimens [31]. The functions h1
*=f(P/P0), h2

*=f(P/P0) and h3
*=f(P/P0) can be described using the 

following mathematical formulae 
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,  (3.15) 
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  (3.17) 

 

where the coefficients of approximation a1..k1, a2..j2 and a3..k3 depend on the value of the strain hardening 
exponent, n, and the relative crack length, a/W. The values of the approximation coefficient are presented in 
Tabs 12-14. In the future, the author intends to create an application to be used for estimating the values of 
the functions h1

*, h2
* and h3

*, and thus the values of the J-integral, the CTOD, and the load line displacement 
for a specific material and a specific geometry, including all basic specimens – for example SEN(B), 
DEN(T), SEN(T), C(T), CC(T) [31]. 
 
Table 12.  The approximation coefficients a1..k1 required to estimate the values of the function h1

* according 
to formula (3.15). 

 

 a/W=0.05 a/W=0.20 
n 3.36 5 10 20 3.36 5 10 20 
a1 18.69 44.42 169.62 494.03 35.61 85.09 294.42 824.08 
b1 36.60 63.69 160.03 350.05 77.95 132.54 279.40 581.43 
c1 -2.89 -22.07 57.09 520.52 276.46 680.72 2021.33 5383.31 
d1 -145.61 -218.48 -264.60 -54.81 -30.60 152.28 785.83 2452.82 
e1 -146.42 -233.60 -914.31 -3541.59 -546.21 -1349.84 -5045.55 -16304.14
f1 265.48 380.21 162.48 -1298.64 90.18 -441.72 -2596.45 -8698.35 
g1 363.77 598.83 1388.91 3935.83 722.99 1076.22 3564.94 13377.63
h1 -252.42 -379.41 -182.47 1395.96 -363.00 15.04 2004.22 8078.31 
i1 -381.44 -656.81 -1122.93 -1717.68 -994.92 -968.13 -898.01 -2700.36 
j1 96.45 157.64 136.94 -378.71 265.93 207.73 -406.37 -2381.31 
k1 150.63 277.18 446.80 338.07 591.75 614.94 203.01 -510.89 
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 a/W=0.50 a/W=0.70 

n 3.36 5 10 20 3.36 5 10 20 
a1 44.11 136.28 525.44 1640.89 46.28 94.75 287.28 574.53 
b1 78.46 217.97 522.86 1206.90 64.30 103.57 226.54 353.57 
c1 398.56 2448.15 11481.86 47968.57 250.63 447.15 1224.82 487.65 
d1 32.50 1239.50 6922.05 28186.11 -92.01 -62.22 226.42 -114.54 
e1 -601.49 -2156.75 13598.02 144757.69 -756.67 -1542.09 -4909.58 -4301.82 
f1 -0.96 -2105.89 3571.72 65108.58 141.65 -171.16 -1850.87 -1440.48 
g1 701.29 -158.36 -23563.55 -222872.86 1073.42 1689.23 4863.76 5038.72 
h1 -321.20 1007.26 -13392.01 -123085.37 -378.66 -37.14 1961.81 1813.99 
i1 -1090.87 361.32 1936.20 47575.04 -1392.82 -1350.17 -1618.63 -1960.48 
j1 343.54 399.13 7974.25 48963.77 344.83 259.46 -487.72 -603.24 
k1 894.99 1240.17 8818.92 25102.87 1025.37 921.99 343.82 184.91 
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 13.  The approximation coefficients a2..j2 required to estimate the values of the function h2

* according 
to formula (3.16). 

 

 a/W=0.05 a/W=0.20 

n 3.36 5 10 20 3.36 5 10 20 

a2 88.46 172.90 -644.91 -141.04 88.46 172.90 -644.91 -141.04 

b2 94.00 142.60 -481.20 -127.45 94.00 142.60 -481.20 -127.45 

c2 -149.14 -308.09 15053.99 1989.92 -149.14 -308.09 15053.99 1989.92 

d2 -164.27 -246.24 10878.69 1834.36 -164.27 -246.24 10878.69 1834.36 

e2 104.56 223.58 -19985.23 25261.78 104.56 223.58 -19985.23 25261.78 

f2 113.71 118.90 -17982.61 10850.07 113.71 118.90 -17982.61 10850.07 

g2 -31.36 -124.95 3547.63 -29859.75 -31.36 -124.95 3547.63 -29859.75

h2 -34.28 0.10 9951.60 -10383.67 -34.28 0.10 9951.60 -10383.67

i2 4.09 62.35 4966.48 12417.56 4.09 62.35 4966.48 12417.56 

j2 3.94 0.99 -757.35 2725.92 3.94 0.99 -757.35 2725.92 

R2 0.985 0.994 0.999 1.000 0.985 0.994 0.999 1.000 

 a/W=0.50 a/W=0.70 

n 3.36 5 10 20 3.36 5 10 20 

a2 135.69 -1171000.00 -26285.30 -128077.61 135.68 -3494.15 -9859.01 -1243.58 

b2 105.59 -938675.39 -16928.13 -72648.00 95.48 -2593.17 -6127.26 -744.69 

c2 264.34 51915900.00 1023140.00 5014220.00 -185.62 94456.07 249521.61 21382.34 

d2 304.26 42584300.00 664400.14 2858660.00 -133.07 71337.27 160488.43 13121.65 

e2 -211.47 -52576000.00 -822788.76 -4139400.00 174.33 -79030.38 369817.28 290717.10

f2 -627.08 -69553000.00 -803757.10 -2974400.00 69.31 -112189.45 63208.75 148152.40

g2 -209.36 -1537300.00 -186755.86 -2286500.00 -114.73 -20567.82 -499742.16 -9558.52 

h2 339.87 43124900.00 282355.52 -381765.39 -19.72 81663.59 -123534.81 -10028.52

i2 176.34 23592500.00 332457.94 2053440.00 28.98 81206.75 272203.37 -78120.04

j2 -43.19 -5806200.00 19675.06 810657.45 3.26 -8808.10 59626.21 -50807.19

R2 0.991 0.995 0.999 1.000 0.984 0.995 0.998 1.000 
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Table 14.  The approximation coefficients a3..k3 required to estimate the values of the function h3
* according 

to formula (3.17). 
 

 a/W=0.05 a/W=0.20 
n 3.36 5 10 20 3.36 5 10 20 
a3 126.09 231.00 516.63 1467.40 187.99 360.94 820.52 2059.85 
b3 90.48 149.38 290.56 797.20 160.84 262.73 488.24 1134.46 
c3 204.66 237.59 -319.27 4199.71 1658.49 2824.50 3686.31 11811.81
d3 -152.10 -189.56 -468.41 1618.49 358.76 831.89 1232.03 5129.42 
e3 -813.86 -1259.11 -1254.28 -16785.02 -2532.55 -5379.37 -10373.43 -38007.53
f3 261.56 180.44 223.21 -7508.03 -693.10 -1977.03 -4129.93 -17927.78
g3 1249.07 1710.01 2090.35 15811.71 1403.21 3166.39 8155.42 33310.86
h3 -416.64 -345.51 -138.41 7274.03 72.34 1059.82 3213.23 16613.85
i3 -1403.47 -1550.52 -1522.15 -4687.45 -1119.75 -1100.26 -2407.28 -8546.31 
j3 249.83 248.38 117.99 -2150.07 272.60 21.05 -696.65 -4897.82 
k3 746.96 752.75 549.84 64.63 973.96 690.02 375.71 -512.38 
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 a/W=0.50 a/W=0.70 

n 3.36 5 10 20 3.36 5 10 20 
a3 249.14 533.78 1776.00 3158.53 229.70 279.26 2760.24 1405.21 
b3 212.23 395.43 1130.02 1744.86 162.58 150.66 1748.52 721.16 
c3 3978.71 8271.47 45396.24 34334.91 3641.17 597.95 89448.72 1029.94 
d3 1289.47 3108.55 22267.24 15737.43 1254.01 -15.45 41929.50 60.80 
e3 -3238.28 -10709.00 69928.74 -54083.48 2581.89 -1265.29 11200.28 -9996.40 
f3 -2158.13 -5974.54 21609.45 -26648.92 -512.44 -72.29 -17706.68 -3769.04 
g3 -916.99 1717.36 -149241.36 14148.96 -2832.54 1040.90 -95886.54 11490.02
h3 1441.69 4111.86 -62218.02 8787.10 793.57 -1.69 -8662.60 4459.88 
i3 2475.96 3752.99 48808.96 4556.94 3711.65 -506.55 61540.35 -4146.87 
j3 -237.25 -956.14 27926.11 1469.24 -223.51 12.55 4367.96 -1471.51 
k3 -479.88 -1448.88 10198.60 338.42 -956.03 108.36 -11629.43 223.42 
R2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
 However, an analysis of structural elements with defects, which requires estimating their strength or 
fracture toughness at loads equal to or greater than the limit loads can be performed using the values of the 
functions h1

*, h2
* and h3

* for the saturation level of the h1
*=f(P/P0), h2

*=f(P/P0) and h3
*=f(P/P0) curves (see 

Tab.15). 
 
Table 15.  The values of the functions h1

*, h2
* and h3

* for the saturation level of the h1
*=f(P/P0), h2

*=f(P/P0) 
and h3

*=f(P/P0) curves for DEN(T) plates in plane strain. 
 

a/W 
n=3.36 n=5 n=10 n=20 

h1 h2 h3 h1 h2 h3 h1 h2 h3 h1 h2 h3 

0.05 1.593 1.236 2.957 1.743 1.552 2.572 1.900 1.840 2.244 1.966 1.945 2.105

0.20 2.088 1.688 3.005 2.082 1.890 2.578 2.044 1.988 2.230 2.015 1.994 2.094

0.50 2.495 2.099 3.269 2.351 2.163 2.760 2.175 2.119 2.311 2.082 2.059 2.134

0.70 2.858 2.601 3.614 2.601 2.487 2.907 2.310 2.261 2.376 2.152 2.125 2.166
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 For DEN(T) plates, whose material characteristics and relative crack length were not considered in 
this study, the saturation level of the functions h1

*, h2
*, h3

* i.e., h1
*=f(P/P0), h2

*=f(P/P0) and h3
*=f(P/P0), 

respectively, can be estimated using the following approximation formula 
 

* ,
2 2

3 3 2 2
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a 1 a 1 a 1 a 1
f g h i j
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  (3.18) 

 
where the coefficients a..j are presented in Tab.16, separately for the functions h1

*, h2
* and h3

* . 
 
Table 16.  The coefficients of Eq.(30) used to determine the functions h1

*, h2
* and h3

* for the saturation level 
of the h1

*=f(P/P0), h2
*=f(P/P0) and h3

*=f(P/P0) curves for DEN(T) plates under plane strain 
conditions. 

 
 a b c d e f g h i j R2 

h1
* 1.95272 1.16633 -1.51736 -4.56057 -1.28208 10.58961 4.27360 1.07612 -1.21721 -5.15672 0.995

h2
* 1.92995 1.57299 -1.69725 -5.57726 -4.05699 8.12945 4.84571 0.45872 -2.27424 -0.54159 0.993

 h3
* 1.97881 -0.09467 2.46079 0.60653 3.05398 -2.70106 -0.63584 -0.55959 7.30248 5.02732 1.000

 
4. Conclusions 
 
 The presented in the paper results complement previous papers of the author [4-6, 16-17] in the 
range of elastic-plastic fracture mechanics parameters. Extending the analysis of basic parameters, such as 
the J-integral, crack tip opening displacement or load line displacement, allows for the verification of the 
solutions specified in the 1981 [19], which may be used to solving the some engineering problems in the 
field of fracture mechanics.  
 This paper has presented a comprehensive numerical analysis of DEN(T) plates. The study involved 
verifying the limit load solution by means of a finite element method. New alternative equations were 
proposed to calculate the limit loads. The level of the selected parameters of in-plane constraints, i.e., the Q-
stress and the maximum crack opening stress, was determined to simplify the engineering analysis. A 
discussion was held about the influence of the material properties (yield stress and strain hardening exponent 
in the RO law) and the relative crack length on the presented parameters of geometric constraints. The 
selected results for the Q-stress and the maximum crack opening stress were approximated using appropriate 
mathematical formulae. The approximation coefficients were provided in the relevant tables. This paper has 
also discussed the effect of the material properties and the relative crack length on the numerically 
determined values of the J-integral, the CTOD, and the load line displacement. Using his earlier research 
results and the discussion presented in the EPRI procedures [19], the author proposed new, alternative 
models to estimate the value of the selected parameters in the field of fracture mechanics with no need for 
numerical calculations (J-integral, CTOD, and load line displacement). The numerical results may prove 
useful in solving various engineering problems which involve estimating the limit loads, the stress 
distribution near the crack tip, the actual fracture toughness, the current value of the J-integral, the CTOD or 
the load line displacement. 
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Nomenclature 
 
 a     crack length  
 a/W    relative crack length  
 B    specimen thickness  
 b    uncracked ligament of the specimen (b=W-a)  
 E    Young’s modulus  
 FEM    finite element method 
 HRR    Hutchinson-Rice-Rosengren 
 J – J    integral  
 n    strain hardening exponent in the Ramberg-Osgood relationship 
 P    external load  
 P0    limit load 
 Q – Q    stress defined by O’Dowd and Shih 
 W    width of the specimen  
     constant in the Ramberg-Osgoog relationship 
 T    crack tip opening displacement (CTOD) 
 0    strain corresponding to the yield stress (0=0/E) 
     Poisson’s ratio 
 vLL    load line displacement  
 0    yield stress 
 22_max    maximum crack opening stress 
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