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The theory of generalized thermoelasticity in the context of the Green-Naghdi model –II (thermoelasticity 
without energy dissipation) is studied for an infinite circular cylindrical cavity subjected to two different cases of 
thermoelastic interactions when the radial stress is zero for (a) maintaining constant temperature and (b) 
temperature is varying exponentially with time. The Laplace transform from time variable is used to the 
governing equations to formulate a vector matrix differential equation which is then solved by the eigen value 
approach. Numerical computations for the displacement component, temperature distribution and components of 
thermal stress have been made and presented graphically.  
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1. Introduction 
 
 The classical theory of coupled thermoelasticity, first developed by Biot [1], does not contain any 
elastic term and also is of parabolic type. Two contradictions are raised: 
(1) Elastic changes produce thermal effects and 
(2) the heat conduction equation is of hyperbolic type predicting finite speed of heat propagation.  
 To overcome this paradox, the conventional classical theory had been modified without violating 
Fourier’s law of heat conduction equation which is called generalized thermoelasticity. Now, two different 
models of generalized thermoelasticity are mainly used. One is the Lord and Shulman [2] (L-S) theory, also 
known as extended thermoelasticity (ETE) and the other is the Green and Lindsay [3] (G-L) theory. The heat 
conduction equation associated with the L-S theory is of hyperbolic type, just introducing one thermal 
relaxation time parameter to the heat conduction equation without violating conventional Fourier’s law, 
whereas the G-L theory modified not only the heat conduction equation but also the equation of motion in 
coupled theory introducing two relaxation time parameters. Three models (Model I, II and III) were 
developed by Green and Naghdi [5], [6], [7] for generalized thermoelasticity concerned to the theory of 
thermoelasticity with or without energy dissipation. This theory is called temperature rate-dependent 
thermoelasticity (TRDTE). These theories obviously removed the paradox of conventional classical theory of 
thermoelasticity. 
 Most of the problems of the thermoelasticity (classical, coupled, or generalized) have been solved by 
different ways such as:  

(i) Potential function approach: In this approach, the boundary and initial conditions for physical 
problems are directly related to the physical quantities rather than the potential function. The 
solution of the physical consideration is convergent, while the potential function representations is 
not always convergent. 
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(ii)  State-space approach: This is essentially an expansion in a series in terms of the coefficient matrix of 
the field variables in ascending powers, which is the extensive application of the Cayley–Hamilton 
theorem.  

(iii) Eigenvalue approach: This method reduces the problem of a vector-matrix differential equation to an 
algebraic eigenvalue problem and the solutions for the resulting field equations are determined by 
solving these vector-matrix differential equations, which is the direct application of eigenvalues 
and the corresponding eigenvectors of the coefficient matrix. In the eigenvalue approach, the 
physical quantities such as material constants are directly involved in the formulation of the 
problem and as such the boundary and initial conditions can be applied directly. 

 Lahiri and Das [8] studied the problem of generalized thermoelastic interactions in an unbounded 
body with a circular cylindrical cavity without energy dissipation. Othman and Shulman [9] investigated the 
theory under the dependence of the modulus of elasticity on the reference temperature in two-dimensional 
generalized thermoelasticity.  
 The present investigation is devoted to study the problem of generalized thermoelastic interactions in 
an unbounded body with a circular cylindrical cavity without energy dissipation. The surface of the cavity is 
subjected to (a) maintaining constant temperature and (b) temperature is varying exponentially with time. 
The Laplace transform from time variable is used to the governing equations to formulate a vector matrix 
differential equation which is then solved by the eigen value approach. Numerical computations for the 
displacement component, temperature distribution and components of thermal stress have been made and 
presented graphically to analyse the different parameters used in this problem. 
 
2. Basic-equation and formulation of the problem 
 
 We consider a homogeneous isotropic thermally conducting infinite elastic medium with a circular 
cylindrical cavity with radius ‘a’ at uniform absolute temperature 0  in an undisturbed state. Let the body 
forces and heat source be absent. The field equations for the linear generalized theory of thermoelasticity 
developed by Green and Naghdi are  
 

     div  2u u u        ,                          (2.1) 

 

    * div 2 2
0cu u K K           .  (2.2)                     

 
 Reducing Eqs (2.1) and (2.2) in cylindrical polar co-ordinates ( , , )r z  of any point of the body at 

any time t and assuming the displacement vector possesses only the displacement component  , ,u u r t  

where r is the radial distance measured from the origin, we get 
 

  
2 2

02 2 2 2

u 1 u u 1 u

r r rr r t

   
    

   
,          (2.3) 

 

  
*2 2 2 2

2 2 2 2
0

u u k 1 k 1

r r c t r r c r rt t r r

                                          
.                (2.4) 

 
 The stress components are given by  
 

     ,r
u u

2
r r


        


                                            (2.5) 
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    .
u u

2
r r


        


                           (2.6) 

 
  The non-dimensional form of equations of motion (2.1) and the heat conduction equation of 
generalized thermoelasticity (2.2) and stresses are 
 

  
2 2

2
2 2 2

U 1 U U T U

R R RR R

   
    

  
,                                           (2.7) 

 

  *
2 2 2 2

2 2 2 2

T U U 1 1
T B T

R R R R R RR R

                                    
,      (2.8)    

                                               

  ,                                              RR
U U

T
R R


    


                               (2.9) 

 

  ΘΘ
U U

T
R R


    


                                           (2.10)    

 
where the non- dimensional variables are  
 

  R
r

a
 ,        

 2

k
t

ca
 


,       

 
,

0

2
U u

a

  



       , 

2
2

2 2

k

a c
 

 
 

   (2.11) 

  ΘΘ  ,  RR r
0 0

1 1
     

 
,        ,

0

T





       .
2a c

W
k


   

 
3. Solution procedure 
 
3.1. Formulation of the vector –matrix differential equation 
 
 We now apply the Laplace transform of the form  
 

       , , exp
0

U R p U R t pt dt


  ,             , , exp
0

T R p T R t pt dt


  ,           (3.1)                     

 
to Eqs (2.7) and (2.8) to obtain  
 

  
2

2 2
2 2

U U Ud 1 d d
p

R dR dR

T
U

dR R
     ,                                            (3.2)        

                                                                      

  *
2

2 2
2

dU U d T 1 dT
p T p p B

dR R R dRdR

  
            

.                          (3.3)  

 
 Since at time  t 0  , the body is at rest in an undeformed and unstressed state and is maintained at 
the reference temperature, so the following conditions hold 
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     ( , ) ( , )
, ,  ,   

U R 0 T R 0
U R 0 0 T R 0 0

t t

 
   

 
.            (3.4)                     

 
 As in Das and Bhakta [4] Eqs (3.2) and (3.3) can be written as  
 
  LV VA                                                     (3.5)                     
where 

  
2

2 2

d 1 d 1
L

R dRdR R
    , 

 

  V  ,
T

dT
U

dR
V

 
  
 

 

 
 The matrix A  is 
 

  11 12

21 22

C C
A

C C

 
  
 

  

 

where    ,  ,2 2
11 12C p C 1         

*

2 4

21
p

C
p B





,       

*

( )2

22
p 1

C
1 B

 



 .                             (3.6) 

                                                                                         
 Following the method of Lahiri et al. (2009)[Appendix I] we substitute                                                                     
 

   ( ) ( )1V R X J R   ,                                                                      (3.7)                     

 
in Eq.(3.5). 
 This leads to the algebraic eigen value problem 
 

      :           2A X X                                                   (3.8) 

 
where  X   is a scalar function of  . 

 
3.2. Solution of the vector –matrix differential equation 
 
 The characteristic equation corresponding to the matrix A is given by 
 

                              2
11 22 11 22 12 21c c c c c c 0       .                                                        (4.1) 

 

 The roots of the characteristic equation are also the eigen values of the matrix A and are as follows 
 
  1          and        2    
where  
  ,        .     1 2 1 2 1 2 11 22 12 21c c c c c c                                               (4.2)                    
 

 The eigen vectors   ,   
T

1 2X x x corresponding to the eigen values   can be calculated as   
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          X     22

21

C

C

  
   

.                                                                     (4.3)                     

 
From Eq.(4.3) we can easily calculate the eigen vectors iX  corresponding to the eigen values  .i    
 For our further reference, we shall use the following notations 
 
   

i
iX X       for      , i 1 2 .                                                                         (4.4) 

 
 Then the solution of Eq.(3.5) can be written as 
   
       1 1 1 1 2 2 1 2V R C X J R C X J R                                                                   (4.5)    

 

where 2
i    i ,  , i 1 2  and 1C  and 2C  are arbitrary contants to be determined from the boundary 

conditions. 
 The components of the space vector  V r  in Eq.(3.5) can be written as 
 

                         , 1 1 1 2 1 2U R p C J R C J R     ,                                      (4.6) 
 

                          ,2 2
1 11 1 1 1 2 11 2 1 2

dT
C C J R C C J R

dR
                            (4.7)                   

 

  
 

 
 

   .

2 2
1 11 1 2 11 2

0 1 0 2
1 2

C C C C
T J R J R

   
    

 
                (4.8)                     

 

 Taking the Laplace transform of Eqs (2.9) and (2.10) and using Eqs (4.6) and (4.8) we get  
 

         11 11
RR 1 0 1 1 1 2 0 2 1 2

1 2

C C1 1
C J R J R C J R J R

R R

     
               

,    (4.9)      

 

             

       

        ,

11
1 0 1 1 0 1 1 1

1

11
2 0 2 2 0 2 1 2

2

C 1
C J R 1 J R J R

R

C 1
C J R 1 J R J R

R


 

           
 

        

        (4.10)     

 

 1C  and 2C  are arbitrary constants which are to be determined from the following boundary conditions. 
 
Case (a) 
 
 We now consider a problem of thermoelastic interactions when the radial stress is zero and 
temperature is constant. 
The boundary conditions at the surface of the cylinder r a  in a dimensional form are given by 
 

     ,    rr 00     .                                                                     (4.11)        
 

 Using non-dimensional variables from Eq.(2.10) , we get 
 

                   ,     RR 0 T 1        at      R 1 .                                                               (4.12)       
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 Taking the Laplace transform of Eq.(4.12) and using Eqs (4.8) and (4.9) we can get the values of 1C  

and .2C  Putting these values of 1C  and 2C  we get ( , )U R p , T , RR , ΘΘ    in the Laplace transform 
domain for the above case. 
 Taking the Laplace transform of Eqr (4.12), we get  
 

   RR 0  , 
 

         11 11
1 0 1 1 1 2 0 2 1 2

1 2

C C1 1
C J R J R C J R J R 0

R R

     
               

. 

 

 Again   .
0

T





 Since 0    we get T 1 . 

 

So,   .  pt

0

1
T 1 e dt

p


  , 

 

  
 

 
 

  

2 2
1 11 1 2 11 2

0 1 0 2
1 2

C C C C1
J J

p

   
     

 
 . 

 

Now substituting 

   

   

     

     

11
0 2 1 2

2
1

11
0 1 1 1

1

C 1
J J

R
C

C 1
J J

R

  
     

  
    

 2C  in 

 

  
 

 
 

 
2 2

1 11 1 2 11 2
0 1 0 2

1 2

C C C C1
J J

p

   
    

 
 

we get 

  

   

 
       

 
   

 
   

( )

( )

( )

11
0 1 1 1

1
2 2

11 11 1
0 1 0 2 1 2 0 1

1 2

2 2
11 11 2 11 2

0 1 0 2 0 2 1 1
1 2 2

C
J 1 J

C
C C

J J 1 J J

p
C C C 1

J J J J

 
      

  
      
  
 
     
      

    

= 

  

   

 
       

 
   

( )

( )

( )

11
0 1 1 1

1

2 2
11 1 2

0 1 0 2 1 2 0 1
1 2

2
11 2

0 2 1 1
2

C
J 1 J

C
J J 1 J J

p
C 1

J J

 
      

  
      
  
 
    
   

  

 . 
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Hence 
 

  

   

 
       

 
   

( )

( )

( )

11
0 2 1 2

2
1 2 2

11 1 2
0 1 0 2 1 2 0 1

1 2

2
11 2

0 2 1 1
2

C
J 1 J

C
C

J J 1 J J

p
C 1

J J

 
      

  
      
  
 
    
   

  

. 

 
Case (b) 
 

 If we take , ,i t
rT e 0 r 1     we get  

 

   ,  i t
0

0

1
R T e

a


     


, 

 

  RR r
0

1
0   


      at      r 1 , 

 
  RR 0   , 
 

     11
1 0 1 1 1

1

C 1
C J R J R

R

  
     

   11
2 0 2 1 2

2

C 1
C J R J R 0

R

  
      

, 

 

  ( ) ( )11 1 1 11 2 2
1 0 1 2 0 1

1 2

C C
C J a 1 J C J a 1 J 0

a a a a

                                        
, 

 

  

( )

( )

11 2 2
0 1

2
1 2

11 1 1
0 1

1

C
J a 1 J

a a
C C

C
J a 1 J

a a

                  
                

 . 

 

Again,   
 

 

i t pt

2 2
0

p ie e dt
T

p

    
 

  , 

 

  
   2 2

1 11 1 2 11 21 2
0 02 2

1 2

C C C Cp i
J J

a ap

                    
= 

  

 

 

   11 2 2
2 20 1

11 1 2 11 22 1 2
2 0 0

1 211 1 1
0 1

1

C
J a 1 J C C Ca a

C J J
a aC

J a 1 J
a a

                                                  

, 
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 

 
 

 
 

 

11 1 1
0 1

1
2 2 2 2

11 1 11 2 2 1
0 1 0

1 2

2
11 2 11 1 1 2

0 1 0
2 1

C
J a 1 J

a ap i
C

p C C
J a 1 J J

a a a

C C
J a 1 J J

a a a

                  
                               
 
                              

, 

 

  

 

 
 

 
 

  

11 2 2
0 1

2
1 2 2 2

11 1 11 2 2 1
0 1 0

1 2

2
11 2 11 1 1 2

0 1 0
2 1

C
J a 1 J

a ap i
C

p C C
J a 1 J J

a a a

C C
J a 1 J J

a a a

                 
                               
 
                              

. 

 
 Putting these values of 1C  and 2C , we get U (R, p ), T, RR , ΘΘ    in the Laplace transform domain 
for the above cases. 
 
4. Numerical solution 
 
 In order to invert the Laplace transforms in the preceeding equations for deformation and 
temperature distribution, we use the Zakian algorithm technique (1969), [Appendix I], in which the time 
function  f t  is computed as a sum of weighted evaluation of ( )F p  where  
 

       pt

0

F p e f t dt


   . 

 
 The development of the Zakian algorithm is given in Rice and Do [10]. A significant feature of the 
derivation is the specification that the time function can be related to a finite series of exponential functions. 
This signification of the Zakian algorithm is very accurate for overdamped and slightly undamped system. 
 For this purpose, we take copper as thermoelastic material and the values for the parameters are 
 
              , . , . , , . , , .8954 c 383 1 0 0001 1 0 0168 2 1              

 
5. Conclusion 
 
 We have constructed a vector matrix differential equation concerning necessary field variables 
required to solve the problem of deformations of a homogeneous isotropic thermally conducting infinite 
elastic medium with a circular cylindrical cavity in an undisturbed state ,in the absence of body forces and 
heat source by the eigen value approach method. 

1. Figure 1 exhibits the variations of u and R for fixed values time and *B , case(b), we observe that: 
The amplitudes of u gradually decrease as R increases. 
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Fig.1. Distribution of u  vs R for fixed time and B* = 1.25, case (b). 

 

2. Figure 2 exhibits the variations of stress and R for fixed values time and *B , case(a), we observe that: 
The amplitudes of RR  gradually decrease as R increases. 
 

 

 
Fig.2. Distribution of RR  vs R for fixed time and B* = 1.25, case (a). 

 
3. Figure 3 depicts the variations of ΘΘ  and B* for fixed time, case(a), we observe that: The amplitudes 

of ΘΘ  gradually decrease as R increases.  
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Fig.3. Distribution of ΘΘ vs R for fixed time and B* = 1.25, case (a). 

 

4. Figure 4 exhibits the variation of stresses and *   B for fixed time and R, case (a). 
 

 
 

Fig.4. Distribution of ΘΘ    vs B* for fixed time and R = 0.1, case (a). 
 

5. Figure 5 exhibits  RR vs R for fixed time and B* = 1.25, case (a).   
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Fig.5. Distribution of RR vs R for fixed time and B* = 1.25, case (a). 
 
6. Figure 6 exhibits distribution of  RR vs R for fixed time and B* = 1.25, case (a). 

 

 
 

Fig.6. Distribution of RR vs R for fixed time and B* = 1.25 ,case (a). 
 

7. Figure 7 exhibits distribution of temperature for fixed values of w and R ,case (b). 
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Fig.7. Distribution of temperature for different values of w and R, case (b). 

 

8. Figure 8 exhibits distribution of RR  for different values of B* and w ,case (b). 

 

 
 

Fig.8. Distribution of RR  for different values of B* and w ,case (b). 

 
9. With Green and Naghdi ’s parameter for the cases (a) and (b) for fixed values of R and time, we observe 
that: The amplitude gradually increases as Green and Neghdi’s parameter increase and decrease as time 
increases. 
 
Nomenclature 
 
 c   specific heat at constant deformation 
 div u   divergence of u 
  nJ     Bessel function of order 

 k   thermal conductivity 

 *k    parameter of Green and Neghdi’s theory 
 p   Laplace transform parameter 
 u   displacement vector 
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 0    coefficient of volume expansion 

( ) 03 2       

 
2


 

  
  

     temperature change above the reference temperature 0  

 ,     Lame`s constants 

     mass density 
     thermal relaxation parameter 
     gradient of   

 
Appendix I 
 
Consider the differential equation in the form 
 

  Lv Av
 

       where       L = 
2 2

2 2

d 1 d n

x dxdx x
  .                          (A.1) 

  
 This operator L is of frequent occurrence in problems on cylinders. 
 
Let        A = V  V-1,                          (A.2) 
 

where 
         

1

2

n

0

0

 
   
 
 

 


 is a diagonal matrix whose elements 1, 2, … n are the distinct 

eigenvalues of A. Let 
~ ~ ~

,    ,    ....,   1 2 nV V V  be the eigenvectors of A corresponding to 1, 2, …, n 

respectively, and  
 

  
~ ~ ~

,    ,   .....,   1 2 nV V V V
 

  
 

 = (xij) (say); i, j = 1, 2, …, n.             (A.3) 

 
 Substituting (A.2) in (A.1) and premultiplying by V-1, we get  
 

  
~~ ~ ~

,        where   1L y y y V v   ,             (A.4) 

 
as a system of decoupled equations.  
 A typical rth Eq. of (A.4) is  
 
  Lyr = r yr, 
 

or,   
2 2

r r
r r2 2

d y dy1 n
y 0

x dxdx x

 
      

 
.             (A.5) 
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Case (i) 
 

 When  2
r r   , the solution of Eq.(A.5) can be written as 

 
  yr = ArKn (rx) + BrIn (rx),             (A.6) 
 
n is an integer and Ar, Br are constants. Kn , In are modified Bessel functions of the second kind of order n. 
 
Case (ii) 
 

 When r =  2
r , the solution can be written as     

 
   yr = Ar Jn (rx) + Br yn(rx), n is integral                 (A.7) 
 
Jn, yn are Bessel functions of the first kind of order n.  

 Hence the complete solution in this case can be written as 
~

n

r r
r 1

v V y


 . 

 
APPENDIX II 
 
 Numerical inversions of the Laplace transform: 
Let the Laplace transform  F p  of  u t  be given by 

 

      ,pt

0

F p e u t dt p 0


   (p = transform parameter)                              (A.8) 

For the Laplace inversion we use here the Zakian algorithm.  
 
Zakian Algorithm 
 
 This algorithm is one of a class of algorithms in which f(t) is computed as a sum of weighted 
evaluations of F(p) 
 

                     
N

i i
i=1

f t = K F p  

 
where the values of Ki, pi and N are dictated by a particular method. The development of Zakian’s algorithm 
is given in Rice and Do [10] as well as in Zakian’s original paper. A significant feature of the derivation is 
the specification that the time function can be related to a finite series of exponential functions 
 

  
N

t
i

i=1

 K e i . 

 
 This significance of this specification is that Zakian’s algorithm is very accurate for over damped 
and slightly underdamped systems. But it is not accurate for systems with prolonged oscillations.  

Given F(p) and a value of time t, the following equation implements Zakian’s algorithm and allows 
us to calculate the numerical value of f(t). 
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          
5

i
i

i=1

2
f t  =   REAL FK

t t

  
  

   . 

 
 Table 1 gives the set of five complex constants for i and for Ki. 
 
Table 1. Set of five constants for i  and K for the Zakian method. 
 
                        i                        i                                               Ki   

                       1 12.83767675  +i1.666063445    -36902.08210 +i196990.4257 
                       2 12.22613209  +i5.012718792     +61277.02524–i95408.62551  
                       3 10.93430308  +i8.409673116    -28916.56288 +i18169.18531 
                       4 8.776434715  +i11.92185389     +4655.361138 -i1.901528642 
                       5 5.225453361  +i15.72952905     -118.7414011 -i141.3036911 
 
        Zakian’s algorithm is simple to implement and computes quickly. But note that the initial value, f(t) 
at t = 0, cannot be computed. Also, when there are oscillatory systems, f(t) becomes inaccurate after 
approximately the second cycle. 
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