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A wide range of applications is based nowadays on analytical developments which allow a precise and
effective approach and short time of computations compared with the time required for numerical methods; in
this way these developments are suitable for calculations in real time. This work proposes an approach for solving
a two-dimensional harmonic problem of a rectangular plate under local surface loading using Vlasov’s symbolic
method of initial functions and a general solution of the harmonic equation for a rectangle. Substituting the
harmonic functions in symbolic form for the corresponding solutions allows us to give the exact solution of the
problem in trigonometric form.
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1. Introduction

Many problems in solid mechanics are described by mathematical models. In many cases the
development of these models requires solving partial differential equations. Analytical methods for solving
these equations are the main tools for understanding these problems. However, during the past decades the
important growth of computing capabilities allowed numerical solving of complex problems both
geometrical point of view and the laws of behavior of materials. This ability to model complex mechanical
systems by numerical methods contributed to reduce the interest to analytical solutions. New analytical
methods have been developed for solving the boundary problems in elasticity [1-4]. Among these methods
one can cite Vlasov’s method of initial functions (MIF) which is often used for solving the boundary
problems. This method is a powerful one for obtaining an exact solution for some types of problems in the
theory of elasticity without hypotheses about the character of the strain-stress state of the structural element.
MIF was first proposed by Maliev [5] and further developed by Vlasov [6]. The authors attempted to find a
rational method for obtaining harmonic and biharmonic functions for the general analysis in the theory of
elasticity, i.e., represent the displacements and stresses via some functions. On the basis of this rational
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method, they constructed the functions of general analysis with the initial functions by virtue of special
differential operators proposed by Kellog [7].

MIF has been used intensively for the analysis of various engineering problems. For example, three-
dimensional elasticity equations for circular cylindrical shells are solved by assuming Taylor series
expansions for the stresses and displacements by Faraji et al. [8]; an elasto-plastic problem of a circular plate
subjected to antisymmetric lateral load can be found in [9]; a circular cylindrical shell under antisymmetric
load is studied in [10]; an analysis of composite beams and other flexural members using MIF can be found
in [11, 12]; an algorithm for constructing the basic equations of MIF and the convergence of power series is
studied by Matrosov [13].

In this work, we proposed an approach for solving the two-dimensional harmonic problem of a
rectangular plate under local surface loading, using the symbolic method of initial functions and the general
solution of the harmonic equation for a rectangle.

2. Materials and method

The principle of the method is to determine a vector W representing the components of strain-stress
state of an elastic system in the Cartesian coordinate system such as

W ={wo}. (2.1)

Here, w= {u(x, v, z);v(x,y,2);,0(x, y, z)} is the displacement vector;

oc=1oc,(x,y,2);t..(x,v,2);1..(x,,2);0.(x,y,2);0.,(x,v,2);7,,(x,v,z); the stress vector.
{006,207, (2,2, 21,2 (56,9,2);0, (,2,2):6,, (4,1,2); T, (6,3, 9)|

Then the equilibrium equations will be written in the following form
LW=0 (2.2)

where L is the differential operator.
The general solution to this three dimensional problem of elasticity theory is given by

where, Ly, Lyy ..., Lyy are the differential operators related to the initial functions
Up:VpTaz, depending on x and y on the plane Z=0. Each type of problems has its own operator-

functions L;; , and consists differential operators, geometrical parameters and elastic constants.

[j b}
So, in symbolic form for a band and using Vlasov’s general symbolic solution [14] the solution of
the problem in plane strain can be expressed as

U(x,y)=Gu(x,y)=LyyUy(x)+ LyyVy (x)+ Lyy Yy (x) + Lyy Xy (x), (2.4)

V(x,y) = Gv(x,y) =LyyU, (x) + Ly, Vy (x) +LyyY, (x) + Ly X, (x), 2.5)
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Y(x,y) =0, (x,y) =Ly, U, (x) + Ly, V, (x) + Ly Y (x) +Lyy X, (x), (2.6)
X(x,y) =1, (x,y) =Ly, U, (x) + Ly V, (x) + Ly Y, (x)+LXXX0 (x), 2.7)
o, (%,y)=AyUy (x)+ A4 Vy(x)+ Ay Yy (x)+ Ay X, (x), (2.8)

here, Uy (x) = Gu(x,0), V,(x) = Gv(x,0), ¥, (x) =0, (x,0), Xy (x)=1,,(x,0) are the initial functions.

Differential operators can be expressed in the form of infinite series or by symbolic formulas in the
case of plane strain [14]

Ly = cos((xy) - 2((11)_/ v) sin(ay), (2.9)
1-2v) . oc
Luy 2‘5(1_3 sin (o< ) Z(I_yv)cos(oc », (2.10)
Lyy =—————sin(ec y) @2.11)
v 4(]—v) ’
_ Loy sin(ey) o yeos(x y)
Lux = sin(= ) doc(I-v) doc(i-v) (212)
Ly =Ly, (2.13)
Ly = 25 i 5 sin(oc ) + cos(ec y) (2.14)
(3—4v)sin(oc V) %
Ty T 2.15)
Ly =Ly, (2.16)
2
Lyy ==——2sin(ec y), (2.17)
I1-v
Ly, = ]O_cv[sin(oc y)— o ycos(oc y)], (2.18)
Ly =Ly, (2.19)

Lyy = Lyy (2.20)
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Ly = —]O_c—v[sin(OC )+ o yeos( ) |,

LXV:LYU’
Lyy =Lyy,

LXX =LUUa

2
Ay :%cos(oc y)—J;OC

sin(ec ),

oC

A, =—
4 1-v

[Sin(oc )+ oc yeos( o y):| ,

cos(oc y)— 2(); icv) sin(ec y),

A, =
Yoy

yoc " 3-2v
2(1-v) cos(c )+ 2(1-v)

X:

0

Here, oc= 6_ .
X

3. Results and discussion

sin(oc y) .

(2.21)

(2.22)
(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

We will get the symbolic solution satisfying the following boundary conditions

V(x,O) =V, (x) =0,
X (x,0)=X,(x)=0,
V(x,h)th(x) ,

X(x,h)=X,(x)=0.

3.1)

(3.2)

(3.3)

(3.4)

Taking into account the symbolic Vlasov’s solution satisfying the boundary conditions (3.1)-(3.4),

we get
0=Vy(x),

0=Xy(x),

(3.5)

(3.6)



Exact solution of the harmonic problem for a rectangular ... 353

i
Vh(x):4(]—v)oc

+h oc sin(hoc) X, (x)+((3-4v)sin(hoc)—h oc cos(h oc) ) ¥y (x) + 3.7)

([ 2c” sin (h o)+ 4(1=v)ex cos(h ) |V () +

+[2(1—2v) o sin(h oc)— 2h o<’ cos(h oc)]Uo(x)},

- 2(]]_ 3 {Zh oc? sin(% o)V, (x)+[2(1—v)cos(h oc)—hocsin(h oc)]XO (x)+ a5

+((1=2v)sin(h o) — o< cos (1 c)) Yy () =[ 2. sin (hec) + 2h e cos (h ) |Up ()]

0

The differential operators will be treated in the same way as the trigonometric functions. So, we get a
system of four Egs (3.5)-(3.8) whose solution depending on the four initial functions is given by

1 (1-2v)sin(hoc)—hoccos(hx)

Yo = 2(1-v) sin (h oc) V() .

Vo(x)=0, (3.10)
1 hoc? cos(h oc)+ oc sin(h oc)

Yy (x)=7— in? (7o) AGE 3.11)

X (x)=0. (.12)

Using expressions (3.9)-(3.12) in the symbolic solution of the initial functions, we get the solution
for the band satisfying the boundary conditions (3.1)-(3.4)

U(x,y)=

1 { oc sin((y oc) (1-2v) cos(y oc) n cos(h oc)cos(y «)

2(1-v) y sin(h o) sin(h o) (sin(hoc))z }Vh(x), (3.13)

NN S Py sin(yoc) occos(yoc)+ oc cos(h oc)sin(y o) .
V(x,y) 2(11})[2(1 )Sin(hm) Y (h ) h fin(r)) }Vh(), (3.14)

1 |occos(yec) OCZSin(yoc) OCZCOS(hoC)COS(yoc)

Y(x’y)_zv{ sim(hc) 7 sin(hoc) o (sin (A o))’ /i, 19
1 OCZCOS(hOC)Sin(yoc)_ o’ cos(y o)

X(x,y)]v[h (sin(h o)) y sin () Vi(x), (3.16)
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1 occos(yoc)_yocz sin(yoc) o cos(/ oc)cos(y o)
—v| sin(h«) sin(h o) (sin(hoc))z

c, (x,y): ; Vi, (x). 3.17)

The obtained relationships satisfy the equilibrium equations, strain and stress equations, as well as
the biharmonic equation.
3.1. Analysis of harmonic functions

We can point out that each term of the symbolic solution (3.13)-(3.17) is a harmonic function. This

allows us to substitute the previous function by the exact solution of the harmonic equation.
The symbolic solution (3.13)-(3.17) obtained for a band has the following form [15]

Sin(y oc)
Sin(h oc)

c?s(yOC)Vh(x) 1 a{w h(x)}fa [M h(x)} (3.19)

sin(h o) o Oy sin(h o) | sin(h o)

V,(x), (3.18)

<O0S () ) {MVN)}— 0 {M h(x)} (3.20)

sin(h ) sin(i) ") | x| sin (hr)

o cos(h <)cos(y o) N =_£M x_z &° [sin(y ) N
(Sin(h oc))2 a9 8h{sin(h oc) a )_ j@hGyLm( oc) Vi )}d ., (3.24)

oc? COS(hOC)COS(yOC) X =—oci COS(hoc) N a2 Sin(yoc) )
(sin(h o))’ () ah[ i Vil )} ahayLin(hm)Vh( )}, (3.25)

oc cos(h oc)sin(y oc)

(sin(h o))’

) {sin(y )

h(x):_ah sm(h )}Vh(x) (3.26)
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2

oc cos(hoc)sin(yOC)Vh(x):_oci MV (x):— o [MV},()C)H. 3.27)

(sin(hoc))2 Oh| sin(h o) " Ohoy | sin(h o)

Moreover, it is known that if a harmonic function f'is defined in a domain:

0<x<l,0<y<h,and satisfies the following boundary conditions

£(0.y)=fi(»). (3.28)
f(Ly)=1,), (3.29)
f(x,0)=1;(x), (3.30)
f(xn)=f,(x), (3.31)

its expression has the following form [16]

f(x,y)=gAnsinh[m(lh_x)}si [Myj Zanmh[ jSin(n:ijr

o (3.32)
+;Cnsin(nl J31 h{ }+ZD sm( j31 h( ; )
here the coefficients 4, ,B,, C,, D, are determined as follows [16]
21 nE
4, =E£f1(<i)sm( jdé (3.33)
20 nmg,
B, :Z_([fz (é)sm(Tjd&, (3.34)
2 . [ nm&
C, —Eifs(&)sm(Tjdé, (3.35)
2 . [ nmg
D, —E£f4(&)81n(7 dg, (3.36)
Here A, —hsmh(nnlj a=1s 1nh[nnhj
h /

Now consider the harmonic function (3.18)
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B sin(yo)
f(xy)= sin(hat) Vi
We get
' h’ - H’
f1(0)=1(0.5)= ZEE“ZZ; (0):(%+ Iy +O(oc4)]Vh(0)_
3.37
v =y 8 y (3.37)
=% PR v, (0)=;Vh(0)
o« PERN
3.38
y =y & y (3:39)
= Z'FTax—z‘l‘. Vh(l)Z—Vh(l)
in(0 oc
10)= 1) =S (-0 5:39)
in(/A oc
fa(x)=f(x.h)= zizgh OC; Vi (x)=V;(x). (3.40)
Finally, the expression of the solution has the form
f(xy)= ix‘lnsinh[m(lh_ x)}sin( nzyj + ianinh (%j sin (%j +
.- oo (3.41)
+;Cnsin (%} sinh {—nn(hl— 24 )} + ;Dnsin (%j sinh (%),
here
h
A, = 2V7’z (0) I%sin(%ﬁ&’)di (3.42)
nog
h
-0 [ i 2 e (3.43)
0

(3.44)
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2 f nmé
D, =—1V, in| — |d¢§. 3.45
) Llnih(é)sm( Z j : (3.45)

3.2. Implementation on a rectangular plate under local surface loading

Our goal is to study the plate under a local surface load on the plane y = h. We will consider that
normal displacements under load are a known variable function of x. On the plane y = 0, displacements
vanish. On the other hand, on the planes y = 0 and y = & the shear stresses are zero. The boundary conditions
of the problem are as follows [14]

v(O,y)=éV(0,y):v(l,y)=éV(l,y)=0, (3.46)
5, (0.9)=Y(0.y) =0, (Ly)=Y(L.y)=0, (3.47)
6. (0,y)=c,(Ly)=0, (3.48)
v(x,h)zéVh(x), (3.49)
v(x.,0) =éV0 (x)=0, (3.50)
Ty (0h) =X, (x)=1,,(x,0)= X, (x)=0. (3.51)

When condition (3.46) is satisfied for all y, we can write the following equality
V(0.),==0. (3.51)
Also we have
V(0,9),=4=V,(0,h)=V,(0)=0, (3.52)
V(LY) =V (L,h)=V,(1)=0. (3.53)

Substituting Eqs (3.52) and (3.53) in expressions (3.42)- (3.45), one obtains

A4,=B,=C,=0, (3.54)
!
2 . [ nmg
D, =————1\V, (i)sm[—jdé. (3.55)
lsinh(nnhj?'; ' !

Finally, we get
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- h
sin(hat) . sinh(nlnhj

sin(ya) ) i Sin[n;txjsmh(m;yj % iyh(g)sin(”%“gjda.

Using expressions (3.19)-(3.27), we find solutions for other harmonic functions

oyl —i cosh(m;y)COS(’TXJ 2 jyh (€)sin (”T“&jda,

asin(r0) . inn Cos(n}txjsinh(lj P th(é)Sm(nna) "

sin(hat) ¢ —~ Sinh(nlnhj 9

acos(yo) — AT Sin(n?xjws}l(n?yj 21 nmg

sin (/o) Vh(x):;T sinh(mchj 7£Vh(§)sm(7jd§,
/

Zsin( ) w 2 2sin(mjsinh[mj21
th(x):_ n'm [ [ TIVh(a)Sin(nTn&jd&’

T N ()

2 ( ) w 2 Zcos(mjcosh[mjzl
o’ cos(ya Vh(x) zn i / / lth(é)sin[maJdi»
0

sin(hoc) n=1I I sinh (”nhj
)
acos(ha)cos(ya)
(sin(ha))2
nmx

w cosh(m;yjcos( ; jcosh[’llﬂlle £
_ _z nmn _'[Vh (é)sin(%jdﬁ,

h

Vi(x)=

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)
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o’ cos(ha)cos(yor)

(sin(h(x))2
w 22 sin(’itx)cosh(n?jcosh(nlmj Y - > (3.63)
_z 2 IVh(i)sin(T)dé,

2 /
n=l (sinh (m;hD 0

acos(ha)sin (o)

Vi(x)=

o sinh (nnyj sin (m)cosh (nnh) 5 / > (3.64)
:znn ! ! ! —J-Vh(i)sin(nTnaJdi,

o’ cos(ha)sin(yo) V()=

(sin(hoa))z

(3.65)

Substituting expressions (3.56)-(3.65) into (3.13)-(3.17) ,we find expressions for stresses and
displacements [14]

- d,cos(B,£) .
n —Jv nll
Z 2(1- v)smhz(Bn)[((] 2v)sinh(§,)+ (3.66)

—Bncosh . )cosh B,M +B smh(B )sinh(Bnn)],

2 §,sin(B,E) .
—v)sinh
Z2(17 v)sinh?(B,, )[(2(] v)sinh(B, )+ (3.67)

1
+B,cosh (B, )sh(B,m)—B,sinh(B, )ncosh(Bnn)] ,

£ 5,B50,0) T
, — nn n h
PO = 2 i gy L ) (.68)

+B,cosh (B, )cosh (B,n) —B,sinh(B, )mcosh(B,n) |.

&8, Brcos(B,8)
X(x, y)z,;‘h(]—v)sinhz(ﬁ )[cosh )sinh(B,n) - sinh(B, )mcosh(B,m) |, (3.69)
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here,

/
h 2 .
n=%, g=2, B, =", 5,,=7J.Vh(§)sm(n7n§jd§.

The use of the method of initial functions and the replacement of harmonic functions with
corresponding solutions allows us to obtain expressions for stresses and displacements. The efficiency of this
algorithm is shown in the problem of a plate under local surface loading. Thus, having replaced the harmonic
functions presented in symbolic form with the corresponding solutions of the harmonic equation for a
rectangle, we get the solution to the problem in trigonometric form.

4. Conclusion

From this work we can draw the following conclusions:

1. An analysis approach to the harmonic problem of a plate in plane strain using the symbolic method
of initial functions and the solution of the harmonic equation for a rectangle is proposed;

2. A technique to introduce Vlasov’s symbolic solution for a band into the solution of the harmonic
equation for a rectangle in order to get the exact solution of the problem is proposed;

3. An algorithm is developed for the determination of expressions of displacements and stresses in
trigonometric series for a plate subjected to a local surface loading.

Nomenclature

L — differential operators matrix
Lyys Lyys -.; Lyy — differential operators related to the initial functions

Up(0).7p(0),

1)(0), X9 (0)
W - displacement vector
G — stress vector

— initial functions
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