
 
 

Int. J. of Applied Mechanics and Engineering, 2017, vol.22, No.3, pp.697-715 
DOI: 10.1515/ijame-2017-0044 

 
 

CURVILINEAR SQUEEZE FILM BEARING LUBRICATED 
WITH A DEHAVEN FLUID OR WITH SIMILAR FLUIDS 

 
A. WALICKA*, P. JURCZAK and J. FALICKI 

University of Zielona Góra, Faculty of Mechanical Engineering 
ul. Szafrana 4, 65-516 Zielona Góra, POLAND 

E-mails: A.Walicka@ijame.uz.zgora.pl 
           P.Jurczak@ibem.uz.zgora.pl 
         J.Falicki@ibem.uz.zgora.pl 

 
 

In the paper, the model of a DeHaven fluid and some other models of non-Newtonian fluids, in which the 
shear strain rates are known functions of the powers of shear stresses, are considered. It was demonstrated that 
these models for small values of material constants can be presented in a form similar to the form of a DeHaven 
fluid. This common form, called a unified model of the DeHaven fluid, was used to consider a curvilinear 
squeeze film bearing. The equations of motion of the unified model, given in a specific coordinate system are 
used to derive the Reynolds equation. The solution to the Reynolds equation is obtained by a method of 
successive approximations. As a result one obtains formulae expressing the pressure distribution and load-
carrying capacity. The numerical examples of flows of the unified DeHaven fluid in gaps of two simple squeeze 
film bearings are presented. 
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1. Introduction 
 
 Viscosity of lubricating oils increases with the additives concentration and it is relatively 
independent of temperature and usually exhibits a non-linear relation between the shear stress and the rate of 
shear in a shear flow. There has been no generally acceptable theory taking into account the flow behaviour 
of non-Newtonian lubricants. Studies have been done on fluid film lubrication employing several models 
such as micropolar (see e.g.,: Walicka, [1]) couple-stress (Walicki and Walicka [2]), mixture (Khonsari and 
Dai [3]), viscoplastic (Lipscomb and Denn [4]; Dorier and Tichy [5]), pseudo-plastic (Wada and Hayashi [6]; 
Swamy et al. [7]; Rajalingham et al. [8]). Naturally, this list is not complete and given only to present the 
possibility of mathematical modelling. A more complete list may be found in (Walicka [9]; Walicki [10]).  
 In recent years, tribologists have done a great deal of work on pseudo-plastic lubricants; the viscosity 
of these kinds of lubricants displays a non-linear relationship between the shear stress and the shear strain 
rate. There are many known formulae to model this relationship. One of the first was power-series 
development and in consequence polynomials were suggested. The polynomial given by Kraemer and 
Wiliamson [11], which was later independently proposed by Rabinowitsch [12] should be cited here. In the 
sixties of the past century Rotem and Shinnar [13] returned to the polynomial representation proposing their 
own model similar to that one of Rabinowitsch. 
 Theoretical considerations and some experiments carried out by Wada and Hayashi [6] indicated the 
usefulness of the Rabinowitsch fluid to modelling various lubrication problems. These problems have been 
analyzed by many investigators, for instance journal bearings were studied by Wada and Hayashi [6], 
Rajalingham et al. [8], Sharma et al. [14], Swamy et al. [7], hydrostatic thrust bearing by a Singh et al. [15], 
squeeze film bearings by Hashimoto and Wada [16], Lin [17], Lin et al. [18]. More general lubrication 
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problems include hybrid bearings modelled by two generally non-coaxial surfaces of revolution which can 
work simultaneously as journal and/or thrust bearings. Some theoretical considerations about these bearings 
may be found in the works by Walicka et al. [19, 20], Ratajczak et al. [21], Walicka and Walicki [22]; these 
authors considered both externally pressurized bearings with and without rotational inertia and squeeze film 
bearings lubricated with a Rotem-Shinnar fluid. From the results of all the papers referred to above, it follows 
that the pseudo-plastic lubricants properties affect the bearing performance significantly.  
 This paper is mainly concerned with the non-Newtonian effects in the squeeze film bearing lubricated 
with a DeHaven fluid whose one dimensional model is given as follows [23] 
 

   n
0 1 k       (1.1) 

 
where k  is an empirical constant determined from experiments. 
Let us consider – for example – two other models of pseudoplastic fluids, namely: 

– Ree-Eyring fluid [24] 
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– Meter fluid [25] 
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In lubrication technology one uses only such fluids for which the material constants are small and which satisfy 
the relationship 
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the above model equations in series forms can be presented as follows, respectively 
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For a sufficiently small value of  k  it is enough to limit the expression in brackets of Eqs (1.4) and (1.5) to 

the first two terms; then they will be, respectively 
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Table 1. Models of fluids similar to the DeHaven fluid model. 
 

No Author(s) Original model 
Model taken 
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 Let us consider the other similar models of pseudoplastic fluids given in the second column of Table 
1 [23-30]. Taking into account the forms of these models given in the third column of Table 1 one can 
present them in a simple unified form 
 

   in
0 i1 k      ; (1.8) 

 

the material coefficients ik  and in  are also given in Tab.1. Here Eq.(1.8) is so called constitutive equation of 

the DeHaven fluid. In an experimental research by Wada and Hayashi [6], a range of 0  and ik  (in the case 

of the Rabinowitsch fluid for which in 2 ) for various working conditions of lubricants with additives has 

been determined. It results from this research that the values of ik  may be: ik 0  or ik 0 ; if ik 0  , then 
Eq.(1.8) describes a Newtonian fluid  
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2. Equations of motion of the unified DeHaven fluid model  
 
 The general equations of motion of a viscous fluid in a three-dimensional form are as follows: 

– equation of continuity 
 

  0vdiv , (2.1) 
 

– equation of momentum 
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dt
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,          p  T 1   (2.2) 

or 
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here the constitutive Eq.(1.8) takes the form 
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and p is the pressure, 1 is the unit tensor,  is the second invariant of the extra stress tensor  , 1A  is the 
first Rivlin-Ericksen stretching tensor defined by 
 

  ,T
1 LLA                    vgradL                    (2.5) 

 

v is the velocity vector and T denotes the transposition. 
 Let us consider a thrust bearing with a curvilinear profile of the working surfaces shown in Fig.1. 
The lower fixed surface is described by the function  xR  which denotes the radius of this surface. The 

bearing clearance thickness is given by the function ( , )h x t . 

An intrinsic curvilinear orthogonal coordinate system , ,x y  linked with the lower bearing surface is also 
presented in Fig.1. 
 The physical parameters of the Prandtl fluid flow are the velocity components yx  , , pressure p . 

With regard to the axial symmetry of the flow these parameters are not dependent on the angle  . 
 

 
 

Fig.1. Geometry of a curvilinear bearing. 
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 The assumption typical for the flow in a narrow gap (Walicka [2], Walicki [3]) 
 

     ,h x t R x ,      xy  ,          
yx 






 

 
can be used to make order-of-magnitude arguments for Eqs (2.3)-(2.5). 
 A further simplification comes by noting – in accordance with the lubrication approximation – that 
the modified Reynolds number R  is very small 
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and the inertia effects are also very small; here Re is the classic Reynolds number, 0h  is the characteristic 

bearing gap thickness, 0l  is the characteristic bearing gap length. 
 If some asymptotic transformations are made, the same as in (Walicka [2], Walicki [3]) these 
equations can be reduced to a simpler form [31, 32] 
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The last equation yields 
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The constitutive Eq.(2.4) now takes the form 
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The problem statement is complete after specification of boundary conditions. These conditions for the 
velocity components are stated as follows 
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the boundary conditions for the pressure distribution will be presented in the next section. 
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3. Solution to the equations of motion 
 
 Integrating Eq.(2.7) with respect to y, we have 
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Putting this equation in Eq.(2.10) ,we obtain 
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Assuming the flow symmetry with respect to the gap median surface, we have (see: Fig.1) 
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Note that the unique real root of this equation is equal to 
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Introducing (3.3) into Eq.(3.2) one obtains 
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the equation whose integral – after satisfying the boundary conditions (2.11) – is equal to 
 

  
 

i i i2 2 n 2 n 2 n 1
i

x
0 0 i

k1 h 2 y h p h 2y h p

2 2 2 x n 2 2 2 x

                                                      
. (3.5) 

 
To find the equation for the determination of the pressure distribution let us return to the equation of 
continuity (2.1). Introducing in Eq.(2.1) the flow velocity given by Eq.(3.5) and making the integration 
across the gap thickness we will obtain the following form of the Reynolds equation 
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This is a non-linear equation whose solution may be presented (in the first approximation) in the form of a 
sum 
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Assuming that    0 1p p  and substituting Eq.(3.7) into Eq.(3.6) ,we arrive at two linearized equations: 

 the first one 
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The boundary conditions for the pressure are 
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 The solution of Eqs (3.8) and (3.9) are given, as follows 
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The load-carrying capacity is defined by 
 

    cos
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o

0
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the sense of the angle   arises from Fig.1. 

Note that  ,I x t  represents a Newtonian pressure distribution in the squeeze film while    ,in
J x t  is a 

pseudoplastic correction to this pressure. 
 
4. Squeeze film in a radial thrust bearing 
 
 Let us consider a radial thrust bearing with a squeezed film of the DeHaven lubricant modelled by two 
parallel disks (Fig.2). 
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Fig.2. Squeeze film in a radial thrust bearing. 
 

Introducing the following parameters 
 

  R x ,      
o

x
R x

x
   ,        ,

o

h
h e t

h
           e t 1 t  ,      

d

dt


   , 

   (4.1) 

  
  2

o o

o

p p h
p

x

  
    



,      

2

o
2

oo

hN
N

xx

 
     



,       

i
i

n
n 0 o

i
o

x
k

h

  
   

 


, 

 

we will obtain the formulae for the dimensionless pressure distribution and load-carrying capacity for the radial 
thrust bearing with a squeeze film of the lubricant 
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Fig.3.  Dimensionless pressure distribution in the radial squeeze film bearing for .0 5   versus different 

values of  1  for in 1  (the case of the Peek-McLean type lubricant). 
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Fig.4.  Dimensionless load-carrying capacity in the radial squeeze film bearing for different values of  1  for 

in 1  (the case of the Peek-McLean type lubricant). 
 

 The plots of the dimensionless pressure distribution and load-carrying capacity are presented in Figs 3 
and 4 for the Peek-McLean fluid for which in 1 , in Figs 5 and 6 for one of the fluids which represent the 

group of cubic models (e.g.: the Rabinowitsch fluid ) where in 2  and in Figs 7 and 8 for one of the fluids 

near the group of DeHaven-Ellis models where in 3 . 
 

 
 

Fig.5.  Dimensionless pressure distribution in the radial squeeze film bearing for .0 5   versus different 

values of  2  for in 2  (the case of the cubic type lubricant). 
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Fig.6.  Dimensionless load-carrying capacity in the radial squeeze film bearing for different values of  2  for 

in 2  (the case of the cubic type lubricant). 
 

 These plots are made for different values of  in  which indeed influence the pressure distribution and 

load-capacity. They are taken as the successive terms of a power series:  
max .1 0 1   ,  

max .2 0 01   , 
 
max .3 0 001   . This choice ensures the similar maxima of the pressure values for different fluids used for 

modelling of lubricant flows. 
 

 
 

Fig.7.  Dimensionless pressure distribution in the radial squeeze film bearing for .0 5   versus different 

values of  3  for in 3  (the case of the DeHaven-Ellis type lubricant). 
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Fig.8.  Dimensionless load-carrying capacity in the radial squeeze film bearing for different values of  3  for 

in 3  (the case of the DeHaven-Ellis type lubricant). 
 
 Note that for all models of the fluids considered here the values of the material coefficients ik  have a 

positive sign with the exception of the Seely model for which ik  has a negative sign (see Table 1). It results 
from this that the plots of the pressure distribution and load-carrying capacity for the Seely fluid are placed in 

contrast with respect to the Newtonian fluid   1 0  . 

 
5. Squeeze film in a spherical thrust bearing 
 
Let us consider now a spherical squeeze film bearing shown in Fig.9. 
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Fig.9. Spherical squeeze film bearing for o 2
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Introducing the following parameters 
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we will obtain the formulae for the dimensionless pressure distribution and load-carrying capacity for the 
spherical squeeze film bearing 
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The expressions for    in
J   and    in

oNJ   are given in the Appendix. 

 

 
 

Fig.10.  Dimensionless pressure distribution in the spherical squeeze film bearing for .0 5   versus different 

values of  1  for in 1  (the case of the Peek-McLean type lubricant). 
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Fig.11.  Dimensionless load-carrying capacity in the spherical squeeze film bearing for different values of  1  
for in 1  (the case of the Peek-McLean type lubricant). 

 
 The plots of the dimensionless pressure distribution and load-carrying capacity are presented for the 
same models as in the previous bearing case, namely in Figs 10 and 11 for the fluid of Peak-Mclean  

 in 1 , in Figs 12 and 13 for one of the fluids which represent the cubic models  in 2 and in Figs 14 and 

15 for one of DeHaven-Ellis models  in 3 . 

 

 
 

Fig.12.  Dimensionless pressure distribution in the spherical squeeze film bearing for .0 5   versus different 

values of  2  for in 2  (the case of the cubic type lubricant). 
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Fig.13.  Dimensionless load-carrying capacity in the spherical squeeze film bearing for different values of 
 2  for in 2  (the case of the cubic type lubricant). 

 
 

 
 

Fig.14.  Dimensionless pressure distribution in the spherical squeeze film bearing for .0 5   versus different 

values of  3  for in 3  (the case of the DeHaven-Ellis type lubricant). 
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Fig.15.  Dimensionless load-carrying capacity in the spherical squeeze film bearing for different values of  3  
for in 3  (the case of the DeHaven-Ellis type lubricant). 

 

 Note that these plots are generally similar to the plots of the previous bearing case, but for in 3  the 
group of plots both for the pressure distribution and load-carrying capacity are more concentrated. 
 

6. Results and discussion 
 

 According to the above analysis, the performance of non-Newtonian curved squeeze films is influenced 
by three parameters: the first two are geometric parameters and the third one is a rheological parameter. The 

geometric parameters R  and h , or in a dimensionless form R  and h , define the curved shape of the bearing 

gap; if R x   and  h e t  they generate a circular (radial) squeeze film, but if sinR    and cosh u 1      

they generate a spherical squeeze films. The rheological nonlinear parameter  in  characterizes the non-
Newtonian behaviour of the DeHaven fluid model or other similar models of fluids. It is applicable to dilatant 

fluids for  in 0  , to Newtonian fluids for  in 0   and to pseudo-plastic fluids for  in 0  . 

 For  in 0   and :R x   this is a Newtonian radial squeeze film as in Hamrock [44], but for 

sinR    this is a Newtonian spherical squeeze film as in Walicki [10]. For  in 0   and R x   or 

sinR   : it is  a non-Newtonian curved circular or spherical squeeze film (present study). 
 Figures 3-8 present the film pressures and the load capacities for a circular squeeze film, respectively. 
The film pressure p  is presented as a function of the radial coordinate x  for the squeezing ratio .0 5   for 

different values of  in   , ,in 1 2 3 , but the load capacity is presented as a function of the squeezing ratio   

for different values of  in . It is observed that the effects of the pseudo-plasticity   in 0   decrease the film 

pressure and load capacity with respect to the case of a Newtonian lubricant but the effects of the dilatancy 
  in 0   increase both the mechanical parameters. The differences between these parameters for the cases of 

non-Newtonian and Newtonian lubricants are considerable. With the increase of in  (index of the model non-
linearity) the film pressures and load capacities decrease considerably. 
 Figures 10-15 present the film pressures and load capacities for a spherical squeeze film, 
respectively. The film pressure p  is presented as a function of the spherical coordinate   for the 
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eccentricity ratio .0 5   also for different values of  in , whereas the load capacity is presented as a 

function of the eccentricity ratio   for different values of  in . It may be observed that generally both the 
phenomena (pressure and load capacity) change similarly as in the previous case, but the changes are 
smaller. The values of both the mechanical parameters are smaller compared to the previous case; it is 
compatible with the study made by Lin et al. [18] for the Rabinowitsch fluid (our case in 2 ). 
 

7. Conclusion 
 

 Basing on the non-Newtonian lubricant model we develop the study of squeeze film bearing 
lubricated by the DeHaven fluid or the other similar models of fluids. The modified non-linear Reynolds 
equation is derived and its solution is obtained by the method of successive approximations. Two squeeze 
film bearings are considered: radial (circular) and spherical. Dimensionless pressures and load capacities are 
calculated and presented graphically for both the bearings. Higher pressures and load capacities are obtained for 

bearings lubricated with dilatant lubricants   in 0  , but the pseudo-plastic lubricants   in 0   yield reverse 

results. The values of the pressures and load capacities for the same values of the rheological parameters  in  are 
higher for the case of a radial bearing compared to these ones for the case of a spherical bearing. 
 

Nomenclature 
 

 1A  – the first Rivlin-Ericksen kinematic tensor 

 1C  – constant of integration 

    ,inF x t  – auxiliary function for the pressure distribution 

 h ,  ,h x t  – clearance thickness 

  ,I x t  – function presented Newtonian part of the pressure distribution 

    ,inJ x t  – function presented pseudoplastic correction in the pressure distribution 

 , ik k  – pseudo-plasticity coefficients 

 N  – load-carrying capacity 
 , in n  – exponents of pseudo-plasticity 

 p  – pressure 
  xRR,  – local radius of the lower bearing surface 

 r  – radius 
 ,r z  – cylindrical coordinates 
   – shear stress tensor 
 ,x y   – velocity components 

 ,x y  – orthogonal coordinate 
  t  – squeezing ratio or eccentricity 

   – extra stress tensor 
   – angular coordinate 
 0  – coefficient of shear viscosity 

   – final shear viscosity 

   – plastic viscosity 
   – fluid density 
   – shear stress  
 

Appendix 
 

The expressions for    1J   and    1
oNJ   
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