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This paper presents an analysis of low-frequency liquid vibrations in rigid partially filled containers with 
baffles. The liquid is supposed to be an ideal and incompressible one and its flow is irrotational. A compound 
shell of revolution is considered as the container model. For evaluating the velocity potential the system of 
singular boundary integral equations has been obtained. The single-domain and multi-domain reduced boundary 
element methods have been used for its numerical solution. The numerical simulation is performed to validate the 
proposed method and to estimate the sloshing frequencies and modes of fluid-filled cylindrical shells with baffles 
in the forms of circular plates and truncated cones. Both axisymmetric and non-axisymmetric modes of liquid 
vibrations in baffled and un-baffled tanks have been considered. The proposed method makes it possible to 
determine a suitable place with a proper height for installing baffles in tanks by using the numerical experiment.  
 
Key words:  baffles, liquid sloshing, free vibrations, boundary element method, single and multi-domain 

approach, singular integral equations. 

 
1. Introduction  
 
     The motion of liquids in partially filled tanks and containers has been the subject of many studies in 
the past few decades because of its frequent applications in different engineering areas such as aerospace and 
chemical industry, wind power engineering, transport, etc. Usually, liquid storage tanks contain oil or other 
flammable or toxic liquids. Destruction of these tanks by seismic or shock waves from a nearby explosion 
can lead to an environmental disaster.  
 Slosh control of propellant is a significant challenge to spacecraft stability. Mission failure has been 
attributed to slosh-induced instabilities in several cases as it was described by [1-2].  
 As the propellant level decreases throughout a mission, the effects of sloshing forces on the 
remaining fuel become more prominent. When the fuel tank is full or nearly so, the fuel lacks the open space 
to slosh. But in the latter stages of the mission, when most of the fuel has been consumed, the fuel has 
sufficient volume to slosh and possibly disturb the flight trajectory. 
 In order to restrain the fluid sloshing a common technique is to place additional sub-structures called 
baffles or separators within the tank as it was reported by Strandberg [3]. Baffles with orifices can be found 
in some contemporary road tankers carrying fuel, oils or liquefied natural gas. This kind of baffle can 
attenuate the impact forces on the baffle.  
 Baffles are commonly used as the effective means of suppressing the magnitudes of fluid slosh, 
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although only a few studies have assessed roles of baffle design factors [4-5]. Anti-slosh properties of baffle 
designs have been investigated through laboratory and numerical experiments employing small size tanks of 
different geometry [4-9]. The experimental investigation of sloshing processes is difficult and sometimes 
impossible for various reasons. So the basic approach for these problems is mathematical modelling with 
numerical methods [10-14]. The effect of size and location of baffle on sloshing frequencies has been 
reported only in several studies involving rectangular and a generic cross-section tank [4, 9, 11]. Jin Yan et 
al. [15] analyzed effectiveness of different baffle designs in limiting the manoeuvre-induced transient 
sloshing in a partly-filled tank. Theoretical and experimental research was accomplished in [16, 17] devoted 
to sloshing problems in rectangular, cylindrical and conical liquid tanks with baffles. The horizontal ring and 
vertical blade baffles and their damping effects were investigated by Liu and Lin [18]. After comparing the 
tanks without baffles with ones with baffles, it was found by Kashani et al. [19] that the sloshing mode, basic 
frequencies and free surface shape are all affected by baffles. 
 In this paper we developed the multi-domain boundary element method for solving the problems of 
liquid free vibrations in rigid tanks with different kinds of baffles. The benchmark tests are considered to 
validate the obtained results. The results of this paper allow us to extend the applicability of the boundary 
element method. 
 
2. Mathematical formulation  
 
2.1. Problem statement 
 
 The partially fluid-filled shell of revolution of an arbitrary meridian with internal baffles installed to 
damp sloshing is considered. The shell structure and its sketch are shown in Fig.1. The shell surface is 
denoted through  and the free surface of a liquid is S0. So bot bafwS S S    , where Sw is the wall 

surface, Sbaf 
iSbaf  is the surface of baffles and Sbot is the bottom surface. 

 

      
 

Fig.1. Shell structure with internal baffles (a) and its sketch (b). 
 

 The sloshing problems have to be described using the Navier-Stokes equations with the non-
penetration condition on the walls, kinematics and dynamic boundary conditions on the free surface, but 
there is no general analytical or numerical solution for these equations. So it is necessary to make some 
simplifying assumptions. 
 To model the fluid domain a mathematical model has been developed that is based on the following 
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hypothesis: the liquid is incompressible and inviscid one; the motion of the liquid is irrotational; only small 
vibrations need to be considered (linear theory). Then a scalar velocity potential  tzyx ,,,  whose gradient 
represents the fluid velocity can be introduced. 
 Based on the existence of the velocity potential and using the Navier-Stokes equations for inviscid 
and irrotational flow, the governing Laplace equation can be given as 
 

  
2 2 2

2 2 2
0

x y z

     
    

  
. (2.1) 

 
 The non-penetration condition on the wetted tank surfaces (walls, bottom and baffle) is given by 
 

  0





n
 (2.2) 

 
where n is an external unit normal to the wetted surface. 
 Introduce the function  tyx ,,  that describes the form and location of the free surface. 
 The kinematics boundary condition assumes that a fluid particle of the free surface will always stay 
on that surface. It is as follows 
 

  
0S t x x y y

     
  

     n
. 

 
 It is assumed here that an axis Oz is perpendicular to the free surface, and so the function  is the 
elevation of this surface in z direction. With the assumption of a small elevation, the above equation can be 
linearized about the static free surface as follows 
 

  
0S t

 


 n
.  (2.3) 

 
 The dynamic boundary condition consists in equality of the liquid pressure on the free surface to the 
atmospheric one 
 

   
0

s
S

g a t x 0
t


   


. (2.4) 

 
 Here,  tas  is the horizontal acceleration due to the action of seismic or shock waves, and g is the 

acceleration of gravity. 
 To determine the potential  as a solution of the boundary value problem (2.1) - (2.4) we at first 
solve the problem of free liquid vibrations in the rigid tank. It leads to the following representation of the 
velocity potential 
 

  
M

k k
k 1

d


     (2.5) 
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where functions k  are natural modes of liquid sloshing in the rigid tank,   , ,k kd d t k 1 M   are unknown 

coefficients.  
 To obtain modes k it is necessary to solve the next sequence of boundary value problems for 
auxiliary functions  zyxtk ,,,  

 

  k 0  ;     k 0





n
;      ;

0 0

k k

S S

g 0
n t t

 
   

  
. (2.6) 

 
 Differentiating the fourth equation in (2.6) with respect to t leads to  
 

  ;

0 0

2 2
k k k

2 2
S S

g 0 g 0
tt t

    
   

   n
. 

 
 Look for the solution of the boundary value problem (2.6) in the next form 
 

     , , , , ,ki t
k kt x y z e x y z   . 

 
 Then the following sequence of eigenvalue problems for each k  is obtained 
 

  k 0  ;          k 0





n
;         

2
k k

kg

 
 

n
. (2.7) 

 
 It follows from Eqs (2.3) and (2.5) that function  can be written as 
 

   
M

k
k

k 1

d t



 

 n
. (2.8) 

 
 So, the potential  satisfies the Laplace equation and the non-penetration boundary condition 
 

  0  ;        0



n

, 

 
due to validity of relations (2.5), (2.7). It should be noted that  also satisfies the kinematics condition 
 

  
0S t

 


 n
, 

 
due to validity of relations (2.5), (2.8). Once functions k are defined, it is necessary to substitute them in 
Eqs (2.5), (2.8) and then into Eq.(2.4) and obtain finally the system of ordinary differential equations as it 
was done by Degtyarev et al. [17]. 
 The main objective of the present study is to develop the efficient boundary element model for 
determining the natural sloshing frequencies of axisymmetric and non-axisymmetric modes of liquid 
vibrations in rigid baffled tanks. 
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 In a case of harmonic vibrations we have to represent the unknown functions  k kd d t  in the form 

 
    exp( )k kd t D i t   

 
where  is the liquid vibration frequency, Dk are unknown constants. It leads to the following expression 
 

  
M M

2
k k k k k

k 1 k 1

d d 0
 

      , 

 
and then one can conclude that , , ...1 2 M     are natural frequencies.  
 
2.2 Multi-domain boundary element model for axisymmetric geometry 
 
 To define functions k we use the boundary element method in its direct formulation proposed by C. 
Brebbia [20]. Dropping indexes k we can write the main relation in the form 
 

     0 0
0 0S S

1 1
C P P q dS dS

P P n P P


   

      (2.9) 

 
where 0S S  , and C(P0) depend on the internal spatial angle at the source point P0; the function , 

defined on the surface , presents the pressure on the moistened shell surface and the function q



n

, 

defined on the free surface S0, is the flux.  
 To apply the multi-domain approach we divide the fluid domain into K sub-domains k

 , ,...k 1 2 K  shown in Fig.2. Here we introduce the artificial interface surfaces denoted as 

 int , ,...kS k 1 2 K 1  . The shell wall surfaces in k-th domain are denoted as  , ,...,kS k 1 2 K , Sbot denotes 

the bottom surface and  baf , ,...,kS k 1 2 K 1   are the surfaces of baffles. 

 

   
                       1                                                                              k                                                                                      K 

 
Fig.2. Fluid sub-domains: 1, k, …K. 

 
 The main idea of using the boundary element method for the fluid calculation domain divided by two 
or multiple sub-domains consists in the following. The influence of each domain on the neighboring one is 
taken into account by introducing the influence matrix. This matrix correlates the velocity potential values on 
the interface surface to their fluxes.  
 This allows us to obtain the final system of integral equations in terms of only free surface nodal 
quantities. After discretizating the fluid boundary into boundary elements we obtain a system of linear 
algebraic equations relative to unknown potential values supposing the fluxes are given.  
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 In the considered case of free vibrations we obtain the general algebraic eigenvalue problem [17, 21]. 
The following denotations are used there 
 

  
bafbot
1

1 1S S S    ,    
baf baf

, ,...,k 1 k
k kS S S k 2 K 1      ,    

baf

K 1
K KS S    , 

 
for wetted rigid surfaces of the structure. The boundaries of fluid sub-domains k  , ,...k 1 2 K  are denoted 

as  
 

  
int

1
1 1 S    , ….  

int int
,...,k-1 k

k k S S k 2 K 1       , 

 

and   
int

K -1
K K S    . 

 
 The following denotations for the arrays of potential’s values in nodes at the rigid boundaries of the 
tank in sub-domains k  are used 
 

   , ,
k

k x y z


   ,         , ,...,k 1 2 K . 

 
 The fluxes on the rigid surfaces are equal to zero due to the non-penetration condition. 

 The arrays of potential and flux values in nodes of the interface surfaces 
kS
int

 are denoted as  

 

   int
int

, , k
k1

S
x y z   ;        

int
, , k

k1
S

q q x y z ,       if         
int

k
kS   ; 

 

   int
int

, , k
k 2

S
x y z   ,   

int
, , k

k1
S

q q x y z ;  if  
int

k
k 1S   ;   , , ;P r z     , ,...,k 1 2 K 1  , 

 

respectively. On the free surface 0S  the arrays of potential and flux values in nodes are denoted as 0 and 

0

0
S

q



n

, respectively. 

 On the interface surfaces int
kS  the next equalities are valid [20] 

 

  
int int

;k1 k 2 k1 k 2q q     . 

  
 So there are only two sets of unknowns on these surfaces 
 

  
int int int

; ; .k1 k 2 k k1 k k 2 kq q q q         

  
 It should be noted that there are two types of kernels in the integral operators introduced above. 
Namely, we have 
 

     , ; , ; .0
0 0S S

1 1
A S dS B S dS P

P P P P


        

   n
 (2.10) 
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 Introducing the next denotations 2k 1 kS    ,  , ,...,k 0 1 K 1  ; int
k

2kS S   , ,...,k 1 2 K 1   and 

2KS =S0  one can obtain the following expressions 
 

       , ; ,ij ij 0 i j ij i jA C P A S S B B S S       ,      , , ,...,i j 1 2 2K . 

 
 o the system of integral equations for the first fluid domain 1 may be written in the following form 
 

  

int

int

int

; ;

; .

1 1 1
11 12 12 0 1

1 1 1 1
21 22 22 0

A A B q P

A A B q P S

    

    

 (2.11) 

 

 From Eqs (2.11) one can obtain the expressions for 1 and int
1  as it was done in [8, 17]  

  

  int;1 1 1 1
1 1iF q F q    . 

 
Here 
 

   ;; ; ; .
1 1

1
1 q 11 12 21 q 12 12 22 1i 22 21 1

1 1 1
F A B A A A A B B A B F B A F

2 2 2

       

  
 

 

 Thus, the equation that correlates the flow flux q1 of the interface surface int
1S  to its velocity 

potential int
1  is obtained, namely 

 

  int
1 1

1iF q    (2.12) 
 
where 1iF  is the influence matrix. 

 According to [19] the system of integral equations for the second fluid domain 2 may be written as 
 

  

int int int

int int

int int int

; ;

; ;

; .

2 1 2

2 1 2

2 1 2

1 2 1
22 23 24 22 24 0 2

1 2
32 33 34 32 34 0 2 3

1 2 2
42 43 44 42 44 0 4

A A A B q B q P S S

A A A B q B q P S

A A A B q B q P S S

        

        

        







 (2.13) 

 

 With Eqs (2.12), (2.13) and according to [19] it is possible to express int
2 2

2iF q   along the 

interface surface int
2

4S S  . 

 Equations similar to (2.13) can be written for each fluid sub-domain k  ,...,k 2 K 1   as follows 
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int int

int int

int int

, , , , ,

, , , , ,

, , ,

; ;

; ;

k k 1 k

k k 1 k

k

k 1 k
2k 2k 2k 2k 1 2k 2k 2 2k 2k 2k 2k 2 0 2k

k 1 k
2k 1 2k 2k 1 2k 1 2k 1 2k 2 2k 1 2k 2k 1 2k 2 0 2k 1

k 1 k
2k 2 2k 2k 2 2k 1 2k 2 2k 2 2k 2

A A A B q B q P S

A A A B q B q P S

A A A B






  


        


     

       

       

     





, , ; .k 1 k
2k 2k 2 2k 2 0 2k 2q B q P S

    

   (2.14) 

 
 From Eqs (2.14) and the relation  
 

  int ,
k 1 k 1

k 1 iF q 
  , 

 

one can obtain that int ,
k k

k iF q   on the interface surface int
k

2kS S  , and for Kk   it will be 

int ,
2 K

K K
0 K i

S
F q    . 

 But 2KS =S0 and so we have K 2
0 0q q    . 

 Hence 
 

  ,
2

0 K i 0F    , (2.15) 

 
at the free surface. So the solution of the eigenvalue problem (2.15) determines the sloshing frequencies and 
their mode shapes for an axisymmetric tank. 
 
2.3. Reducing to the system of one-dimensional equations 
 
 In formulas (2.10) the surfaces S and  may be either different or coincident ones. If the surface S is 
the same as  then integrals in Eq.(2.10) are singular and thus the numerical treatment of these integrals has 
to take into account the presence of this integrable singularity. Integrands here are distributed strongly non-
uniformly over the element and standard integration quadratures fail in accuracy. 
 As in [21, 22] we replace the Cartesian co-ordinates (x, y, z) with cylindrical co-ordinates (r,, z), 
and take into account that 
  

     cos
22 2

0 0 0 0 0P P r r z z 2rr          

 
where points P and P0 have the following coordinates  
 
     , , ; , ,0 0 0 0P r z P r z    . 

 
 Representing unknown functions as Fourier series expansions by the circumferential coordinate one 
can obtain 
 
     , , , cosr z r z       (2.16) 

 
where  is a given integer (the number of nodal diameters). 
 After integration in Eq.(2.10) with respect to , Eq.(2.16) allows receiving the integral operators 
Eq,(2.10) as follows 
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     

     

, , ;

, , ; .

0
0S

0 0
0S

1
P dS r z P P d

n P P

1
P dS r z P P d P

P P






    

 

     


 

 

 (2.17) 

 
 Here,   is the generating boundary contour of the surface S. Along this contour we have  zrr  ; 

kernels  , 0P P  and  , 0P P  are defined as in [20, 21] 

 

         , ;
22 2

0 0 0
0 r z

r r z z z z4 1
z z k k n k n

2r a b a ba b
  

           
      

E F E  

 

     , 0
4

P P k
a b

 


F . 

 
 The following notations are introduced hereinabove 
 

       
/

cos sin
2

2 2 2

0

k 1 1 4 2 1 k d



        E ,          

/
cos

sin

2

2 2
0

2 d
k 1

1 k





 

 
 

F , 

 

    ,
22 2

0 0 0a r r z z b 2rr     ;        2 2b
k

a b



. 

 
 Numerical evaluation of integrals in Eqs (2.17) has been accomplished by the BEM with a constant 
approximation of unknown functions inside elements. It would be noted that internal integrals here are 
complete elliptic ones of first and second kinds. As the first kind elliptic integrals are non-singular, one can 
successfully use standard Gaussian quadratures for their numerical evaluation. For elliptic integrals of 
second kind we have applied here the approach based on the following characteristic property of the 
arithmetic geometric mean AGM (a, b) (see [17]) 
 

  
 

/

,cos sin

2

2 2 2 2
0

d

2AGM a ba b


 


  

 . 

 
 To define AGM(a, b) there exists a simple Gaussian algorithm, described below 
 

  ; ; ; ;.... ; ;...0 0 n n
0 0 1 1 0 0 n 1 n 1 n n

a b a b
a a b b a b a b a b a b

2 2 
 

       

 
   AGM , lim lim .n n

n n
a b a b

 
   

 
 It is a very successful method to evaluate the elliptic integrals of the second kind and the effective 
numerical procedure for inner integrals evaluation, but external integrals in Eq.(2.17) have logarithmic 
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singularities. So these integrals were treated numerically by special Gauss quadratures applying the 
technique described in [17]. 
 
3. Results and discussion 
 
3.1. Numerical analysis of low frequency sloshing in cylindrical shells with baffles 
 
 The circular cylindrical shell with a flat bottom is considered. Its parameters are as follows: the 
radius is R = 1 m, the fluid filling level is H=1.0m.  
 Two types of baffles are investigated in this study. First, the baffle is considered as a circle flat plate 
with a central hole (the ring baffle), (Fig.3a)). The second type of baffle is the conical shell installed into the 
fluid-filled cylindrical shell, (Figs 3b, 3c)).  
 The vertical coordinate of the baffle position is H1, the interface surface position is Hi, the filling 
level is 1 2H H H   and the radius of the interface surface is Ri (Fig.3d)).  

 

    
                    a                                   b                                 c                                d 

 
Fig.3. Cylindrical shells with flat (a) and conical (b, c) baffles and their sketch (d). 

 
 The main aim of this study is to evaluate the low sloshing frequencies for both axisymmetric and 
non- axisymmetric vibration modes of baffled cylindrical shells. The numerical solution has been obtained 
by using the boundary element method (BEM) as it was described beforehand. In the present numerical 
simulation we used 120 boundary elements along the bottom, 150 elements along wetted cylindrical parts 
and 120 elements along the radius of free surface. At the interface and baffle surfaces the different numbers 
of elements depending on the radius of the interface surface were used. Here we study the modes and 
frequencies of baffled tank in dependence of parameters, Ri, Hi, H1, namely a radius of the baffle orifice, the 
free surface position and the vertical coordinate of the baffle position.   
 The benchmark testing for the partially filled rigid cylindrical shell described above has been 

performed. The numerical values of the frequency parameter , , ; ,2
n g 0 1 n 1 5     for different numbers 

of nodal diameters  are compared with analytical solutions of Ibrahim [23] and presented in Tab.1. 
 In all tables we have compared the eigenvalues (frequency parameter) for the problem described 
beforehand. 
 
 
 
 



Low frequency sloshing analysis of cylindrical containers … 877 

Table 1. Comparison of numerical and analytical values of the frequency parameters. 
 

 Method n=1 n=2 n=3 n=4 n=5 
 
0 

BEM 3.830 7.017 10.176  13.329  16.479 
[23] 3.828 7.016 10.173 13.324 16.471 

 
1 

BEM 1.750  5.332  8.538 11.709  14.870 
[23] 1.750 5.331 8.536 11.706 14.864 

 
 These results have demonstrated the good agreement and testified the validity of the proposed multi-
domain approach. 

 Tables 2 and 3 hereinafter provide the numerical values of the frequency parameter 2
n g  of liquid 

sloshing for  =0, .n 1 5  at H1=0.5m for tanks with flat and conical baffles for Ri=0.7m and Ri=0.3m, 
respectively. 
 In Tabs 2-3 hereinafter the values H1=Hi=0.5m correspond to the flat baffle (Fig.3a)), the values 
H1=0.5m, Hi=0.4m correspond to the conical baffle (Fig.3b)) and the values H1=0.5m, Hi=0.6m correspond 
to the conical baffle (Fig.3c)). The configuration of baffles shown in Fig.3c) at Ri=0.3m provides a greater 
reduction of the frequencies. 
 
Table 2. Frequency parameter for tanks with flat and conical baffles, Ri=0.7m. 
 

Hi, m n=1 n=2 n=3 n=4 n=5 
0.5 3.7553   7.0124   10.1762    13.3290    16.4791 
0.4 3.8186 7.0141 10.1760 13.3289    16.4791 
0.6 3.7345 7.0061   10.1761    13.3290    16.4791 

 
Table 3. Frequency parameter for tanks with flat and conical baffles, Ri=0.3m. 
 

Hi, m n=1 n=2 n=3 n=4 n=5 
0.5 3.6698   7.0056   10.1759    13.3290    16.4791 
0.4 3.7281   7.0117   10.1762    13.3290    16.4791 
0.6 3.5663   6.9878   10.1746    13.3289    16.4791 

 

 For non- axisymmetric modes ( =1) the numerical values of the frequency parameter 2
n g  

; .1 n 1 5    with Ri=0.3m for tanks with flat and conical baffles at H1=0.5m and H1=0.8m were calculated. 

 In Tab.4 there are numerical values of the frequency parameter 2
n g  of liquid sloshing for 

; .1 n 1 5   ; Ri=0.3m for tanks with flat and conical baffles at H1=0.5m and with different Hi. 
 

Table 4. Frequency parameter for tanks with flat and conical baffles, H1=0.5m. 
 

Hi, m n=1 n=2 n=3 n=4 n=5 
0.5 1.3663  5.2941  8.5359  11.7097  14.8701 
0.4 1.4439  5.3087  8.5371  11.7098  14.8701 
0.6 1.2714  5.2669  8.5325  11.7092  14.8700 

 

 Table 5 provides the frequency parameter 2
n g  of liquid sloshing for ; .1 n 1 5   , Ri=0.3m and 

different values of Hi and H1. The values H1=Hi=0.8m correspond to the flat baffle (Fig.3a). 
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Table 5. Frequency parameter for tanks with flat and conical baffles. 
 

H1, m Hi, m n=1 n=2 n=3 n=4 n=5 
0.8 0.8 0.7079  4.5066 8.1947 11.5556 14.814 
0.8 0.7 0.8613  4.8095 8.3640 11.6517 14.852 
0.8 0.9 0.5295  3.9653 7.7559 11.1126 14.532 
0.9 0.8 0.5685 3.9031 7.6628 11.1591 14.554 
0.7 0.8 0.8263  4.8264 8.3813 11.6464 14.851 

 
 The three first modes of liquid vibrations (numbers 1, 2, 3) for =1 are shown on Fig.4. Here we 
consider both un-baffled and baffled tanks. The radius of orifice is here Ri=0.3m.  
 

 
 

Fig.4. Modes of vibrations of un-baffled and baffled tanks, =1. 
_______ - shell without baffle,  
…… - shell with flat baffle, 
o o o o o - shell with conical baffle at Hi=0.8m; H1=0.9m, 
__ __ __ - shell with conical baffle at Hi=0.9m; H1=0.8m. 
 

 The modes of liquid vibrations of baffled and un-baffled tanks are similar, the most essential 
difference occurs in results for an un-baffled tank and for a tank with conical baffle at i 1H H . 
 Installation of any kind of baffles in considered cases provides decreasing of frequencies. This 
decrease is essential for only first three frequencies both for axisymmetrical (=0) and non-axisymmetrical 
(=1) modes. 
 The conical baffles provide a more essential decreasing of frequencies than flat ones. 
The baffle configuration corresponded to Hi=0.9m; H1=0.8m and Hi=0.8m; H1=0.9m provides the largest 
decline in the first three frequencies both for =0, =1. 
 Figure 5 demonstrates the first sloshing modes both for =0 and =1 for tanks without baffles and 
with the conical baffle (Fig.3c). Here Hi=0.6m; H1=0.5m; Ri=0.7m. Figures 5a and 5c demonstrate first 
modes of liquid vibrations in the cylindrical tank without baffles, for =0 and =1, respectively. Figures 5b 
and 5d correspond to first modes of liquid vibrations in the cylindrical tank with conical baffles, for =0 and 
=1, respectively. 
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a) tank without baffles                     b) tank with conical baffle 

 
c) tank without baffles                     d) tank with conical baffle 

 
Fig.5. Sloshing modes in cylindrical tank without baffles and with conical baffle. 

 
 These results demonstrate that modes of vibrations of baffled and un-baffled tanks at =1 differ 
more significantly when conical baffles are installed. 
 
3.2. Areas of further research 
 
 This developed approach will be easly generalized for elastic tanks with elastic baffles. The 
geometry of tank also can be easy changed, so the results will be obtained for conical, spherical and 
compound shells with and without baffles. The problem statement has provided the possibility of simulating 
forced vibration. It has to be noted also that the present study is based on the potential flow theory without 
the inclusion of fluid viscosity and energy dissipations. The effect of factors such as the fluid viscosity on the 
resonant sloshing in tanks and reservoirs is worthy to be further investigated. 
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4. Conclusions 
 
 Sloshing in the tank may be controlled by installing baffles, and the effectiveness highly depends on 
the shape, the location, and the number of baffles inside a tank. But in practice, the effect of baffles usually 
can be seen after the baffle has already been installed. Also, the visual inspection of the sloshing event inside 
the tank is not adequate for baffles design validation. Due to the complexities associated with the sloshing 
phenomenon, the numerical simulation is an effective method to meet the design intent, and shorten the 
development time. 
 The proposed method makes it possible to determine a suitable place with a proper height for 
installation of the baffles in tanks by using the numerical simulation. The liquid sloshing in the baffled and 
un-baffled rigid tanks under the force of gravity has been studied. The proposed approach allows us to carry 
out the numerical simulation of tanks with baffles in the form of a circular flat plate with an orifice and 
conical baffles of different sizes and with different position in the tank. This gives the possibility of 
governing both the baffle configuration and its position within the tank. The considered problem was solved 
using the multi-domain boundary element methods.  
 
Acknowledgment  
 
 The authors thank our collaborators on STCU Project #6247, Professors Carlos Brebbia, Wessex 
Institute of Technology, UK, and Alexander Cheng, University of Mississippi, USA, for their constant 
support and interest in our research. 
 
Nomenclature  
 
 g  acceleration due to gravity 
 H  fluid filling level 
 H1  vertical coordinate of the baffle position 
 Hi  interface surface position 
 n  external unit normal to the wetted surface 
 R  radius of circular cylindrical shell 
  (r,, z)  cylindrical co-ordinates 
 q  flux 
 S0  liquid free surface  
 Sw  the wall surface, 
 Sbaf  the surface of baffles  
 Sbot  bottom surface 
 t  time 
  (x, y, z)  Cartesian co-ordinates 
    fluid velocity potential 
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