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The flow of a couple-stress lubricant in a clearance of a curvilinear thrust hydrostatic bearing with 
impermeable walls is considered. The flow in the bearing clearance is considered with inertia forces. The 
equations of motion are solved by an averaged inertia method. As a result , the formulae for pressure distributions 
without and with inertia effects were obtained. Radial thrust bearings and spherical bearings are discussed as 
numerical examples. It is shown that inertia effects influence the bearing performance considerably. 
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1. Introduction 
 
 Steady state radial flows and time- dependent squeezing flows of Newtonian fluids are encountered 
in a variety of fields. These flows are found in fabrication operations such as stamping, injection molding 
and sheet forming. In addition, such flows are encountered in lubrication systems. 
 The flows of Newtonian fluids in the clearance between two impermeable walls have been examined 
theoretically and experimentally. The clearance walls have been modelled as two disks, two conical or 
spherical surfaces (Agrawal [1]; Gould [2]; Murti [3]; Vora [4]). A more general case is established by a 
flow in the clearance formed by two surfaces of revolution (Walicka [5]). 
 Classical lubrication theory assumes a laminar flow and neglects inertia terms in the equations of 
motion governing a lubricant film flow (Möller and Boor [6]; Myshkin et al. [7, 8], 2002; Szeri [9]; Walicka 
[10, 11]; Walicki [12]). Although these assumptions are justified for small values of Reynolds numbers, they 
are valid in the majority of bearing applications. 
 With the development of modern machine elements the increasing use of complex fluids as 
lubricants has become of great interest. Many experimental works have also shown that complex fluids can 
improve the lubrication properties. 
 The presence of small amounts of additives in a lubricant can improve bearing performance by 
enhancing the lubricant viscosity and thus producing an increase in the load capacity. They also reduce the 
coefficient of friction and increase the temperature range in which the bearing can operate. 
 The additives are long-chain organic compounds, e.g., the length of the polymer chain may be a million 
times the diameter of a water molecule. Thus couple stresses might be expected to appear in noticeable 
magnitudes in liquids containing additives with these large molecules. These couple stresses may be significant 
particularly under lubrication conditions where thin films usually exist. A number of theories of the 
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microcontinuum have been postulated and applied (see, e.g. Walicka [10, 11]; Walicki and Walicka [13]). 
Amongst them, the Stokes theory [14] allows for polar effects such as the presence of couple stresses. 
 The purpose of this study is to investigate the inertia and couple-stress effects on the pressure 
distribution and load-carrying capacity in a non-Newtonian lubricant flow in the clearance of a bearing formed 
by two coaxial surfaces of revolution, shown in Fig. 1. The analysis is based on the averaged inertia method 
(Walicka [15]) modified by Walicka and Wojnarowski [16]. 
 

2. Analysis of a lubricant flow in a bearing clearance 
 
 Let us consider a thrust bearing with a curvilinear profile of the working surfaces shown in Fig. 1. 
The lower surface is described by the functions  xR  which denotes the radius of this surface; the bearing 

clearance thickness is given by the function ( )h x . An intrinsic curvilinear orthogonal coordinate system 

yx ,,   linked with the lower bearing surface is also presented in Fig.1. 
 Taking into account the considerations of the works (Walicka [10, 11]) one may present the 
equations of a couple-stress lubricant motion for axial symmetry in the form: 
 

 
 

Fig.1. Configuration of a thrust hydrostatic bearing. 
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here   is the classical viscosity, but   is a new material constant responsible for the couple-stress lubricant 
property. The problem statement is complete after specification of boundary conditions which are 
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 Averaging the left-hand side of Eq.(2.2) across the clearance thickness and taking into account 
boundary conditions (2.3) and (2.4), we may write 
 

   
2 4

2x x
2 4

l F x
y y

   
 

 
      and       

h
2
x

0

1 dp
F x R dy

dx Rh x

  
   

   
 ; (2.6) 

 

here l – having a dimension of length – denotes the square root of the ratio   to  , i.e.,  1 2
l    . 

Integrating Eq.(2.6)1 with respect to y in the interval 0 y h   and determining the arbitrary constants from 
the boundary conditions (2.3), we obtain 
 

   x
F

V y
2

  ,        2 2 2 y h y
V y y hy 2l 1 ch th sh

l 2l l
      
 

. (2.7) 

 

By substituting Eqs (2.7) into Eq.(2.1) one obtains 
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a general form of the modified Reynolds equation in which 
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3. Solution to the Reynolds equation 
 
 The solution to the Reynolds equation (2.8) has a form 
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while the pressure distribution is given by the solution of the following equation 
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To solve this equation we assume that the velocity x  of a lubricant flow with inertia is approximately equal 

to the velocity without inertia xR : x xR   . 
For an approximation without inertia (the Reynolds approximation) there is 
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Substituting Eq.(3.3) into the Reynolds equation (2.8), integrating and taking into account the boundary 
conditions (2.5), one finds 
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Calculating Rdp dx from Eq.(3.5) we have 
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Substituting Eqs (3.1) and (3.7) into Eq.(3.2), integrating and taking into account the boundary conditions 
(2.5) we get 
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 The load-carrying capacity is defined by 
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whereas the sense of angle   arises from Fig.1. 
This formula may also be presented in the form 
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In practical applications there is .0 l h 0 2  ; that allows us to reduce formulae (2.9) and (3.10) to the 
following form 
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4. Examples of thrust bearings 
 
 To consider examples of thrust bearings we will present the results (3.8) and (3.11) in dimensionless 
forms. To this aim let us introduce the following parameters 
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The dimensionless pressure distribution and load-carrying capacity are given in the forms 
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is the inertia effects parameter. 
 The coefficient l0P  is dependent on the bearing geometry and physical lubricant properties. Its 

practical values are contained in the interval: .l00 P 1 0  . The value equal to 0  denotes the lubricant flow 
without inertia. 
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Fig.2. Configuration of a radial thrust bearing. 
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Fig.3. Configuration of a spherical bearing. 
 

  
 Let us consider two bearings as examples, the first of them is a radial thrust bearing shown in Fig.2, 
whereas the other one is a spherical bearing shown in Fig.3. 
Mechanical parameters of the radial thrust bearing are given as follows 
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lP  denotes the Newtonian inertia effects parameter (Walicka and Wojnarowski [16]). 

The pressure distribution depends on the relationship 2g f  which is presented in Fig.4. 
 

 
 

Fig.4. Graph of the function 2g f  versus *l . 
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Figures 5 and 6 present the dimensionless pressure distributions and load-carrying capacity, respectively. 
 

 
 

Fig.5. Dimensionless pressure distributions for the radial thrust bearing. 
 

 
 

Fig.6. Dimensionless load-carrying capacity for the radial thrust bearing. 
 

 Mechanical parameters of the spherical bearing for a clearance of constant thickness, oh h const 
are given as follows 
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where 
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and the load carrying capacity may be obtained from Eq.(4.10). 
 

 
 

Fig.7. Dimensionless pressure distributions for the spherical bearing with a constant clearance thickness. 
 
 Figures 7 and 8 present the dimensionless pressure distributions and load-carrying capacity for  
a spherical bearing for a clearance of constant thickness, oh h const  . 
 

 
 

Fig.8. Dimensionless load-carrying capacity for the spherical bearing with a constant clearance thickness. 
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5. Conclusions 
 
 The inertia and couple-stress effects in the lubricant flow through a clearance of a curvilinear thrust 
hydrostatic bearing are considered. 
 The equations of motion of a couple-stress lubricant are solved by an averaged inertia method. As a  
result of the considerations the formulae for pressure distribution and load-carrying capacity are obtained. As 
examples two particular cases of the bearings are discussed, namely: a radial thrust bearing and spherical bearing. 
 It is found that the values of the inertia parameter lNP  has an essential influence on the bearing 

performance. With an increase of lNP  the values of pressure distributions and load-carrying capacities 
increase, too. This increase of bearings performance is greater for spherical bearings than that one for step 
bearings. The effects of couple-stresses are very small and in practice one may neglect these effects. 
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