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An analysis is presented to describe the hydromagnetic mixed convection flow of an electrically conducting 
micropolar fluid past a vertical plate through a porous medium with radiation and slip flow regime.  A uniform 
magnetic field has been considered in the study which absorbs the micropolar fluid with a varying suction 
velocity and acts perpendicular to the porous surface of the above plate.The governing non-linear partial 
differential equations have been transformed into linear partial differential equations, which are solved 
numerically by applying the explicit finite difference method. The numerical results are presented graphically in 
the form of velocity, micro-rotation, concentration and temperature profiles, the skin-friction coefficient, the 
couple stress coefficient, the rate of heat and mass transfers at the wall for different material parameters.  
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1. Introduction 
 
 Micropolar fluids belong to a class of fluids that exhibit certain microscopic effects arising from the 
local structure and micro-motions of the fluid elements. Micro-polar fluids contain dilute suspensions of 
rigid macromolecules with individual motion that support stress and body moments and are influenced by 
spin inertia. Eringen [1] developed a simple theory (theory of micropolar fluids) which includes the effect of 
local rotary inertia, the couple stress and the inertial spin. This theory is expected to be useful in analyzing 
the behavior of non-Newtonian fluids. Eringen [2] extended the theory of thermo-micropolar fluids and 
derived the constitutive law for fluids with microstructure. This general theory of micropolar fluids deviates 
from that of the Newtonian fluid by adding two new variables to the velocity. This theory may be applied to 
explain the phenomenon of the flow of colloidal fluids, liquid crystals, polymeric suspensions, animal blood, 
etc. Gorla [3] discussed the heat transfer in a micropolar fluid flow over a semi-infinite plate. Rees and Pop 
[4] studied a free convection boundary layer flow of a micropolar fluid from a vertical flat plate. The flow 
and heat transfer of a micropolar fluid past a porous plate was studied by Takhar and Soundalgekar [5-6]. 
Gorla et al. [7-8] investigated further the concept of natural convection from a heated vertical plate in a 
micropolar fluid. 
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         Flows of fluids through porous media have attracted the attention of a number of scholars due to 
their applications in many branches of science and technology, for example in the fields of agriculture 
engineering to study the underground water resources, in chemical engineering for filtration and purification 
processes in petroleum technology to study the movement of natural gas, oil, and water through the oil 
reservoirs. Fluctuating heat and mass transfer on three-dimensional flow through a porous medium with 
variable permeability has been discussed by Sharma et al. [9]. The problem of flow and heat transfer for a 
micropolar fluid past a porous plate embedded in a porous medium has been of great use in engineering 
studies such as oil exploration, thermal insulation, etc. Micropolar fluid flows through a porous medium have 
been discussed by Raptis and Takhar [10].  
 There has been a renewed interest in MHD flow with heat and mass transfer due to the important 
effect of the magnetic field on the performance of many systems using electrically conducting fluids. An 
unsteady hydromagnetic free convection flow of Newtonian and polar fluids was investigated by Helmy 
[11]. Hydromagnetic unsteady mixed convection and mass transfer flow past a vertical porous plate 
immersed in a porous medium has been investigated by Sharma and Chaudhary [12]. Chaudhary and Sharma 
[13] analysed combined heat and mass transfer by a laminar mixed convection flow from a vertical surface 
with induced magnetic field. El-Hakien et al. [14] studied the effects of viscous and Joule heating on an 
MHD-free convection flow with variable plate temperature in a micropolar fluid. An MHD free-convection 
and mass transfer flow in a micropolar fluid over a stationary vertical plate with constant suction was studied 
by El-Amin [15]. Kim [16] investigated unsteady free convection flow of a micropolar fluid past a vertical 
plate embedded in a porous medium and extended to study the effects of heat and mass transfer in an MHD 
micropolar fluid flow past a vertical moving plate (Kim [17]). Analytical studies on an MHD flow of a 
micropolar fluid over a vertical porous plate were presented by Kim and Lee [18]. Recently, Sharma et al. 
[19] studied heat and mass transfer in a magneto-biofluid flow through a non-Darcian porous medium. 
 Combined heat and mass transfer problems with chemical reaction are of importance in many 
processes such as drying, evaporation at the surface of water body, energy transfer in wet cooling towers. 
Das et al. [20] considered the effects of first order chemical reaction on the flow past an impulsively started 
infinite vertical plate with constant heat flux and mass transfer. Sharma et al. [21-22 ] discussed the effects 
of chemical reaction on a magneto-micropolar fluid flow from a radiative surface with variable permeability. 
First order homogeneous chemical reaction on flow past an infinite vertical plate was studied by 
Muthucumarswamy and Ganesan [23]. Recently, the effect of radiation on an MHD flow and heat transfer 
problem has become more important industrially. Many processes in engineering areas occur at high 
temperatures, and a knowledge on radiation heat transfer becomes very important for the design of reliable 
equipment, gas turbines, nuclear plants and various propulsion devices or aircrafts, missiles, satellites and 
space vehicles. Sharma et al. [24-25] analysed the radiation effect with simultaneous thermal and mass 
diffusion in an MHD mixed convection flow from a vertical surface. Perdikis and Repatis [26] discussed the 
heat transfer of a micropolar fluid in the presence of radiation. Elbashbeshby and Bazid [27] reported on the 
radiation effects on the mixed convection flow of a micropolar fluid. Moreover, when the radiative heat 
transfer takes place, the fluid involved can be electrically conducted in the sense that it is ionized owing to a 
high operating temperature. Heat and mass transfer in a magneto hydrodynamic micropolar fluid flow 
through a porous medium under different physical conditions was examined by Ibrahim et al. [28]. Sharma 
et al. [29-30] discussed the radiation effect on a free convective flow along a uniform moving porous vertical 
plate in the presence of a transverse magnetic field.  
 All of the previously mentioned studies assumed no slip boundary conditions. The non-adherence of 
the fluid to a solid boundary is known as velocity slip. It is a phenomenon that has been observed under 
certain circumstances [31]. In many engineering applications, the particle adjacent to a solid surface no 
longer takes the velocity of the surface. The particle at the surface has a finite tangential velocity; it “slips” 
along the surface. This flow regime is called the slip-flow regime and this effect cannot be neglected. Sharma 
and Sharma [32] studied the free convection flow past a vertical porous plate with variable suction in the 
slip-flow regime. Considerably less work has been done concerning the effect of variable fluid properties on 
a micropolar fluid flow incorporating the effect of velocity slip. Hence, based on the above discussion, the 
objective of the present work is to study the effect of radiation on mixed convection flow of a magneto-
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micropolar fluid past a vertical porous plate through a porous medium with variable permeability in the slip-
flow regime. 
 
2. Formulation of the problem 
 
 Consider an unsteady, two dimensional, mixed convection flow of a micropolar fluid past a semi-
infinite vertical plate embedded in a porous medium and subjected to a transverse magnetic field with 
variable permeability and slip flow regime. The x*-axis is taken along the porous plate in the upward 
direction and y*-axis normal to it. Due to the semi-infinite plane surface assumption, the flow variables are 
functions of y* and t* only. Under these conditions, the governing equations can be written in a Cartesian 
frame of reference as: 
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 Permeability of the medium is assumed to be of the form 
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 Mass transfer equation 
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 The radiative heat flux term by using Rosseland approximation [33-35] is given by 
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 The boundary conditions suggested by the physics of the problem are 
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 The boundary conditions for microrotation variables * describe relationships with the surface stress. 
In this equation, the parameter m is a number between 0 and 1 that relates the microgyration vector to the 
shear stress. The value m = 0 corresponds to the case where the particle density is sufficiently large so that 
microelements close to the wall are unable to rotate. The value m = 0.5 is indicative of weak concentration 
and when m = 1 flows are believed to represent turbulent boundary layers (Rees and Bassom [36]). 
 From the continuity Eq.(2.1), the suction normal to the plate can be written as 
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where B is a real positive constant with a magnitude less than unity and V0 is the scale of suction velocity 
which has a non-zero positive constant.  
            It is assumed that the temperature differences within the flow are such that T4* may be expressed as a 
linear function of the temperature T. This is accomplished by expanding T4* in a Taylor series about T*∞ 
(which is assumed to be independent of the y coordinate) and neglecting higher order terms, it can be 
expressed as 
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 Using Eqs (2.4) and (2.10) gives 
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 Introduce the following non-dimensional quantities 
 

  
* ** *

, , , , ,
2

0 0

0 0 0 0

V y t Vu v
u v y t

U V U V


      
 

 

 

  
* ** * * *

* * * *
, , , , ,

2 2
0 0

2 2 2
w w 0

K V V JT T C C n
C n J

T T C C V


 

 

  
      

   
 

 

  
2
0

2
0

B
M

V

 



 is the magnetic field parameter, 

 



Role of slip velocity in a magneto-micropolar fluid flow … 641 

  
 * *

Gr
f w

2 2
0 0

g T T

U V

 
  is the Grashof number, 

 

  
 * *

Gc
c w

2
0 0

g C C

V U

  
  is the modified Grashof number, 

 

  Pr = pC 


 
 is the Prandtl number, 

 

  Sc
D


  is the Schmidt number, 

 

    1 2
0

K
K

V


  is the chemical reaction parameter, 

 

  
* *

Ra
R

4 T 





 is the radiation parameter, 

 

  
*
1 0L V

h 


 is Rarefaction parameter.                                                                     (2.12) 

 
 Furthermore, the spin-gradient viscosity , which gives some relationship between the coefficient of 
viscosity and microinertia, is defined as 
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where Bv denotes the dimensional viscosity ratio, and  is the coefficient of gyro-viscosity (or vortex 
viscosity). 
 In view of Eqs (2.9) – (2.13), the governing Eqs (2.2) – (2.5) reduce to the following dimensionless 
form 
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3. Numerical solution 
 
 The unsteady, nonlinear coupled Eqs (2.14)-(2.17) with conditions (2.18)-(2.19) are solved by using 
an explicit finite-difference scheme. Consider a rectangular region with y varying from 0 to y max(= 6), 
where y max corresponds to y = ∞ which lies well outside the momentum and energy boundary layers. The 
region to be examined in (y, t) space is covered by a rectilinear grid with sides parallel to the y axis and Δt, 
the grid spacing in y, and t directions, respectively. The grid points (y, t) are given by (iΔy, kΔt). The finite-
difference equations corresponding to (2.14)-(2.17) are given by 
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 The finite-difference equations at every internal nodal point on a particular n-level constitute a tri-
diagonal system of equations. These equations are solved by using the Thomas algorithm [37]. Computations 
are carried out until the steady-state solution is assumed to have been reached when the absolute difference 
between the values of velocity as well as temperature at two consecutive time steps are less than 10−7 at all 
grid points. 
 
4. Results and discussion 
 
 In order to get a physical insight into the problem, the numerical calculations for the velocity, micro-
rotation, temperature and concentration profiles, the rate of heat transfer and mass transfer across the 
boundary layer for various values of the parameter have been carried out. The effects of the main controlling 
parameters as they appear in the governing equations are discussed in the current section. In this study, entire 
numerical calculations have been performed with ε = 0.01, n = 1 and t = 1 while Pr, R, Sc, Gr, Gc, Bv, M, α, 
h, m, B, K1 and A are varied over ranges, which are listed in the figure legends. The velocity profile u is 
plotted in Fig.1 for different values of the radiation parameter (R), rare factor parameter (h), viscosity ratio 
parameter (Bv), permeability parameter (α) and chemical reaction parameter. The figure reveals that on 
increasing the values of the permeability parameter (α) and chemical reaction parameter the velocity profile 
increase across the boundary layer while a reverse effect is observed for the rare factor reaction parameter. It 
is noted that the velocity u decreases as the radiation parameter (R) and rare factor parameter (h) increase. This 
result can be explained by the fact that a decrease in the radiation parameter R = kaR/4 σ*T3

∞ for given k and 
T∞, means a decrease in the Rosseland radiation absorbtivity (aR). In view of Eqs (2.4) and (2.6), it is 
concluded that the divergence of the radiative heat flux ∂qr/∂y* increases as aR decreases and this means that 
the rate of radiative heat transferred to the fluid increases and consequently the fluid temperature and hence the 
velocity of its particles also increases. The velocity distribution decreases with increasing Bv. The phenomenon 
reflects the fact that the effect of increase in the value of Bv will result in an enhancement of the total viscosity 
in the fluid flow because Bv is directly proportional to vortex viscosity which makes the fluid flow more viscous 
and so weakens the convection currents. In addition, the magnitude of ω increases as Bv increases. 
 

 
 

Fig.1. Velocity profiles u for Pr=1, M=1, Gr=2, m=.5, Sc=.22, B=.5. 
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            The microrotation profile against span-wise coordinate y for different values of the radiation 
parameter (R), rare factor parameter (h), viscosity ratio parameter (Bv), permeability parameter (α) and 
chemical reaction parameter is shown in Fig.2. It is noticed that the magnitude of the angular velocity ω 
decreases as the radiation parameter (R) and rare factor parameter (h) increase. The figure reveals that on 
increasing the values of the permeability parameter (α) and chemical reaction parameter, the magnitude of ω, 
across the boundary layer, tends to decrease. It is also observed that the microrotation profile increases with 
increasing the viscosity ratio parameter (Bv).  
 

 
 

Fig.2. Micro rotation profiles   for Pr=1, M=1, Gr=2, m=.5, Sc=.22, B=.5. 
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         Figures 3 and 4 illustrate the variations of the skin friction coefficient Cf  and couple stress coefficient 
Cm for various values of h, R, Bv, K1 and α against Gr. It is observed that higher values of the radiation 
parameter, chemical reaction parameter and rarefaction parameter lead to a reduction in the skin friction 
coefficient and couple stress coefficient. It is noted that Cf and Cm decrease with increasing Bv for small values 
of Gr. It is concluded that Cf and Cm increase with increasing the values of α. Further, Cf  and Cm increase as the 
buoyancy parameter Gr increases. The reason for this is that an increase in the buoyancy effect in a mixed 
convection flow leads to an acceleration of the fluid flow, which increases the friction factor.  
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            Figure 5 depicts the temperature profiles θ along the span-wise coordinate y for different values of 
the Prandtl number (Pr =0.71, for air at 200C and 1 atmospheric pressure, Pr =1.0 for electrolytic solution, at 
200C and 1 atmospheric pressure), radiation parameter (R) and suction parameter (B). The figure indicates 
that the temperature reduces with an increase in the radiation parameter (R) and suction parameter (B) for air 
while a reverse effect is observed for an electrolytic solution. The numerical results show that the 
temperature decreases with an increase in the Prandtl number. This is due to the fact that a fluid with a high 
Prandtl number has a relatively low thermal conductivity which results in the reduction of the thermal 
boundary layer thickness. 
 

 
 

Fig.3. Skin-friction coefficient for Pr=1, M=1, m=.5, Sc=.22, B=.1. 
 

 
 

Fig.4. Couple stress coefficient for Pr=1, M=1, m=.5, Sc=.22, B=.1. 
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Fig.5. Temperature profiles for ,0 1  , n=.1, t=1. 
 
         The rate of heat transfer in terms of the Nusselt number (Nu) is given by 
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         The rates of heat transfer for different values of the Prandtl number (Pr) and radiation parameter (R) 
taking ε = 0.01, n = 1 and t = 1 are presented in Fig.6. It is observed that the heat transfer rate is enhanced as 
the Prandtl number and radiation parameter increase. It is also noted that the Nusselt number increases with 
an increase in the radiation parameter R. 
          Concentration profiles for different gases are shown in Fig.7. The values of Schmidt number (Sc) are 
chosen to represent the most common diffusing chemical species like hydrogen (Sc = 0.22), oxygen (Sc = 
0.66), and ammonia (Sc = 0.78) at a temperature of 250C and 1 atmospheric pressure. A comparison of 
curves in the figure shows a decrease in the concentration distribution C(y) with an increase in the Schmidt 
number because the smaller values of Sc are equivalent to increasing the chemical molecular diffusivity (D). 
Hence, the concentration of the species is higher for small values of Sc and lower for larger values of Sc. The 
concentration profiles also decrease with an increase in the suction parameter (B). The concentration profiles 
attain their maximum values at the wall and decrease exponentially with y and finally tend to zero as y→∞. 
The rate of mass transfer in terms of the Sherwood number (Sh) is given by 
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       Figure 8 depicts the rate of mass transfer in terms of Sherwood number (Sh) at the porous plate for 
hydrogen (Sc = 0.22), oxygen (Sc = 0.66) and ammonia (Sc = 0.78) at a temperature 250C and 1 atmospheric 
pressure taking ε = 0.01, n = 1 and t = 1. It is clear that increasing values of the Schmidt number enhance the 
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mass transfer rate. Also, the figure indicates that the rate of mass transfer increase with increasing values of 
the chemical reaction parameter. 

 

 
 

Fig.6. Rate of heat transfer for .0 01  , n=0.1, t=1. 
 

 
 

Fig.7. Concentration profiles for .01  , n=.1, t=1. 
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Fig.8. Rate of mass transfer for .0 01  , n=0, t=1. 
 

Nomenclature 
 
   A  positive constant 
 aR  Rosseland mean absorption coefficient 
  B  suction parameter 
 Bv  dimensionless viscosity ratio 
  C  dimensionless concentration 
  C*  species concentration in the fluid 
 C*w  species concentration near the plate 
 C*∞  species concentration with fluid away from the plate 
  Cf  skin-friction coefficient 
  Cm  couple stress coefficient 
  Cp  specific at constant pressure 
  D*  chemical molecular diffusivity 

 TD   thermal diffusivity 

  Gc  modified Grashof number 
  Gr  Grashof number 
  g  acceleration due to gravity 
 h  rarefactor parameter 
   J*  microinertia density 
  K*(t*)  permeability of the porous medium 
  k  thermal conductivity of the fliud 
 n  exponential index 
  n*  dimensionless exponential index 
  M  magnetic parameter 
 Nu  Nusselt number 
  Pr  Prandtl number 
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  R  radiation parameter 
 Sc  Schmidt number 
 Sh  Sherwood number 
  T*  temperature of the fluid near the plate 
  T*w  temperature of the plate 
  T*∞  temperature of the fluid far away from the plate 
  t  time 
  t*  dimensionless time 
  U0  plate velocity in the direction of flow 
  U*, v*  components of dimensional velocities along x* and y* directions, respectively 
  u, v  dimensionless velocities along x and y direction respectively 
  x, y  dimensionless Coordinate axis along and normal to the porous plate, respectively 
  x*, y*  coordinate axis along and normal to the porous plate, respectively 
 α  dimensionless permeability parameter 
  β  coefficient of volumetric thermal expansion of the fluid 
  βc  volumetric coefficient of expansion with concentration 
  γ  spin- gradient viscosity 
  θ  dimensionless temperature 
  Λ  vortex viscosity 
  μ  dynamic viscosity 
 ν  kinematic viscosity 
  νr  kinematic rotational viscosity 
  ρ  density 
  σ  electrical conductivity of the fluid 
  σ*  Stefan-Boltzmann constant 
  Ω*  component of the angular velocity vector normal to the x*-y* plane 
    dimensionless component of the angular velocity vector normal to the x-y  plane 
 
Subscripts 
 
 w  wall condition. 
 ∞  free stream condition. 
 
Superscripts 
 

 ∗  dimensional properties 
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