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Two elastic plate problems made of duralumin are solved analytically using the displacement potential 
approach for the case of plane strain and plane stress conditions. Firstly, a one end fixed plate is considered in 
which the rest of the edges are stiffened and a uniform load is applied to the opposite end of the fixed end. 
Secondly, a plate is considered in which all of the edges are stiffened and a uniform tension is applied at its both 
ends. Solutions to both of the problems are presented for the case of plane stress and plane strain conditions. The 
effects of plane stress and plane strain conditions on the solutions are explained. In the case of stiffening of the 
edges of the plate, the shape of the plate does not change abruptly, which is clearly observed in both of the cases. 
For the plane strain condition, the plates become stiffer in the loading direction as compared to the plane stress 
condition. For the plane strain condition, there is a significant variation of the normal stress component, σzz at 
different sections of the plate. The graphical results, clearly identify the critical regions of the plate for the case of 
the plane stress and plane strain condition. 
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1. Introduction 
 
 In the early nineteenth century, several theoretical approaches were developed to deal with the 2D 
isotropic material elements with simple boundary conditions [1-9]. The main limitations of these approaches 
are that they are not able to deal with the problems of isotropic materials with mixed boundary conditions. 
The reduction of the 2D elasticity problem under plane strain or plane stress conditions with the statement of 
the biharmonic problem is usually associated with the name of the Astronomer Royal George Biddel Airy 
[1]. In his paper [1] Airy considered a flexure of a finite rectangular beam as a 2D problem in the theory of 
elasticity. However, in [2] (section 144) Love expressed the displacement components corresponding to 
plane strain in terms of Airy’s stress function [1]. Several methods have recently been developed to study the 
elasticity and thermoelasticity problems [10-19]. Vigak [10] proposed a method based on the integration of 
the differential equations of equilibrium of constructing exact solutions of two-dimensional problems of 
elasticity and thermoelasticity in the stresses for a rectangular region under prescribed forces on the 
boundary. The relaxation method developed by Southwell [19] for various problems of the theory of 
elasticity was also applied [20] to study the biharmonic problem for a rectangle. In the review article [21], 
Meleshko gave a historical overview of some topics related to the classical 2D biharmonic problem 
describing shortly 758 references because this problem arises in many physical studies concerning bending 
of clamped thin elastic isotropic plates, equilibrium of an elastic body under conditions of plane strain or 
plane stress. He elucidated some interesting points related to the history of the problem and gave an 
overview of some analytical approaches to its solution. Ogden and Isherwood [22] developed new 
formulations of the governing equations for finite plain-strain deformations of compressible isotropic elastic 
solids. Elasticity problems are usually formulated either in terms of deformation parameters or stress 
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parameters. Among the existing mathematical models of plane boundary-value stress problems, the stress 
function approach [1] and the displacement formulation [23]. Recently, Patnaik [24] developed boundary 
conditions for strain formulations which is a single partial differential equation in terms of two displacement 
components. In [25], Patnaik et al. introduce the compatibility concepts in elasticity, finite element analysis, 
design optimization. 
 It is noted that the recent research and developments in using the displacement potential boundary 
approach [26-28] have generated renewed interest in the field of both analytical and numerical solutions of 
stress problems. In this paper, firstly, a one end fixed duralumin plate having stiffening at rest of other edges 
subjected to a uniform tension at its right lateral edge is solved analytically for the case of plane stress and 
plane strain conditions and the solutions for both of the cases are discussed in a comparative fashion. 
Secondly, a duralumin plate is considered; all of its edges are stiffened along the x-direction and uniform 
tension is applied at its both opposite ends; this problem is solved plane stress and plane strain conditions; 
the solutions of the problem are discussed for the case of plane stress and plane strain conditions. 
 
2. Numerical model of the problem 

 
 Two problems are considered in the present research work. Firstly, a one end fixed plate made of 
duralumin is considered in which AB is rigidly fixed; AD and BC are stiffened along the y-direction; CD is 
stiffened along the x direction as shown in Fig.1. A uniform tension is applied at its right lateral edge, CD. 
Secondly, a stiffened plate EFGH made of duralumin is considered. Its two edges EH and FG are considered 
as stiffened along the y-direction; its other two edges EF and HG are also stiffened along the x direction; a 
uniform tension is applied at its two opposite ends, EF and GH, respectively as shown in Fig.2. In the first 
and the second problem, the maximum intensity of the applied tensile stress at the tip of the plate is 50 MPa. 
The Young’s’ modulus and Poisson’s ratio of duralumin (plate material) are taken as 69 GPa and 0.335, 
respectively, to solve the problems.  
 

 

Fig.1. Geometry of a one end fixed stiffened duralumin plate subjected to uniform axial loading at its tip. 
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Fig.2. Geometry of a stiffened duralumin plate subjected to uniform axial loading at its two opposite ends. 
 
3.  Displacement potential formulation of isotropic materials for plane strain and plane stress 

conditions 
 
 The stress at a point of a two-dimensional elastic body can be represented by three dependent 
variables, namely xx , yy , and xy . With reference to a rectangular coordinate system and in the absence 

of body forces, these three variables in the case of isotropic materials are governed by two equilibrium 
equations [29-30].  
 

     xx xy 0
x y

 
   

 
, (3.1) 

 

     yy xy 0
y x

 
   

 
. (3.2) 

 
 The stress-displacement relationships for plane stress and plane strain conditions are as follows [29-
30] 
 

  ( , ) yx
xx 2

uuE
x y

x y1

 
       

, (3.3) 

 

  ( , ) y x
yy 2

u uE
x y

y x1

 
       

, (3.4) 

 

  ( , )
( )

yx
xy

uuE
x y

y x2 1

 
       

 (3.5) 

Loading edge 

E 

F G

H

Stiffened edges

y 

x 

a 

b

P 



272  S.K.Deb Nath 

where EE  ,     for the plane stress condition 

2

E
E

1


 
, 

1


 

 
 for the plane strain condition, 

 
 After substituting the stress-displacement relations as given by Eqs (3.3) to (3.5) in the equilibrium 
Eqs (3.1) and (3.2), we get the following  equilibrium equations for the plane problems of isotropic, elastic 
bodies of Hookean materials, in terms of displacement components 
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 In the displacement potential function formulation, the displacement components are expressed in 
terms of a potential function ψ of space variables as follows 
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2
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, (3.8) 
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 The displacement components as given by Eqs (3.8) and (3.9) are substituted into Eqs (3.6) and 
(3.7). Equation (3.6) is automatically satisfied, but Eq.(3.7) turns into a governing equation which is as 
follows 
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 Substituting the expressions as given by Eqs (3.8) and (3.9) into Eqs (3.3) to (3.5) considering the 
plane strain and the plane stress conditions, one obtains the explicit expressions of three stress components in 
terms of the potential function,    
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4. Solution of the present problem 
 
 A stiffened rectangular duralumin plate is considered for the case of plane stress/plane strain 
conditions. Two different problems are solved changing the boundary conditions in the case of plane strain 
/plane stress conditions. For the present stiffened plate problems, the potential function,   is assumed as 
 

  ( , ) sinm
m 1

x y Y x




    (4.1) 

 

where Ym is a function of y only, and 
m

a


  , then mY  has to satisfy the ordinary differential equation. After 

substituting the above expressions of  to Eq.(3.10), one obtains the following ordinary differential equation 
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where Am, Bm, Cm, and Dm are arbitrary constants. 
 After substituting the expression of   as given by Eq.(4.1) into Eqs (3.8), (3.9), (3.11) to (3.13), one 
obtains the expressions of the displacement and stress components as follows 
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 Substituting the derivatives of mY  in the expressions of the displacement and stress components as 

given in Eqs (4.3) to (4.7), one obtains 
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4.1. Applications of the boundary conditions: 
 
4.1.1. The boundary conditions of the problem as shown in Fig.1 are as follows 
 
 The boundary conditions at the supporting edge AB are 
 
  ( , )xu x 0 0 ;       ( , )yu x 0 0 . (4.13) 

 
 The boundary conditions at the top vertical edge, AD are 
 
  ( , )yu 0 y 0 ;      ( , )xx 0 y 0  . (4.14) 

 
 The boundary conditions at the bottom vertical edge, BC are 
 
  ( , )yu a y 0 ;      ( , )xx a y 0  . (4.15) 

 
 The boundary conditions at the loading edge, CD 
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4.1.2. The boundary conditions of the problem as shown in Fig.2 are as follows 
 
 The boundary conditions at the edge EF are 
 

  ( , ) sinyy 0 m
m 1

x 0 P E E x




     , (4.18) 
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      when      m=1, 3, 5……. 

 
  ( , )xu x 0 0 . (4.19) 
 
 The boundary conditions at the edge EH are 
 
  ( , )yu 0 y 0 , (4.20) 

 
  ( , )xx 0 y 0  . (4.21) 
 
 The boundary conditions at the edge GH are 
 
  ( , )xu x b 0 , (4.22) 
 

  ( , ) sinyy 0 m
m 1

x b P E E x




     , (4.23) 

 

  0E 0  ;      sin
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m
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2 4 p
E p xdy

a m
  

         when         m=1, 3, 5……. 

 
 The boundary conditions at the edge FG are 
 
  ( , )yu a y 0 , (4.24) 

 
  ( , )xx a y 0  . (4.25) 
 
 Firstly, substituting the boundary conditions of the relevant problems associated with Fig.1 
(Eq.(4.13) to Eq.(4.17)) and Fig.2 (Eq.(4.18) to Eq.(4.25) into the general expressions of the displacement 
and stress components as given by Eqs (4.8) to (4.12), one obtains the four unknown coefficients Am, Bm, Cm, 
and Dm .After substituting the value of Am, Bm, Cm, and Dm into Eqs (4.8) to (4.12), one obtains the 
displacement and stress components throughout the plate for two different problems.  
 The following table shows the expressions of the relevant unknown constants Am, Bm, Cm and Dm for 
two different problems as shown in Fig.1 and Fig.2. 
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Unknown 
constants 

Problem 1 as shown in Fig.1 Pproblem 2 as shown in Fig.2 

Am m2tB     ( )sinh ( )3 2
mE 1 n E t 1 c       

Bm     sinhmE 1 b b n       cosh( ) ( )sinh( )3
mE 1 c 1 E t 1 c        

Cm   sinh( ) cosh( )( )mE 2t 1 b b b 1 n        ( )3
mE 1 E t 1     

Dm - Cm     ( )3
mE 1 E t 1      

  

where  ( )( )sinh( )cosh( ) 3n 1 t 2t 1 b b b E     . 

 
5. Results and discussion 
 
 Figure 1.1 shows the deformed shapes of the plate as observed in Fig.1 in the case of plane stress and 
plane strain conditions. The deformations of two edges such as AD and BC along the y direction and the 
deformation of the edge CD along the x direction and the deformations of the supporting edge AB are zero as 
shown in Fig.1.1 which are in good agreement to the physical characteristics of the problem. According to 
the loading configuration as observed in Fig.1, the deformation of edges AD and BC occurs along the x 
direction except two edges AB and CD for both of the cases and the deformations of the plate shown in Fig.1 
in both of the cases differ. Figures 1.2 and 1.3 illustrate the parabolically varied axial stress and 
antisymmetrically varied shear stress components at the section y/b =0 of the plate as a function of x/a for the 
case of plane stress and plane strain conditions. For plane strain conditions, the axial and shear stress 
components are higher than those of the plane stress condition because the stiffness of the plate in the case of 
the plane strain condition is higher than that of plane stress. Figures 1.4 and 1.5 illustrate the lateral and axial 
displacement component at the section y/b =0.5 of the plate in the case of plane stress and plane strain 
conditions. At the section, y/b =0.5, the lateral displacement for plane strain condition is higher than that of 
the plane stress condition because Poisson’s ratio (lateral strain/axial strain) for the case of the plane strain 
plate problem will be higher than that of the plane stress plate problem. According to the theoretical 
formulation of plane stress and plane strain problems mentioned above in the theoretical sections the lateral 
displacement of any section of the plate in the case of the plane strain problem will be higher than that of the 
plane stress problem. No significant effect of plane strain and plane stress conditions on the axial 
displacement component at the section, y/b =0.5 as observed in Fig.1.5. Figures 1.6, 1.7 and 1.8 illustrate the 
lateral, axial and the shear stress component at the section, y/b =0.5, of the plate for the case of plane stress 
and plane strain conditions. The lateral stress component at the section, y/b=0.5, for the plane stress 
condition is higher than that of plane strain condition as observed in Fig.1.6. But the opposite phenomenon is 
observed in the case of the axial stress component at the section, y/b =0.5, as observed in Fig.1.7 because the 
stiffness of the plate along its lateral direction in the case of plane strain condition is lower than that of the 
plane stress condition. There are no effects on the plane stress and plane strain conditions for the shear stress 
component at the section, y/b =0.5 as shown in Fig.1.8. Figure 1.9 illustrates the comparison of the axial 
displacement component at the loading section for the plane stress and plane strain conditions. For the plane 
strain condition, the axial displacement component at the loading section is lower than that of the plane stress 
condition because the plane strain plate has a higher stiffness along the axial direction than that of its lateral 
direction. Figures 1.10 and 1.11 show the effect of plane stress and plane strain conditions on the lateral and 
shear stress component at the loading section, y/b =1. The lateral stress at the section, y/b =1 for the plane 
strain condition is higher than that for the plane stress condition because the stiffness of the plane strain plate 
is higher than that of the plane stress plate problem. But the opposite phenomenon is observed for the shear 
stress component at the section, y/b =1. 
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 Figure 1.12 illustrates the normalized normal stress component, σzz/P at different sections of the 
plate. At the loading section, the normal stress, σzz is the highest and towards the supporting edge, the normal 
stress, σzz gradually decreases. At the two stiffened edges, the normal stress vanishes. 
 

 
 

Fig.1.1.  Deformed shape of the plate subjected to a uniform tension at its right lateral edge (both the 
displacements are magnified by 1000 time. 

 

 
 

Fig.1.2.  Comparison of the axial stress component, yy  at the section, y b 0  obtained by the plane stress 

and the plane strain conditions. 
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Fig.1.2.  Comparison of the shear stress component, xy  at the section, y b 0  obtained by the plane stress 

and the plane strain conditions. 
 

 
 

Fig.1.4.  Comparison of the lateral displacement component at the section, .y b 0 5  obtained by the plane 
stress and the plane strain conditions. 
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Fig.1.5.  Comparison of the axial displacement component at the section, .y b 0 5  obtained by the plane 
stress and the plane strain conditions. 

 

 
 

Fig.1.6.  Comparison of the lateral stress component xx  at the section, .y b 0 5  obtained by the plane 
stress and the plane strain conditions. 
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Fig.1.7.  Comparison of the axial stress component yy  at the section, .y b 0 5  obtained by the plane 

stress and the plane strain conditions. 
 

 
 

Fig.1.8.  Comparison of the shear stress component xy  at the section, .y b 0 5  obtained by the plane 

stress and the plane strain conditions. 
 

Normalized position, x/a

0.0 0.2 0.4 0.6 0.8 1.0

A
xi

al
 s

tr
es

s,
 

yy
/P

 

0.0

0.2

0.4

0.6

0.8

Plane stress
Plane strain

Normalized position, x/a

0.0 0.2 0.4 0.6 0.8 1.0

S
he

ar
 s

tr
es

s,
 

xy
/P

 

-0.4

-0.2

0.0

0.2

0.4

Plane stress
Plane strain



Analytical solution of mixed boundary value problems using … 281 

 
 

Fig.1.9.  Comparison of the axial displacement component at the section, .y b 1 0  obtained by the plane 
stress and the plane strain conditions. 

 

 
 

Fig.1.10.  Comparison of the lateral stress component at the section, y b 1  obtained by the plane stress and 
the plane strain conditions. 
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Fig.1.11.  Comparison of the shear stress component at the section, y b 1  obtained by the plane stress and 
the plane strain conditions. 

 

 
 

Fig.1.12.  Distribution of the normalized normal stress component, zz P  at different sections of the plate. 
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Fig.2.3. But for the shear stress component as observed in Fig.2.4, the opposite phenomenon is observed. Figure 
2.5 shows a comparison between the axial displacement component at the section, x/a = 0 as a function of y/b for 
the plane stress and plane strain conditions. The axial displacement component of the plane strain condition is 
higher than that for the plane stress condition. Figure 2.6 illustrates a comparison between the shear stress 
component at the section, x/a =0 as a function of y/b for the plane stress and plane strain conditions. Over the 
range . / .0 4 y b 0 6  of the section, x/a = 0, the difference between the shear stress component for both of the 

cases is zero, but over the rest of the range / .0 y b 0 4  and . /0 6 y b 1  , the deviation between the shear 
stress component for both of the cases increases towards the left and right lateral edges of the plate and the shear 
stress of the plane stress condition is higher than that of the plane strain condition. Figure 2.7 illustrates the 
normalized normal stress component, zz at different sections of the plate. Along the middle region of the plate, 

y/b = 0.5 except the loading edge, the distribution of the normal stress, zz is parabolic, and away from the middle 

section, the normal stress zz  gradually increases. 
 

 
 

Fig.2.1.  Deformed shape of the plate subjected to a uniform tension at its two opposite edges (both the 
displacements are magnified by 1000 times. 

 

 
 

Fig.2.2.  Comparison of the axial displacement component at the section, y b 0  obtained by the plane 
stress and the plane strain conditions. 

Original shape 

Deformed shape(Plane stress)

Deformed shape (Plane strain)

Normalized position, x/a

0.0 0.2 0.4 0.6 0.8 1.0

A
xi

al
 d

is
pl

ac
em

en
t, 

(u
y/

a)
x1

04

-5

-4

-3

-2

-1

0

Plane stress
Plane strain



284  S.K.Deb Nath 

 
 

Fig.2.3.  Comparison of the lateral stress component at the section, y b 0  obtained by the plane stress and 
the plane strain conditions. 

 

 
 

Fig.2.4.  Comparison of the shear stress component at the section, y b 0  obtained by the plane stress and 
the plane strain conditions. 
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Fig.2.5.  Comparison of the axial displacement component at the section, x a 0  obtained by the plane 
stress and the plane strain conditions. 

 

 
 

Fig.2.6.  Comparison of the axial displacement component at the section, x a 0  obtained by the plane 
stress and the plane strain conditions. 
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Fig.2.7.  Distribution of the normalized normal stress component, zz P  at different sections of the plate. 
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stress condition using finite element method and analytical approach. Different components of stress 
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comparative study of the axial displacement component, ux/a and the lateral displacement component 
uy/a at the section y/b=0.5 as a function of x/a obtained by the present analytical approach and finite 
element method. From Fig.3a it follows that the axial displacements obtained by both of the methods 
coincide. But Fig.3b there are some discrepancies between the lateral displacements obtained from the 
present study and finite element method. Figures 4a, 4b and 4c show a comparative study of the axial, 
lateral and shear stress components of the section, y/b=0.5 as a function of x/a obtained by the finite 
element method and the present study. The shear stress obtained from the present study coincides with 
that of the finite element method as shown in Fig.4c. But there are some discrepancies of the lateral and 
axial stresses at the section y/b=0.5 obtained from the present study with those of the finite element 
method. 
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3(a) 
 

 
3(b) 

 
Fig.3.  Comparison of the displacement components: (a) axial displacement; (b) lateral displacement at the 

section y/b=0.5 of the duralumin plate considering plane stress condition shown in Fig.1 as a 
function of x/a obtained by the analytical and finite element method. 
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4(c) 
 

Fig.4.  Comparison of the displacement components: (a) axial stress; (b) lateral stress; (c) shear stress at the 
section y/b=0.5 of the duralumin plate considering plane stress condition shown in Fig.1 as a 
function of x/a obtained by the analytical and finite element method. 

 
6. Conclusions 
 
 The axial stress and lateral displacement components at different sections of the plate for both of the 
problems for the plane strain condition is higher than that of the plane stress condition. In the case of the 
plane strain plate, the normal stress along the z direction for both of the cases is the highest at the loading 
section and away from the loading edge it gradually decreases. Different stress and displacement components 
of the problem shown in Fig.1 for the case of plane stress conditions obtained from the present study and the 
finite element simulation agree well.  
 
Nomenclature 
 
 E   Young’s modulus of duralumin 
 P   applied normal stress on the boundary of a rectangular plate 
 ( , )xu x y   lateral displacement component 

 ( , )yu x y   axial displacement component 

    Poisson’s ratio of a material 
 xx   normal stress component along the x direction 

 xy   shear stress component along xy plane 

 yy   normal stress component along the y direction 

 zz   normal stress component along the z direction 

    displacement potential function 
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