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This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time 
convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, 
globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-
effector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques 
and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular 
terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust 
kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective 
in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or 
algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant 
manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task 
space, illustrate performance of the proposed controllers as well as comparisons with other well known control 
schemes.  

 
Key words: redundant robotic manipulator, task space trajectory tracking, robust optimal finite-time control, 
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1. Introduction 

 

 Redundant robotic manipulators have been widely employed for decades in industry. They have 
found a broad area of applications which include e.g. inserting a shaft into a bearing hole or an assembly 
of electronic components onto the small surface of printed circuit boards. These tasks require, by their 
nature, extremely high precision and stability of the performance. In order to fulfil the aforementioned 
requirements, control algorithms should take into account the following factors: uncertainties of both 
kinematic and dynamic equations and external disturbances. However, robot dynamic parameters, the lengths 
of the links, joint offsets and the object or tool which the end-effector is holding, are never known exactly 
in practice. Therefore, it is particularly important to design control strategies that ensure accurate, optimal 
and fast convergence to the stable equilibrium despite the existence of the aforementioned factors. In most 
situations met in practice, those tasks are specified in terms of a trajectory expressed in Cartesian (task) 
coordinates to be tracked by the end-effector. On the other hand, redundant degrees of freedom make 
it possible to optimally achieve some useful objectives such as collision avoidance in the work space with 
obstacles, joint limit avoidance and/or reaching some rest (preferred) posture. Thus, a controller 
to be designed for kinematically redundant manipulators should both accurately track desired end-effector 
trajectory (primary task) and optimally accomplish additive objectives (secondary task) subject to uncertain 
both kinematic and dynamic equations and external disturbances. Due to the challenging nature 
of the aforementioned control design problems, many researchers have proposed different types of controllers. 
In such a context, one can distinguish a few approaches of controlling the kinematically redundant 
manipulators. 
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 The first approach presented in works Khatib [1], Hsu et al. [2], Canudas et al. [3], Siciliano et al. [4], 
Galicki [5], Kelly and Moreno [6], Nakanishi et al. [7], Moreno-Valenzuela and Gonzales-Hernandez [8], 
Tatlicioglu et al. [9], Sadeghian et al. [10], Sadeghian et al. [11], Feng and Palaniswami [12], Zergeroglu 
et al. [13], Braganza et al. [14], Braganza et al. [15], Galicki [16], Cheah et al. [17], Li and Cheah [18], Li and 
Cheah [19], Galicki [20] is based on the application of the (generalized) pseudo-inverse of the manipulator 
Jacobian matrix in the control formulation. The control techniques offered in Khatib [1], Hsu et al. [2], Canudas 
et al. [3], Siciliano et al. [4], Galicki [5], Kelly and Moreno [6], Nakanishi et al. [7], Moreno-Valenzuela and 
Gonzales-Hernandez [8] require the full knowledge of the robot dynamics neglecting the external 
disturbances. Works Tatlicioglu et al. [9], Sadeghian et al. [10], Sadeghian et al. [11], Feng and Palaniswami [12], 
Zergeroglu et al. [13], Braganza et al. [14], Braganza et al. [15], Galicki [16], Cheah et al. [17], Li and Cheah 
[18], Li and Cheah [19], Galicki [20] present adaptive control algorithms to compensate for parametric 
uncertainties in dynamic model including only the linearly parametrizable friction terms (viscous friction) and 
also neglecting the external (non-linearly parametrizable) disturbances. Moreover, control laws from 
Tatlicioglu et al. [9], Sadeghian et al. [10], Sadeghian et al. [11], Feng and Palaniswami [12], Zergeroglu et al. 
[13], Braganza et al. [14], Braganza et al. [15], Galicki [16], Cheah et al. [17], Li and Cheah [18], Li and Cheah [19] 
use pseudo-inverse of either the exact or approximate Jacobian matrices. Our recent study Galicki [20] 
estimates the pseudo-inverse by some non-singular matrix which is adaptively computed. Model based 
robust control schemes were investigated in works Zergeroglu et al. [21], Ozbay et al. [22], Singh and 
Sukavanam [23]. The controllers proposed in Zergeroglu et al. [21], Ozbay et al. [22] ensure uniformly 
ultimately bounded end-effector and sub-task tracking despite the parametric uncertainties associated with the 
dynamic equations, an upper bound on the parameter accuracy and globally bounded external disturbances. A 
neural network based adaptive asymptotically stable control scheme, in the presence of model uncertainties 
and globally bounded external disturbances, has been designed in Singh and Sukavanam [23]. Although control 
algorithms based on the pseudo-inverse of the Jacobian matrix are attractive and further investigated by many 
researchers, they posses some shortcomings. Namely, generated controls provide only sub-optimal (and not 
optimal) solutions. Moreover, pseudo-inverse control strategies are not, in general, repeatable Shamir and 
Yomdin [24], Roberts and Maciejewski [25]. Consequently, an important class of cyclic technological operations 
(cyclic kinematic tasks) can not be accomplished by this approach. Furthermore, almost all those trajectory 
tracking algorithms require explicitly inverse or pseudo-inverse of a Jacobian matrix or its estimate which can 
potentially contain kinematic and/or algorithmic singularities. As a consequence, these algorithms can cause the 
control inputs to become unbounded what leads to vibrations of the robot. In order to tackle the singular 
configurations, the use of damped least-squares has been proposed in works Nakamura and Hanafusa [26], 
Wampler and Leifer [27] in lieu of the pseudo-inverses. Nevertheless, this technique suffers from the tracking 
errors due to a long-term numerical integration drift. Moreover, all the control schemes assume globally 
bounded disturbances when tracking the trajectory whereas e.g. a viscous friction term is globally unbounded 
with respect to joint velocity. The assumption of global boundedness of external disturbances may lead to 
deterioration of the accuracy of trajectory tracking. Finally, aforementioned controllers provide only at most 
asymptotic stability what may be insufficient for accomplishment of tasks requiring the extremely high 
precision (e.g. assembly of electronic components on the small surface of printed circuit boards). The second 
approach presented in only few works Seraji and Colbaugh [28], Peng and Adachi [29], Ott et al. [30], Oh 
and Chung [31], Colbaugh and Glass [32] is based on utilizing augmented task space techniques such as the 
extended Jacobian Balleieul [33] or the configuration control proposed by Seraji and Colbaugh [28]. In this 
approach, the dimension of the operational space is extended by incorporating as many additional constraints as 
the degrees of redundancy, and hence, the resulting system becomes non-redundant. The control algorithms 
from Seraji and Colbaugh [28], Peng and Adachi [29], Ott et al. [30] require exact dynamic model thus 
guaranteeing the asymptotic tracking. Using extended Jacobian, nominal values of the parameters of 
dynamic equations and the momentum feed-back disturbance observer, a trajectory tracking control law has 
been proposed in Oh and Chung [31] without its stability analysis. Work Colbaugh and Glass [32] presents 
an adaptive scheme for the motion control of kinematically redundant manipulator subject to parametric 
uncertainties of dynamic equations and globally bounded disturbances. In the absence of disturbances and 
under some sufficient conditions on gain parameters, control law from Colbaugh and Glass [32], is shown to 
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ensure only globally ultimately bounded Cartesian tracking error. The control formulations based on the 
augmented task space technique posses some drawbacks. The controllers offered in Seraji and Colbaugh 
[28], Peng and Adachi [29], Ott et al. [30], Oh and Chung [31] require inverse of the extended Jacobian 
matrix which can potentially contain algorithmic and/or kinematic singularities Balleieul [33] and as a 
consequence, can cause the control inputs to become unbounded even though the manipulator is not in a 
singular configuration. Moreover, due to adaptive estimations of the dynamic equations terms, control law 
presented in Colbaugh and Glass [32] seems to be very time consuming and is only stable in the presence of 
bounded disturbances which may significantly worsen the tracking accuracy. The third approach, presented 
in several papers Wolovich and Elliot [34], Siciliano [35], Kelly [36], Cheah [37], Cheah et al. [38], 
Moosavian and Papadopoulos [39] that include its stability analysis, is based on the use of the transpose of 
the Jacobian. Nevertheless, work Wolovich and Elliot [34] guarantees only ultimate boundedness provided 
that time-derivative of the desired trajectory is globally norm bounded. The asymptotically stable purely 
kinematic control scheme offered in Siciliano [35] indeed eliminates explicit computation of the inverse but 
introduces undesirable chattering effect. In work Cheah [37], it is claimed that controllers based on 
transposed Jacobian and inverse Jacobian are dual in the sense that the transformation from task space to 
joint space can be either defined as transposed Jacobian or inverse Jacobian. As was also shown in Cheah 
[37], Cheah et al. [38], approximate transpose Jacobian control law is asymptotically stable. In work 
Moosavian and Papadopoulos [39], a modified transpose Jacobian algorithm was developed which employs 
stored data of the control command in the previous time step, as a learning tool to yield an improved 
performance. Nevertheless, works Kelly [36], Cheah [37], Cheah et al. [38], Moosavian and Papadopoulos 
[39] have shown stability of the performance for the set-point control problems. 
 In this paper, a new task space non-singular terminal sliding manifold (TSM) of the first order is introduced 
to optimally track the end-effector trajectory of redundant manipulators. As is known Edwards and Spurgeon 
[40], Utkin [41], sliding mode is accurate and insensitive to disturbances. However, the main drawback 
of the standard first order sliding modes is mostly related to the undesirable chattering effect Fridman [42]. 
In order to eliminate (or to alleviate) the chattering effect, the robust sliding mode controllers, expressed both 
in a joint and task coordinates space and based on the second-order sliding techniques, have been used 
in robotic applications Galicki [43], Galicki [44], Galicki [45]. Nevertheless, the second- and higher-order 
sliding techniques can not be applied to discontinuous disturbances (e.g. to the Coulomb or Stribeck terms 
Haessing and Friedland [46], Wit et al. [47]) and/or to continuous and everywhere non-differentiable 
disturbances (e.g. to a Brownian motion) acting on the robotic manipulator. Application of filtered 
techniques to smooth out the control signals introduces additional phase delay related with recursive low-
pass filters which may further limit the performance of a closed-loop system. An approach based on application 
of the Newton predictor enhanced Kalman filter (NPEKF) which provides a wide bandwidth and somewhat 
reduces phase lag, has been proposed in Han [48]. Motivated in part by the computed torque approach Spong 
and Vidyasagar [49], Siciliano et al. [4], we introduce a new class of robust optimal controllers based on an 
estimate of the transpose Jacobian. By fulfilment of a reasonable assumption regarding the estimate of the 
extended Jacobin matrix, the proposed control scheme is shown to be finite-time stable despite uncertain both 
kinematic and dynamic equations and globally unbounded disturbances acting on the manipulator. 
The advantages of the estimated Jacobian transpose approach are that it is computationally efficient and it does 
not suffer from singularity problem. Moreover, the proposed control laws ensure both optimal solution and a cyclic 
joint trajectory provided the desired end-effector trajectory is cyclic. As opposed to other existing robust 
control algorithms, our approach both reduces the values of torques by minimizing a suitably chosen 
objective function and eliminates their oscillations by introducing a boundary layer technique. The boundary 
layer technique, introduced herein to eliminate undesirable chattering effect, guarantees (without increase 
of the controller gains) the uniform convergence of the task errors to the origin as boundary layer size tends 
to approach zero. The remainder of the paper is organised as follows. Section 2 formulates the finite-time 
trajectory tracking task. Section 3 sets up a class of task space robust optimal controllers solving the trajectory 
tracking problem in a finite-time subject to uncertain both robot kinematic and dynamic equations as well 
as unbounded disturbances. Section 4 presents computer examples of the end-effector trajectory tracking 
by a redundant manipulator of a SCARA type, consisting of three revolute kinematic pairs and operating 
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in a two-dimensional task space. Finally, some concluding remarks are drawn in Section 5. Throughout 
this paper, max ( )   denotes the maximal eigenvalue of the matrix ( ) . 

 
2. Problem formulation  
 

 The robust control scheme designed in the next section is applicable to holonomic fully actuated 
mechanical systems comprising redundant manipulators considered here which are described, in general, by the 

following dynamic equations, expressed in generalized (joint) coordinates  , ,
T

1 nq q q   Spong and 

Vidyasagar [49] 
 

  ( ) ( , ) ( ) ( , , ) ,M q q C q q q G q D t q q v        (2.1) 
 

where n  is the number of kinematic pairs of the V-th class; q  and q  represent velocity and acceleration, 

respectively expressed in generalized coordinates; ( )M q  denotes the n n  positive definite, symmetric inertia 

matrix; ( , )C q q q   is the n -dimensional vector representing centrifugal and Coriolis forces;  , ,
T

1 nv v v   

stands for the n -dimensional vector of controls (torques/forces); ( )G q  is the n -dimensional vector of generalized 

gravity forces; ( , , )D t q q  means the n -dimensional external disturbance signal which is (by assumption) at least 
a locally bounded Lebesgue measurable mapping. Without loss of generality, D   
is assumed to be upper estimated as follows 
 
  ( , , )0D t q q   ,  (2.2) 

  
where  denotes Euclidean norm; ( )0   stands for the time dependent known non-negative locally bounded 

Lebesgue measurable function. In what follows, D  is assumed in further analysis to represent both 
the friction in the sliding (viscous) and in the presliding (also called stiction) regime Haessing and Friedland 
[46], Wit et al. [47]. In such a case, D  equals 
 

   ( ( )) sign( ) exp sign( )
2

0 1 2 3 4D d q q 0 d q d q d d q q         , (2.3) 

 
where ( )q 0  means initial posture of the manipulator; 0d  denotes a stiffness coefficient for the position-friction 

torque relationship at joint velocity reversal; 1d  is a viscous damping coefficient; 2d  stands for the Coulomb 

coefficient and 3d , 4d  are constants representing the Stribeck effect. Consequently,  

 

   || ( ) || exp
2

0 0 1 2 3 4d q q 0 d q d d d q        ,  (2.4) 

 

where , ,0 3d d  stand for upper estimations of unknown coefficients , ,0 3d d  and 4d  denotes lower 

estimate of the Stribeck parameter 4d , respectively.  

 The direct kinematic mapping between joint coordinates q  of the manipulator and the end-effector 

coordinates  , ,, ,
T m

e e 1 e mp p p    can be written as  

 
  ( , ),e ep f q X   (2.5) 
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where m  is the dimension of the Cartesian space in which the end-effector operates; : n k m
ef      

denotes the m -dimensional non-linear (with respect to q ) mapping constructed from the kinematic equations 

of the manipulator;  , ,, ,
T

e e 1 e mf f f  ;  1, ,
T

kX X X  stands for an ordered set of kinematic parameters 

such as link lengths and/or joint offsets; k  denotes the number of kinematic parameters. Moreover, there 
exist upper uX  and lower lX  bounds, respectively such that  
 
  l uX X X  .  (2.6) 

 
On account of the redundant manipulator considered herein, the relation n m  holds. Its consequence 
is a possibility to augment the end-effector conventional trajectory tracking (primary task) with additional 

user-specified useful task coordinates  , ,, ,
T n m

a a 1 a n mp p p 
    (secondary task) of the following general 

form 
 
  ( , )a ap f q X ,  (2.7) 

 
where 

: n k n m
af

     is a given at least twice differentiable mapping with respect to q ;  , ,, ,
T

a a 1 a n mf f f   . 

From the practical point of view, it is particularly important to generate joint trajectory ( )q q t  in such a way 

as to minimize an objective function ( , )q X  subject to constraints Eq.(2.5). The objective function   may 
be any at least twice differentiable mapping representing a measure of some kinematic characteristic of the 
manipulator performance so that the redundant degrees of freedom are exploited to fulfil additional goals: a 
singularity avoidance, posture control, obstacle avoidance, etc. Yoshikawa [50], Maciejewski and Klein [51]. 
The general form for af , proposed, e.g., in works Balleieul [33], Perdereau et al. [52] may be expressed as  

 

  
( , )

( , )a
q X

f q X
q







 ,  (2.8) 

 

where   stands for the ( )n m n   orthogonal complementary matrix to 
( , )

( , ) ef q X
q X

q





 , i.e., T 0 .  

Without loss of generality, we shall employ a simple and practically useful optimization criterion for redundancy 
resolution with a cost function  

 

   ( ) ,rest rest
c

q q q K q q
2

  
 ,  (2.9) 

 
where ,   denotes the scalar product of vectors; c  is a positive constant; restq  stands for some rest (preferred) 

posture; K  is a positive definite diagonal weighting matrix. This criterion has been shown to be useful 

when creating human-like movement in anthropomorphic robots Cruse et al. [53]. Moreover, for ( )restq q 0 , 
minimization of criterion Eq.(2.9) results in avoiding sudden changes of manipulator configurations and consequently 
allows to reduce both the values of torques in 2L  norm and potential robot vibrations by appropriate 
weighting of joints closer to the robot base. Concatenating Eq.(2.5) with Eq.(2.8) yields the general 

kinematic and differential mappings between q  and extended task coordinates  TT T
e ap p p   
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  ( , ), ( , )p f q X p J q X q   ,  (2.10) 
  

where 

TT
T
ef f

q

        


  and 

f
J

q





 is the n n  extended Jacobian matrix. 

A task accomplished by the redundant manipulator consists in tracking both a desired end-effector trajectory 

 e m
dp t  ,  ,t 0   which is assumed to be at least twice continuously differentiable, i.e.,   ,e 2

dp C 0     

and desired user specified trajectory  a n m
dp t   which equals  a

dp t 0 . By introducing the task tracking error 

     , , ( , ) ( )
TT TT e a

1 n de e e e e f q X p t      
 

, where  
TTe T

d dp p 0   
 

; e e
e de f p  ; ae

q







 , 

we may formally express the task space finite-time control problem by means of the following equations 
 
  lim ( )

t T
e t 0


 , 

   (2.11) 
  lim ( )

t T
e t 0


 , 

 
where 0 T  denotes a finite-time of convergence of ( )f q  to dp ; ( ) ( )e t e t 0   for t T . Observe that upper 
equation of Eq.(2.11) presents for t T  a necessary condition for minimum of   subject to equality constraint 

e
e df p 0  . Let us also note that fulfilment of Eq.(2.11) makes a repetitive motion conservative, i.e., closed 

end-effector trajectory e
dp  in task space forces the corresponding closed trajectory in the joint space Shamir 

and Yomdin [24], Roberts and Maciejewski [25]. This property seems to be very useful in accomplishing 
the cyclic technological operations. Let us rewrite Eq.(2.1) in a more compact form as follows 
 
  ( ) ( , , )M q q F t q q v   ,  (2.12) 
 
where F Cq G D   . In the sequel, useful properties of Eq.(2.1), Eq.(2.12) are summarised which 
will be utilised while designing the controller. The following inequalities are satisfied Spong and Vidyasagar [49] 

 

  max
1

F
0 M    , 

 

  2
1Cq c q  ,  (2.13) 

 
  2G c , 

 
where 

F
 means Frobenius (Euclidean) matrix norm; max , 1c , 2c  are known positive scalar coefficients. 

Based on the properties of Eq.(2.13), one obtains the following upper estimation of F  
 
  ( , , )F t q q  ,  (2.14) 

 

where 
2

1 2 0c q c    . Moreover, on account of Eq.(2.6), Eq.(2.8), Eq.(2.9) and definition of J  

in Eq.(2.10), the following inequalities hold true for revolute kinematic pairs 
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  3 4 restF
J c c q q   , 

   (2.15) 

  5 6 rest

F

J
c c q q

q


  


, 

 

where  max ( , )
l uX X XF F

J J q X  ; 3c , , 6c  are known scalar coefficients. Based on relations 

Eqs (2.13)-(2.15), the next section will present an approach to the solution of the control problem Eq.(2.1), 
Eq.(2.11) and Eq.(2.12) making use of the Lyapunov stability theory. 

 
3. Task space control of the redundant robotic manipulator 

 
 Motivated in part by the static computed torque methodology Spong and Vidyasagar [49], Siciliano 
et al. [4], we propose now a new control law with transpose estimated Jacobian of the form 
 

  ˆ ,Tv J u  (3.1) 
 
where ˆ ˆ( , )J J q X  estimates the uncertain Jacobian matrix ( , )J J q X ; X̂  denotes estimation 

of the unknown kinematic parameters X ; ˆ
l uX X X  ; nu  is a new control to be determined. 

In further analysis, Ĵ  is assumed to be of the full rank in the operation region of the end-effector, i.e.,  
 

   ˆrank .J n   (3.2) 

 
Consequently, from Eq.(3.2), one also obtains that 
 

  ˆ ˆ ,1 T
n0 a JM J    (3.3) 

 

where a  denotes estimation of the minimal eigenvalue of matrix ˆ ˆ1 TJM J ; n  stands for the n n  
identity matrix. Let us note that condition Eq.(3.2) may be made somewhat more weaken. It suffices that 

for n0 x   and singular configuration q , the following condition holds true:   ˆker ,Tx J q X . In the 

sequel, matrix Ĵ  is assumed to fulfil the following inequality 
 

  
max

ˆ0 ,
F

F

a
J J

J


  

 
 (3.4) 

where   is a gain coefficient; ( , )0 1 . Due to minimization of Eq.(2.9) and construction constraints 

on q , which exist for typical industrial manipulators, the maximal value of the right hand side of Eq.(2.15) is 

finite. 

Hence, the minimal value of the right hand side of inequality Eq.(3.4) is strictly positive. In addition, let us note 

that inequality Eq.(3.4) can be in practice easily fulfilled by selection of a sufficiently accurate device 
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for measurement of kinematic parameters X  (link lengths, joint offsets). Applying Eq.(3.1) as a control 

law with transpose estimated Jacobian matrix Ĵ  gives 
 

  ˆ .TMq F J u v     (3.5) 

 
Since M  is invertible, we obtain  
 

  ˆ .1 T 1q M J u M F     (3.6) 

 
The objective is to find input signal ( )u t  and consequently control vector ( )v t , such that end-effector 

location vector p  follows dp . For this purpose, let us twice differentiate e  with respect to time thus 
obtaining 
 

  .de Jq Jq p        (3.7) 

 
Inserting the right-hand side of Eq.(3.6) into Eq.(3.7), one obtains 
 

  ˆ ,1 T
de JM J u Q p      (3.8) 

 

where 1Q JM F Jq    . Furthermore, based on Eq.(2.14) and definition of Q  in Eq.(3.8), an upper 

estimation on Q  takes the form 

 

   , , ,Q t q q   (3.9) 

 

where max
2

F
F

J
J q

q


     


  . Let  , ,

T n
1 ns s s     be a task space sliding vector  

variable. In order to overcome the limitations and shortcomings of the first order classic sliding variables 
expressed in joint coordinates Feng et al. [54], Yu et al. [55], Zhao et al. [56], we propose the following non-
singular terminal sliding manifold expressed in the task coordinates 
 

     ,21
t

0 10
s e e e d

         (3.10) 

 

where 1
a

b
  ; a , b  are positive odd numbers, a b 2a  ; 1

2
1

2

1


 


; , ,( , , )0 0 1 0 ndiag     ; 

, ,( , , )1 1 1 1 ndiag     ; ,i j  stand for positive coefficients (controller gains); :i 0 1 ; :j 1 n . In what 

follows, we give a useful result. 
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Lemma 1. If s 0  then task errors  ,e e  converge in a finite-time to the origin    , ,e e 0 0 .  

 

Proof. Identity s 0  implies equality s 0 . From Eq.(3.10), it follows that  
   

  ( ) .1 2
0 1e e e 0         (3.11) 

 
Expression Eq.(3.11) presents a known homogeneous double integrator system of negative degree equal 
to 2 1  . Finite-time stability of homogeneous system Eq.(3.11) was studied e.g. in Bhat and Bernstein 
[57], Hong [58]. Moreover, the settling-time estimation and explicit form of the Lyapunov function 
candidate for Eq.(3.11) has also been given in Hong [58]. Consequently, task errors  ,e e  converge 

for s 0  in a finite-time to the origin    , ,e e 0 0 .  

 In order to fulfil equality constraints Eq.(2.11), a (simple) robust task space control law is proposed 
as follows 
 

    
    , , , ,    for 

, , ,  , 

otherwise

c s
t e e t q q c s 0

a su t q q e e

0

     



 
 

 
 (3.12) 

 

where ( )1 2
0 1 de e p       ; c , c  are positive constant gains to be specified further on. Consequently, 

vector v  can be found from the following equation with u  given by Eq.(3.12) 
 

     ˆ, , , , , .Tv J q X u t q q e e    (3.13) 

 
Let us observe that control law Eq.(3.12), Eq.(3.13) requires on-line measurements of quantities , ,q q e  
and e , respectively which are assumed for a moment to be available. The aim is to provide conditions 
on controller gains 0 , 1 , c  and c , which guarantee fulfilment of equalities Eq.(2.11). Applying 
the Lyapunov stability theory, we now derive the following result. 
 

Theorem 1. If Ĵ  fulfils inequality Eq.(3.3) along desired end-effector trajectory dp , 
1

c
1




, c 0   and 0 , 

1 0  , then control scheme Eqs (3.12)-(3.13) guarantees stable convergence in a finite time of the task 

space tracking errors  ,e e  to the origin    , ,e e 0 0 . 

Proof. Consider the following Lyapunov function candidate 
 

  , .
1

V s s
2

     (3.14) 

 
Differentiating Eq.(3.14) with respect to time and taking into account definition Eq.(3.10) results in the following 
expression 
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   , .21
0 1V s e e e

         (3.15) 

 
Inserting the right hand side of Eq.(3.8) into Eq.(3.15) results in  
 

   ˆ, , , .211 T
0 1 dV s JM J u s e e p s Q

          (3.16) 

 
Substituting u  from Eq.(3.16) for the right-hand side of Eq.(3.12) gives the following equality 
 

     ˆ, , , .211 T
0 1 d

c s
V s JM J c s e e p s Q

a s
                (3.17) 

 
Let us transform the first term of the right hand side of Eq.(3.17) into a convenient form  
 

              ˆ ˆ ˆ ˆ ˆ, , ,1 T 1 T 1 Tc s c
s JM J c c s JM J s s J J M J s

a s a s
              

    . 

 

Based on the assumption regarding the rank of matrix Ĵ , expression Eq.(3.3) and using obvious inequality 
ˆ

FF
J J , we obtain, after simple algebra, the following estimation of the first term of V  from Eq.(3.17) 

 

  
   

 max

ˆ,

ˆ .

1 T

FF

c s
s JM J c c s c

a s

c
s J J J c

a

         

    

   

 

  (3.18) 

 
From Eq.(3.4), it follows that  
 

      ˆ, .1 T c s
s JM J c s c 1 c

a s
                (3.19) 

 

Let us estimate the sum of the last two terms of V  from Eq.(3.17). Applying assumption regarding c  from 

Theorem 1, we obtain after simple algebra that 
 

     , , .21
0 1 ds e e p s Q s c

              (3.20) 

 

Consequently, V  can be upper estimated as follows 
 

      .V s c c 1 1             (3.21) 

 
Based on the assumption regarding c  and c  from Theorem 1, we finally obtain that 
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        .V s c c 1 1 c c 1 1 s                     (3.22) 

 
Since  c 1 1 0     , inequality Eq.(3.22) proves that TSM s 0  is attainable in a finite time T   less 

or equal to 
 

( )

| |

2V 0

c c 1 1    
. Consequently, from Lemma 1, it follows that the origin    , ,e e 0 0  

is attainable in a finite time T T  .  

A few remarks may be made regarding the controller Eqs (3.12)-(3.13) and Theorem 1.  

Remark 1. Observe that control law given by Eqs (3.12)-(3.13) is a feed-back adjustable function equal 
to c   . The control laws known from the literature (see e.g. Bartolini et al. [59], Bartolini et al. [60], 
Bartolini et al. [61], Ferrara and Capisani [62], Spong and Vidyasagar [49], Siciliano et al. [4]) require 
boundedness of q  which implies large controller gains to cope with the uncertainty over the whole operation 
region. 

Remark 2. It is also worth to notice that our feed-back adjustable amplitude term  c
c

a
    makes 

it possible to cope with globally unbounded uncertainties. In general, in that case, only local uncertainty 
suppression is available in the literature for redundant systems.  

Remark 3. Non-singular sliding variable s  defined by Eq.(3.10) has a nice property for a typical regulation 
task ( )e 0 0  which implies ( )s 0 0 . If this is the case, from Eq.(3.22), ( )s 0 0  and Eq.(3.14), it follows 

that ( )V t 0  and consequently ( )s t 0 (TSM s 0  is attained at t 0 ).  

Remark 4. Let us note that expressions Eqs (3.12)-(3.13) present also a transposed Jacobian controller. 
However, works Kelly [36], Cheah [37], Cheah et al. [38], Moosavian and Papadopoulos [39] have shown 
stability of the performance for the set-point control problems. On the other hand, Theorem 1 provides 
stability analysis for the trajectory tracking problems. Moreover, transposed Jacobian controller Eqs (3.12)-
(3.13) is able to attain the stable equilibrium    , ,e e 0 0  in a finite time. Due to involving the sliding 

mode term in u , controller Eqs (3.12)-(3.13) is also robust against uncertainties of both kinematic and dynamic 
equations as well as external unbounded disturbances. 

Remark 5. In controller Eqs (3.12)-(3.13), the term 
s

s
 will cause undesirable chattering effect in a small 

neighbourhood of s 0  which results in torque oscillations and consequently in robot vibrations. In order 
to eliminate the chattering and consequently reduce robot vibrations, a boundary layer control law may be used 
in place of u  given by Eq.(3.12) of the following form 
 

   
 

 

for ,

, , , ,

otherwise

 

,

c s
c s

a s
u t q q e e

c s
c

a

   


  







 
  

 


 (3.23) 

 
where   is a user specified arbitrarily small positive real number. Substituting u  in Eq.(3.16) for the right-
hand side of Eq.(3.23), we have after simple algebra that 
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 

   

ˆ, ,

, .

211 T
0 1 ds JM J u s e e p

c s
s Q s c 1 1

      

 
        
 

 

 


 

 

Consequently,  ˆ, , ,211 T
0 1 ds JM J u s e e p s Q 0

          for 
 

( , )s s t
c 1

 
 


 .  

Since ( , )s t   is bounded for t T   and continuously differentiable mapping with respect to time, we conclude 

that ( , )s t   is bounded too, i.e., ( , )s t     in an arbitrarily large but finite and closed time interval;    . 

Differentiating equation Eq.(3.10) with respect to time results in the following expression 
 

     , 21
0 1e s t e e

        (3.24) 

 

for 0  and t 0 . Moreover, from the proof of Theorem 1, it follows that   21
0 1e e e

      for t T   

and 0 . Introducing auxiliary Lyapunov function candidate ,110
a

1

1
V e e e

1 2


 
 

   then taking 

its derivative and using Eq.(3.24), we obtain after simple algebra that  2
1,|| || || || min { }|| ||a i iV e s e      . 

Consequently, aV 0  for 
 ,min

2

1

i 1 i

e
 

 
  




 
 which means boundedness of e . Furthermore, 

( ) ( ), ( )1 11 10 0

1 1

1
e e 0 e 0 e 0

1 1 2
  

 
 

   which implies boundedness of e . Moreover, the following 

inequality holds true for each e , e ,  ,t T T  , T T     and 0 : 

           
, , |2 21 1

t t

0 1 0 0 1T T

2
s t e e dt s t e e dt

c 1

   
        

     


  , where ( , ) | 0s t 0   , 

which means uniform convergence with respect to t  of integral     , 21
t

0 1T
s t e e dt

        

to     , | 21
t

0 0 1T
s t e e dt

 
      as 0 . Finally, from Filippov [63] (Theorem 7), it follows 

that task error ( , )e e t   as being the solution of control problem Eq.(3.13) and Eq.(3.23), converges uniformly 

to ( , ) | 0e t 0  , i.e., ( )( )(|| ( , ) || )0 0 e t        for t T . Consequently, control law Eq.(3.13) 

and Eq.(3.23) guarantees that the norm bounds on ( , )e t  , ( , )e t   can be made arbitrarily small without 
increase of controller gains. 

Remark 6. Let us note that the performance improvement of controller Eq.(3.13) is achieved by an increase 
of control contribution  , ,t e e  in Eq.(3.12) for small tracking errors, because for 10 1    and | ( ) |ie t 1  

we have 1| ( ) | | ( ) |i ie t e t  . Also, when the tracking error is large (especially at the beginning of the control 

process), the terminal sliding mode controller Eq.(3.13) gives smaller control effort than that resulting from 

a linear sliding mode since ( ) ( )1
i ie t e t

   for ( )ie t 1 .  
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Remark 7. Observe that term 1 ˆ,s JM Ju  in Eq.(3.16) can be transformed after simple algebra as follows 

   ˆ ˆ ˆ ˆ ˆ, , ,1 1 T 1 Tc
s JM Ju c s JM J s s J J M J s

a s
          

  . Let Ĵ  be singular 

at manipulator configuration q  and   ˆker ,T0 s J q X  . Hence, for sufficiently large c , term 

ˆ, 1s JM Ju  can take arbitrarily large negative values which implies negative value of time derivative V . 

Consequently, controller Eqs (3.12)-(3.13) or Eq.(3.13), Eq.(3.23) is able to generate manipulator motions 

which can pass through singular manifold    ˆ: det ,q J q X 0   .  

Remark 8. Let us note that if the conventional trajectory tracking is only taken into account (without 
objective function  ) in the control problem then the robotic manipulator becomes strictly redundant, i.e., 

n m . In such a case by defining the task space TSM es  as  
. . 2

1te e e e
0 10

s e e e d


              

 , controller 

Eqs (3.12)-(3.13) may be simplified to the following form 
 

   ˆ , , , , .T e e ev u t q q e e     (3.25) 

 

where  ˆˆ ,q X   and  

      for
, , , ,

otherwis

 
 

e,

 
e

ee
e e ee e e e

e

c s
c s 0

au t q q e e s

0

  










 
 

 (3.26) 

 

 
. 2

1e e e
e 0 1 de e p


  

      
 

 ; max
2

e F
F

q
q


    




   ; e
1

c
1


 

, ec 0  ; ea  denotes 

estimation of the minimal eigenvalue of matrix ˆ ˆ1 TM    along desired trajectory dp ; 3F
c ; 5

F

c
q







. 

 In most cases, real robotic manipulators are equipped with encoders which measure only joint positions 
and/or task errors. Hence, reconstruction or estimation of joint velocity and task space error velocity 
is required to apply controller Eqs (3.12)-(3.13) or Eq.(3.13), Eq.(3.23). Application of Luenberger-style 
observers Canudas et al. [64], El Beheiry [65], high-gain observers Khalil and Praly [66], Ball and Khalil [67], 
model-free observers De Luca et al. [68], Hsiao and Weng [69] or a class of observers based on the sliding-
mode algorithms Davila et al. [70] seems to be an efficient approach to reconstruct both q  and e . Although 
all the aforementioned observers are able to reliably reconstruct manipulator state (both joint velocity and task 
space error velocity) based on position measurement q  and task error e , there appears a difficulty to combine 
our control law and an observer from Canudas et al. [64], El Beheiry et al. [65], Khalil and Praly [66], Ball 
and Khalil [67], De Luca et al. [68], Hsiao and Weng [69]. In order to make such combination possible, 
observers proposed in works Canudas et al. [64], El Beheiry et al. [65], Khalil and Praly [66], Ball 
and Khalil [67], De Luca et al. [68], Hsiao and Weng [69] have to satisfy the so-called separation principle 
Atasi and Khalil [71] which implies both the continuity of the controllers from Canudas et al. [64], 
El Beheiry et al. [65], Khalil and Praly [66], Ball and Khalil [67], De Luca et al. [68], Hsiao and Weng [69] 
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with the fully available state and asymptotic stability of the closed-loop system under the continuous state 
feed-back controllers. Let us observe that our control law Eqs (3.12)-(3.13) is discontinuous and Eq.(3.13), 
Eq.(3.23) is not asymptotically stable what prevents an application of the state observers from Canudas et al. [64], 
El Beheiry et al. [65], Khalil and Praly [66], Ball and Khalil [67], De Luca et al. [68], Hsiao and Weng [69]. 
Although the observer offered in Davila et al. [70] fulfils the separation principle, our controller handles 
unbounded uncertainties (in kinematics, dynamics and disturbances) and does not require boundedness of q  

and e , respectively. A computationally efficient approach based on the uniform robust exact finite-time 
differentiation has been recently proposed in works Levant and Livne [72], Levant [73] to numerically find 
derivatives of absolutely continuous functions. The separation principle is trivially fulfilled for differentiators 
(model-free observers) from Levant and Livne [72], Levant [73]. Assuming that position ( )q q t  and task 

error ( )e e t  are known (measurable), one can exactly reconstruct both joint velocity ( )q t  and task error 

velocity ( )e t  (by neglecting the measurement noise of a device) after finite-times of transient processes, 

say ,q eT T 0   , respectively. The first-order uniform robust exact differentiators (model-free observers) take 

in our case the following forms 
 

  

/ /ˆ ( ) | | sign( ),

ˆ ( )sign( ),

q 1 2 1 2
0 1 q 0 01

q
1 q 00

y y L t y q y q

y L t y q

    

  





  (3.27) 

and 
 

  

/ /ˆ ( ) | | sign( ),

ˆ ( )sign( ),

e 1 2 1 2
0 1 1 e 0 0

e
1 0 e 0

z z L t z e z e

z L t z e

    

  





  (3.28) 

 

where ˆ q
0 , ˆ q

1 , ˆ e
0 , ˆ e

1 , are positive constants. 1y , 1z  denote the outputs of differentiators Eqs (3.27)-(3.28) 

exactly reconstructing joint velocity ( )q t  and task error velocity ( )e t , i.e., ( ) ( )1q t y t , ( ) ( )1e t z t  

for  max ,q et T T  . 0y , 0z  stand for estimations of q  and e , respectively. By substituting q  and e  

in Eq.(3.12) or Eq.(3.23) for their corresponding estimates 1y  and 1z  from Eqs (3.27)-(3.28), we obtain 
the following trajectory tracking controller 
 

   ˆ , , , , ,T
1 1v J u t q y e z  (3.29) 

with 
 

   
 

 

for ,

, , , ,

otherwise,

 

  

     
1 1

c s
c s

a s
u t q y e z

c s
c

a

 







  

  

 


  (3.30) 

 
which requires only the measurements of joint position q  and task error e . ( )qL t , ( )eL t  stand for positive 

continuous functions which take the forms max( ) (|| || )qL t v   and ( ) ( )
2

e q 1 dF
F

J
L t J L t y p

q


    


 , 
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respectively. ( )qL t , ( )eL t  represent physically upper estimations of the norms of q , e  (manipulator joint 

acceleration and task error acceleration), respectively. In a general case, if measured joint position ( )q q t  

and task error ( )e e t , obtained from encoders, are additionally contaminated by a measurement noise ( )t , 

i.e., ( ) ( ) ( )0q t q t t   , ( ) ( ) ( )0e t e t t   , where  || || min ( ), ( )q eL t L t    ;   denotes a normalised noise 

magnitude (practically [ , ]4 310 10  ); ( )0q t , ( )0q t , ( )0e t , ( )0e t  stand for unknown true (noise-free) 
joint position, velocity, task error and task error velocity, respectively, then observers Eq.(3.27), Eq.(3.28) should 
also be applied to estimate quantities e  and e . Notice from equations Eq.(3.27), Eq.(3.28) that

( ) ( ) ( ) ( )0 0 qq t y t L t O   ,  /( ) ( ) ( ) 1 2
0 1 qq t y t L t O    and ( ) ( ) | ( ) ( )0 0 ee t z t L t O   , 

 /( ) ( ) ( ) 1 2
0 1 ee t z t L t O    after a finite transient time Levant and Livne [72], Levant [73]. Moreover, we 

know from Remark 5. that ( )0e O  , ( )0e O   after a finite transient time too, where ( )O   is the same 

order as  . Consequently, for task error norm estimation ˆ 0e z  and ˆ 1e z , we obtain after simple 

algebra the following upper estimates for chattering-free torque-reduced controller Eqs (3.29)-(3.30) subject 

to the measurement noise: ˆ ( ) ( ) ( )ee L t O O    ;  /ˆ ( ) ( )1 2
ee L t O O    . 

 
4. Numerical examples 
 
 This section demonstrates the performance of the controllers given by expressions Eqs (3.12)-(3.13); 
Eq.(3.13), Eq.(3.23); Eqs (3.25)-(3.26) and Eqs (3.29)-(3.30) on a selected robotic manipulator task. 
Moreover, a numerical comparison of our control schemes to other well known controllers is also drawn. 
For this purpose, we utilise a dynamic three-joint direct-drive arm ( n 3 ) of a SCARA-type robotic 
manipulator operating in the two-dimensional task space ( m 2 ) whose kinematic scheme is shown in Fig.1, 

where  , ,
T

1 2 3X X X X  stands for the ordered set of link lengths. 

 
 

 
 

Fig.1. A kinematic scheme of the manipulator and the task to be accomplished. 
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In all numerical simulations, the SI units are used. The (nominal) link lengths are assumed to be equal 

to ( . . . )T
nX 0 4 0 36 0 3 . The estimation term X̂  takes in all the simulations the form as follows 

ˆ ( . . . )TX 0 5 0 28 0 35 . The coefficients of disturbance term D  and their estimations are assumed 

in all the experiments to take the following scalar values: 0 0d d 2  , 1 1d d 2  , 2d 5 , 2d 7 , 3d 2 , 

3d 3 , .4d 0 2  and 4d 0 , respectively. In order to numerically compare our controllers with those known 
from the literature, we reformulate dynamic equations Eq.(2.1), Eq.(2.12) to a partially linearly 
parametrizable form as follows Spong and Vidyasagar [49] 

 

        
.

, , , , , sign exp sign ,
2e e

2 3 4Mr Cr e e q q Y d q d d q q v
 

       
 

         (4.1) 

 

where    # #e
d nr q p e 10

q


    


  
    denotes a filtered tracking error signal Zergeroglu et al. [21], 

Ozbay et al. [22],  , nq X  ; 
.

, , , , ,e e n de e q q  
    

 
     is the regression matrix; 

       # # # # ( ( ))e e
d n d n 0 1

d
Y M p e 10 C p e 10 G d q q 0 d q

dt q q

    
                   

   
       ; d  

stands for the minimal number of the dynamic parameters, which are combinations of physical link 
parameters of individual links and coefficients of continuous linear friction terms; Y  is the constant 
parameters vector (link mass, link inertia, friction coefficients, etc.);  stands for a constant gain coefficient. 
The components of the dynamic equations of the manipulator from Fig.1 (without disturbance term D ) 
are as follows Galicki [20]  
 

  
,

,ij 1 i j 3
M M

 
     

 
  ,11 1 4 5 6M Y 2Y c2 Y c23 Y c3     
 

  ,5
12 2 4 6

Y
M Y Y c2 c23 Y c3

2
     

 

  ,5 6
13 3

Y Y
M Y c23 c3

2 2
    

 
  ,21 12M M  
 
  ,22 2 6M Y Y c3   (4.2) 
 

  ,6
23 3

Y
M Y c3

2
   

 
  ,31 13M M  
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  ,32 23M M  
 
  ,33 3M Y  

   

  
,

,ij 1 i j 3
C C

 
     

 

      ,11 4 5 2 5 6 3C Y s2 Y s12 q Y s12 Y s12 q       

 

       ,12 4 5 1 2 5 6 3C Y s2 Y s12 q q Y s12 Y s12 q         

  
     ,13 5 6 1 2 3C Y s12 Y s12 q q q        

 

    ,21 4 5 1 6 3C Y s2 Y s12 q Y s3q     (4.3) 

 

    ,22 5 6 3C Y s12 Y s12 q     

  

    ,23 6 1 2 3C Y s3 3q q q       

 

    ,31 4 5 1 6 2C Y s2 Y s12 q Y s3q     

 

    ,32 6 1 2C Y s3 q q    

 
  ,33C 0  
 

   
7 8 9

8 9

9

Y c1 Y c12 Y c123

G Y c12 Y c123

Y c123

 
 
 


 


 



,  (4.4) 

 

where  cos ici q ;  sin isi q ;  cos i jcij q q  ;  sin i jsij q q  ;  cos i j kcijk q q q   ; 

 sin i j ksijk q q q   . Parameters  , , , ,
T

1 9 0 1Y Y Y d d   (including coefficients of continuous linear friction 

terms) take the following nominal values: ( . . . . . . )T
nY 7 7 2 4 0 4 2 6 1 3 1 2 128 64 16 2 2 . Based on Eqs (4.1)-

(4.4) and the knowledge of nX , nY , a numerical comparison of our controller Eqs. (3.29)-(3.30) 
to a well known robust controller from Zergeroglu et al. [21], Ozbay et al. [22] will also be carried 
out in this section. The control law proposed in Zergeroglu et al. [21], Ozbay et al. [22] is given by the following 
expression 
 

  ˆ ,T e
Rv Y Kr e v      (4.5) 
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where 
|| ||

2

R
r

v
r




  
 is an auxiliary robust control term designed to compensate for unknown nonlinear part 

of disturbances and parameter uncertainties of terms M , C  and G , respectively; K  denotes a gain 

coefficient, Ŷ  means the best guess estimates (of the unknown parameters Y ). Let us note that controller 
Eq.(4.5) requires the full knowledge of kinematic parameters X . Moreover, according to Zergeroglu et al. [21], 
Ozbay et al. [22], the best values for   and   equal 10  , .0 01 , respectively. The initial configuration 

and velocity of the manipulator are equal in all the experiments to ( ) ( / , / , )Tq 0 2 2 0   , ( ) ( , , )Tq 0 0 0 0 , 
respectively. To compare the performance of controllers Eqs (3.12)-(3.13) and Eqs (3.25)-(3.26), 
our estimates for controllers Eqs (3.12)-(3.13); Eqs (3.25)-(3.26); Eq.(3.13), Eq.(3.23) and Eqs (3.29)-(3.30) 
are chosen as .ea a 0 2  ; max 6  . In order to simplify numerical computations, rough conservative 

estimations of ic , :i 1 6  have been assumed. Hence, positive constant coefficients ic , :i 1 6  were chosen 

as follows 1c 10 , 2c 240 , .3c 0 07 , .4c 0 0007 , .5c 0 00022  and .6c 0 000022 , respectively.  

 The task realized by controllers Eqs (3.12)-(3.13); Eqs (3.25)-(3.26); Eq.(3.13), Eq.(3.23); 
Eqs (3.29)-(3.30) and Eq.(4.5), is to track by the end-effector a circle trajectory, expressed by the following 
equations (see the solid circle trajectory in Fig.1) 
 

  ( ) ( . . cos( ), . . sin( )) .e T
dp t 0 4 0 15 t 0 4 0 15 t     (4.6) 

 

 In order to attain the convergence of task errors ee  less or equal to 310  in approximately the same 
time, the following numerical values of gain coefficients for all the controllers are taken: K 245 , 

.374 5  , .K 0 05 , c 1 , ( )restq q 0 , .ec c 1 46  , .ec c 0 5   , 0 51  , 1 46   and 1
3

5
  , 

respectively. In order to speed up the convergence process of differentiators Eqs (3.27)-(3.28), we have chosen 
good initial guesses ( )1y 0 , ( )1z 0  in the numerical examples (which imply relations qT 0   and eT 0  ) based 

on the nominal values of both our kinematic and dynamic models. Consequently, differentiators Eqs (3.27)-(3.28) 

were run with the following initial values ( )0y q 0 , ( ) ( )1y 0 q 0  , ( ) ( ) ( . . )T
0z 0 e 0 0 11 0 8 0   , 

( ) ( ) ( . )T
1z 0 e 0 0 0 15 0    and parameters ˆ ˆ .q e

00 1 1    ; ˆ ˆ .q e
11 1 4    , respectively. Due to conservative 

nature of estimates qL  and eL  in Eqs (3.27)-(3.28), they are assumed for simplicity of computations 

in all the simulations to be equal to max( ) ( ) (|| || )e qL t L t v    . Let us also observe that filtered tracking 

error r  in Eq.(4.5) plays a role of linear sliding variable with respect to ee  whereas its corresponding term 

s  in  Eqs (3.29)-(3.30) is a non-linear function of ee . In order to better visualise time courses of the task  

errors for all the controllers, we omit in the simulations an initial approaching phase of the end-effector 

to desired trajectory e
dp . Consequently, the trajectory tracking is exhibited for [ ]t 5 9 . 

 The aim of the first experiment is to both compare the performance of the two proposed controllers 

Eqs (3.12)-(3.13); Eqs (3.25)-(3.26) and exhibit the role of objective function   by reducing the torque v   
in the [ , ]2L 1 9  norm. The results of the simulations are depicted in Figs 2-6. As is seen from Figs 2, 4, both 

controllers generate tracking errors ee  which are practically equal to zero. Moreover, Fig.5 indicates that 

controller Eqs (3.12)-(3.13) provides optimal manipulator movements ( ae  practically equals 0) whereas 

control law Eqs (3.25)-(3.26) does not generate optimal solution ( ae 0 ). As is also seen from Figs 3, 6, 
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control scheme Eqs (3.12)-(3.13) results in smaller torque norm || ||v 389  (defined in [ , ]2L 1 9  norm 

as || || ,
9

1

1
v v v dt

2
   ) than that obtained from Eqs (3.25)-(3.26) and equal to || ||v 611 .  

In order to both eliminate the chattering effect and exhibit the role of feed-back amplitude adjustable term 

 c
c

a
    from Eqs (3.29)-(3.30) compared with the corresponding constant term   from Eq.(4.5) in 

 the second experiment, components of dynamic equations Eqs (4.2)-(4.4) together with coefficients 
of continuous linear friction terms 0d , 1d  are assumed in this experiment to be fully known, i.e., 

the following equality is now fulfilled: ˆ
nY Y . Moreover, application of controller Eq.(4.5) requires the full 

knowledge of the set X , i.e., we  assume that  nX X . The results of computer simulations are presented  

in Figs 7-9. As is seen from Figs 7-8, controller Eqs (3.29)-(3.30) generates tracking errors ee  and ae  which 

are also practically equal to zero compared with controller Eq.(4.5) using the full knowledge of both robot 

kinematic and dynamic equations. This fact is a consequence of Remark 6. and linear dependence of r  

on ee . 

 Moreover, Fig.8 indicates that controller Eqs (3.29)-(3.30) provides practically optimal manipulator 

movements whereas control law Eq.(4.5) generates only suboptimal solution (controller Eq.(4.5) results  

in ae 0 ). As is also seen from Fig.9, control scheme Eqs (3.29)-(3.30) results in smaller torque norm 

|| || .v 184 7  than that obtained from Eq.(4.5) and equal to || || .v 202 8 . This fact is a consequence of both 

torque minimizing role of objective function   and Remarks 1, 2 explaining the role of the feed-back 

adjustable  amplitude term  c
c

c
     which varies over the manipulator operation region with respect  

to the changing uncertainty bounds. Alternatively, the corresponding amplitude term   from Eq.(4.5) 

is constant in the whole operation region. 

 

 
 

Fig.2. Position errors ee  for controller Eqs (3.25)-(3.26) when tracking the trajectory dp . 
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Fig.3. Euclidean norm of v  for controller Eqs (3.25)-(3.26) when tracking the trajectory dp . 
 

 
 

Fig.4. Position errors ee  for controller Eqs (3.12)-(3.13) when tracking the trajectory dp . 
 

 
 

Fig.5. Task errors ae  for controllers Eqs (3.12)-(3.13) and Eqs (3.25)-(3.26) when tracking the trajectory dp . 
 



Kinematically optimal robust control of redundant manipulators 859 

 
 

Fig.6. Euclidean norm of v  for controller Eqs (3.12)-(3.13) when tracking the trajectory dp . 
 

 
 

Fig.7. Position errors ee  for controllers Eqs (3.29)-(3.30) and (4.5) when tracking the trajectory dp . 
 

 
 

Fig.8. Task errors ae  for controllers Eqs (3.29)-(3.30) and (4.5) when tracking the trajectory dp . 
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Fig.9. Euclidean norm of v  for controllers Eqs (3.29)-(3.30) and (4.5) when tracking the trajectory dp . 
 

 In the third experiment, both measured position q  and task error e  have additionally been contaminated 

by a measurement noise of a Brownian motion of the form ( ) ( )3d t 10 t X t dt   for [ , ]t 0 9 ; 

( ) ~ ( , )X t N 0 1 . The results of simulations are given in Figs 10-11 which indicate a good performance 

of controller Eqs (3.29)-(3.30) subject to measurement noise. The peak of ê  for .t 7 2  in Fig.10 is a result 

of the Coulomb and Stribeck discontinuity friction terms with respect to q  depicted in Fig.11.  
 

 
 

Fig.10. Euclidean norm of estimated task errors ê  for controller Eqs (3.29)-(3.30) with measurement noise. 
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Fig.11. Joint velocities q  for controller Eqs (3.29)-(3.30) with measurement noise. 

 
5. Conclusions 
 
 A new class of task space TSM controllers with the finite-time convergence property of the desired 
trajectory tracking by n -DoF redundant manipulator whose end-effector operates in the m -dimensional task 
space, has been proposed in this paper. Moreover, a novel non-singular TSM manifold was incorporated into 
control scheme. The main feature of the control law proposed is both the elimination of the manipulator 
Jacobian inverse or pseudo-inverse from the end-effector trajectory tracking and copying with the unbounded 
disturbances. Instead, estimate of the Jacobian transpose matrix has been used. Applying the Lyapunov 
stability theory, control strategy Eqs (3.12)-(3.13) is shown to be finite-time stable by fulfilment of practically 
reasonable assumptions. In order to eliminate undesirable chattering effect, a boundary layer control was 
proposed guaranteeing arbitrarily small bounds on the tracking errors without increase of the controller 
gains. Numerical simulations have shown that controller Eqs (3.29)-(3.30) is superior to a well known robust 
control scheme Eq.(4.5) in accuracy of the trajectory tracking. Although our control technique needs 
knowledge extracted from the system equations of the robot, the approach is able to handle uncertainty 
(in kinematics, dynamics and disturbance) occurring in the system.  
 
Nomenclature 
 

     – an objective function to be minimized 

   , C q q q    – the n-dimensional vector representing centrifugal and Coriolis forces 

   , , D t q q   – the n-dimensional external disturbance signal 

   , , 
T

1 ne e e    – the task tracking error 

   G q   – the n-dimensional vector of generalized gravity forces 

  
f

J
q





  – the n n  extended Jacobian matrix 

   ˆ ˆ, J J q X   – estimation of the uncertain Jacobian matrix 

  k – the number of kinematic parameters 
   M q   – the n n  positive definite, symmetric inertia matrix 

     – the  n m n   orthogonal complementary matrix to  , J q X   

 n – the number of kinematic pairs of the V-th class 
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    
TT T

e ap p p   – extended task coordinates 

   , , , , 
T

a a 1 a n mp p p    – additional user-specified useful task coordinates 

   , , , , 
T

e e 1 e mp p p    – the end-effector coordinates 

   e m
dp t    – a desired end-effector trajectory 

   e 2
dp C    – desired user specified trajectory 

   , , 
T n

1 ns s s     – a task space sliding vector variable 

  nu   – a new control to be determined 

   q 0   – initial posture of the manipulator 

  , , 
T

1 nq q q    – generalized (joint) coordinates 

  q , q   – velocity and acceleration, respectively expressed in generalized coordinates 

   , , 
T

1 kX X X    – an ordered set of kinematic parameters such as link lengths and/or joint offsets 

   0    – the time dependent known non-negative locally bounded Lebesgue measurable function 

     – a user specified arbitrarily small positive real number 
   t   – a measurement noise 

   , , 
T

1 nv v v    – the n-dimensional vector of controls (torques/forces) 

  0 T   – a finite-time of convergence of  f q  to dp  

  n   – the n n  identity matrix 
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