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The paper discusses the flow of an incompressible non-Newtonian fluid due to stretching of a plane elastic 

surface in a saturated porous medium in the approximation of boundary layer theory. An exact analytical solution 
of non-linear MHD momentum equation governing the self-similar flow is given. The skin friction co-efficient 
decreases with an increase in the visco-elastic parameter k1 and increase in the values of both the magnetic 
parameter and permeability parameter.   
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1. Introduction  
 
 The study of a magneto convection flow of non-Newtonian fluids over a continuously moving 
porous wall has wide applications in technological and manufacturing processes in industries. To be more 
specific, it may be pointed out that many metallurgical processes involve the cooling of continuous strips or 
filaments by drawing them through a quiescent fluid and that in the process of drawing these strips are 
sometimes stretched.   
 The numerous applications of non-Newtonian fluids have led to a renewed interest among 
researchers to investigate the visco-elastic boundary layer flow over a stretching plastic sheet Rajgopal et al. 
[1], Dandapat et al. [2], Rollins and Vajravelu [3], Anderson [4], Lawrence and Rao [5], Char [6] considered 
the motion of power law fluid flow past a stretching sheet. The Rivlin Erickson fluid was studied by 
Siddappa and Khapate [7], the Walters liquid B’ was considered by Siddappa and Abel [8], Veena et al. [9-
11] which the fluids was studied exhibit normal stress differences in simple shear flows. A great deal of 
literature is available including those cited above on the two-dimensional visco-elastic boundary layer flow 
over a stretching surface where the velocity of the stretching surface is assumed linearly proportional to the 
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distance from a fixed origin. However, Gupta and Gupta [12] pointed out that realistically stretching of the 
sheet may not necessarily by linear.   
 This situation was investigated by Kumaran and Ramanaiah [13] in their work on a boundary layer 
flow over a quadratic stretching sheet. But their work was confined to the viscous flow past a stretching 
sheet. McCormack and Crane [14] provided a comprehensive discussion on a boundary layer flow caused by 
stretching of an elastic flat sheet moving in its own plane with a velocity varying linearly with distance. 
Rajgopal et al. [15] analyzed the effects of visco-elasticity on the flow of a second order fluid with gradually 
fading memory and they arrived at the same governing boundary layer equation as that in (2, 3, 9, 11, 12 and 
13). The influence of a uniform transverse magnetic field on the motion of an electrically conducting fluid 
past a stretching surface was studied by Pavlov [16]. An MHD flow of visoc-elastic fluids was probably first 
considered by Sarpakaya [17], while Anderson [4] and Dandapat et al. [18] obtained the similarity solutions 
of the boundary layer equation governing the flow in an elastic power-law fluid in the presence of an 
external magnetic field.  
 Abel et al. [19], Veena et al. [20], Veena et al. [21] obtained the non-similar solutions of viscous and 
visco-elastic boundary layer flows with suction blowing, steady and unsteady aspects with porosity and a 
magnetic field past continuously moving stretching bodies. Khan and Sanjayanand [22] studied the visco-
elastic boundary layer flows and heat transfer over an exponential stretching sheet. Sajid et al. [23], 
investigated the non-similar analytical solutions for an MHD flow and heat transfer in a third order fluid past 
a stretching sheet. Abel et al. [24], analyzed the MHD flow of a visco-elastic fluid over a stretching sheet. 
Pantokratoras [25] made a numerical investigation of an MHD boundary layer flow with variable viscosity 
past a stretching surface. Motivated by all the above analyses in the present note we are concerned with the 
study of combined effects of visco-elasticity, the magnetic field and porous parameter over a continuously 
moving stretching surface in the presence of suction. 
 
2. Flow analysis  
 
 An incompressible second-order fluid has a constitutive equation based on the assumptions of the 
principle given by Coleman and Noll [26] as 
 

    2
1 1 2 2 1T pI A A A                     (2.1) 

 
where T is the stress tensor, p is the pressure, , ,1 2    are the material constants with 1 0   and ,1 2A A  are 

defined as  
 

   grad grad 
T

1A     ,                (2.2) 

 

     .grad grad .
T

2 1 1 1
d

A A A A
dt

     .                       (2.3) 

 
 We considered the flow of a fluid obeying the constitution Eq.(2.1) which displays normal stress 
differences in the shear flow and is an approximation to a simple fluid in the sense of retardation. This model 
is applicable to some dilute polymer solutions and is valid at low rates of shear.  
 The fluid flow obeying (2.1) past a flat porous sheet coinciding with the plane y = 0, the flow is 
confined to y > 0. Two equal and opposite forces are applied along the x-axis. So the wall is stretched 
keeping the origin fixed in a uniform magnetic field.  
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3. Physical sketch   
 

 
 

 The steady incompressible two dimensional boundary layer equations of motion for visco-elastic 
Walters liquid B’ in the presence of a magnetic field and a porous medium obtained by Bread and Walters 
[27] in usual notation are 
   

  
u v

0
x y

 
 

 
,                                                                                (3.1) 

 

  
'

22 2 2 3
0

2 2 2 3
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u v v k u v u u 0
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           
                    

,                (3.2) 

 

where     ,   1k


   
 

. 

  
 In deriving the above equations it is assumed that the normal stress is of the same order of magnitude 
as that due to shear stresses. Thus both , k are of 0(2),  being the boundary layer thickness.  

The appropriate boundary conditions are  
 

  ,    at   wu bx v V y 0   , (3.3) 
 
     as  ,   u 0 y b 0         (b is the stretching rate)                   (3.4) 

 
The flow is caused solely by the stretching of the wall and the free stream velocity being zero. 

Equations (3.1) and (3.2) admit self-similar solution of the type. 
 

         :       ;     

1
1 2
2

b
u bxf v b f y

           
. (3.5) 

 
The equation of continuity is satisfied identically and substituting Eq.(3.5) in Eq.(3.2) it converts to  
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 (3.6) 

 
where the suffix  denotes differentiation with respect to  and  
    

   ;    ;  
2
0

1 2 n
Bkb

k k M
k b b


  

 
,             (3.7) 

 
and velocity components given in Eq.(3.5) 
 

            ,   ; ,   wV
f 0 1 f 0 f 0 f 0 0

b
  


    


. (3.8) 

 
 Equation (3.6) subjected to the three boundary conditions (3.8) was derived by Char [6]. But since 
Eq.(3.6) is of fourth order and highly non-linear, is satisfies only three boundary conditions of Eq.(3.8). This 
difficulty was overcome in [6] by expanding f() in a power series in terms of the visco-elastic parameter k1, 
assuming k1 as very small. This of course is valid for dilute polymer solutions.  
 Hence, we observed one more boundary condition included in Eq.(3.8) to get the unique exact 
analytical solution of Eq.(3.6) that is  f 0 0  . 

 
4. Analytical solution 
 
 Thus it is interesting to note that Eq.(3.6) has a solution of the form  
    
     exp  ,  f 0      , (4.1) 

 
satisfying the boundary conditions      ,  f 0 1 f 0     and     f 0 0   in Eg.(3.8). 

Integrating Eq.(4.1) and using    
    

    wV
f 0 R

b


 


, the suction parameter, 

 
we obtain the non-dimensional velocity variable  f   as 

     

     exp  w1 V
f

b

  
  

 
 (4.2) 

 
where  is the positive root of the cubic equation  
       

  3 2
3 3 5A A A 0       , (4.3) 

 
and it is found by Graffe’s root square method.  
 Thus from Eq.(4.2) we get a remarkably simple exact analytical solution of Eq.(3.6) satisfying the 
boundary conditions (3.8). This gives the new velocity components u and v as 
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     exp  
exp  ;  

1b
u bx v R

   
       

  (4.4) 

 
where ‘’ is calculated from the Eq.(4.3) as  
      

  

1
2

n 2

1

1 M k

1 k

  
    

. (4.5) 

  
 The dimensionless shear stress  at the wall is obtained as 
 

          
1

2
1

n 2y 0

1 ku
f 0

y 1 M k


   
            

, 

   (4.6) 

        2bx      , 

  
which shows that  vanishes when k1 = 1. But this can never occur since the solution includes the combined 
effects of visco-elastic and magnetic forces. 
 
5. Results and discussion  
 

 To explain the effect of various physical concepts such as boundary layer thickness , stream wise 
velocity, wall friction co-efficient , visco-elasticity, permeability and magnetic parameter, many graphs are 
drawn and discussed as follows.  
 A momentum boundary layer flow of a visco-elastic fluid past an exponentially stretching 
impermeable sheet has been investigated in the present study. The governing basic boundary layer equation 
of momentum is highly non-linear and converted into an ordinary differential equation by applying suitable 
similarity transformation. 
 Figure 1 is the graph of velocity profiles f() and f() for various values of the visco-elastic 
parameter for fixed values Mn and k2, R. It is observed from the figure that the transverse flow velocity f() 
is a decreasing function and longitudinal flow velocity f() is an increasing function of the visco-elastic 
parameter k1. 
 Figures 2 and 3 depict the graphs of f() and f() versus  for different values of permeability 
parameter k2 and magnetic parameter Mn, respectively. In both the cases, the velocity distribution f() along 
the transverse direction is a decreasing function of k2 and Mn where the velocity profile f() along 
longitudinal direction is an increasing function of k2 and Mn respectively for the value of the suction 
parameter R = -0.424.  
 Figure 4 demonstrates the graph of the skin friction co-efficient versus the visco-elastic parameter k1 
for fixed values of k2, R and Mn. From the figure it is noticed that the increase in k1 leads to the decrease of 
skin friction. This is due to the fact that the elastic property in the visco-elastic fluid reduces the frictional 
force. This result has great significance in polymer processing industry, as the choice of a higher order visco-
elastic (Walters liquid B’) fluid would reduce the power consumption for stretching the boundary sheet.  
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Fig.1.  Velocity variation in longitudinal and transverse directions for various values of the visco-elastic 
parameter k1 and fixed values of k2 = 2 and Mn = 2, suction parameter R = -0.424. 

 

 
 
Fig.2.  Velocity profiles f() and f() vs.  for various values of the permeability parameter k2 = 0, 5, 10 

and fixed values of k1 = 0.4, Mn = 2, R = -0.424. 
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Fig.3.  Velocity distribution of f() and f() Vs.  for different values of Mn = 0, 5, 10 and fixed values of 
k1 = 0.4, k2 = 5, R = -0.424. 

 

 
 

Fig.4.  Variation of the skin friction co-efficient  vs. the visco elastic parameter k1 for values of k2 = 5, Mn 
= 5, and R = 0.424. 

 
6. Conclusions   
 
 The characteristic feature of the above exact analytical results is that the effect of visco-
elasticity, magnetic field and porosity are combined into a single parameter   1 with added suction Vw 
which is defined in Eq.(4.5). Since themagnetic parameter Mn and the permeability parameter k2 are  
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positive Mn  k2  0 and 0  k1  1, it can be concluded that an increase in values of Mn and k2 has the 
same influence on the flow field as increased velocity. According to Eqs (4.4) and (4.6) the main effects 
of visco-elasticity, magnetic field and permeability are to reduce the velocity within the boundary layer 
and the external velocity normal to the sheet and also to reduce the boundary layer thickness while 
increasing the skin friction.  
 
Nomenclature 
 
 A3, A4, A5  positive constants 

 B0  induced magnetic field 

 k1  visco-elastic parameter 

 k2  permeability parameter 

 Mn  magnetic parameter 

 x, y  coordinate system   

 u, v  components of velocity along x and y directions  

 R  suction parameter 

 p  pressure 

 T  stress tensor 

 b  stretching rate 

   positive root of cubic equation  

   similarity variable  

   limiting viscosity  

 , 1, 2  material constants  

   kinemetic viscosity  

   density  

   electrical conductivity  

   non-dimensional skin friction co-efficient  

   stream function  
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