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The present investigation is concerned with basic flows of generalized second grade fluids based on a Sisko 

fluid. After formulation of the general equations of motion three simple flows of viscoplastic fluids of a Sisko 
type or fluids similar to them are considered. These flows are: Poiseuille flow in a plane channel, Poiseuille flow 
in a circular pipe and rotating Couette flow between two coaxial cylinders. After presentation the Sisko model 
one was presented some models of fluids similar to this model. Next it was given the solutions of equations of 
motion for three flows mentioned above. 

 
Key words: Sisko fluids, similar fluids, simple flows. 
 

 
1. Introduction 
 
 In this paper we will consider the group of pseudoplastic fluids whose viscosity displays a non-linear 
relationship between the shear stress and the shear strain rate. Here the constitutive equations consider the 
shear stress as a non-linear function of the shear strain rate. One of more general models of this kind of fluids 
is a Sisko model [1, 2]. There are a few simple solutions of the equations of motion for the flows of a Sisko 
fluid. The first were provided by Na and Hansen [3] and Bahrami et al. [4]; thereafter by Wang et al. [5], 
Hayat et al. [6], Khan et al. [7], Mekheimer and Kot [8], Khan and Shahzad [9], Akbar [10], Walicka [11]. 
 The flows of fluids, whose models are similar to the Sisko model, were also studied by numerous 
rheologists; the researchers analysing the peristaltic flows should be mentioned here, for example: Akbar et 
al. [12] who analysed the flow of a Prandtl fluid, Nadeen [13] who analysed the flow of a tangent hyperbolic 
fluid model, Ellahi et al. [14] who analysed the flow of a Carreau fluid, etc.  
 In what follows we will present simple flows of generalized second grade fluids based on the Sisko 
model and similar models (see Table 1). 
To this consider the other similar models of pseudoplastic fluid given in the second column of Tab.1. Note 
that for suitably selected material coefficients these models can be presented in a simple unified form 
 

   in
0 i     . (1.1) 

 
 To find three-dimensional forms of the stress tensor T , corresponding to the above given one-
dimensional form of   (called a constitutive relation), we may use the generalization of the Prager-Oldroyd 
method (Prager, [15]) applied to a Bingham fluid. This generalization can be found in (Walicka, [16, 17]) 
and its basis is as follows: 
if  
 

   f     , (1.2) 
 

then 
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        ij ij ij ij 1ij ij
T p 2 f A D p f A        T A , (1.3) 

 
where p  is the pressure and  

   
1

22
1

1
A tr

2
    

A ; (1.4)  

 
here A  is a square root from the second invariant of 1A  [18]. 
 
Table.1. Model of fluids similar to the Sisko fluid model [18]. 
 

Author(s) Model Reduced model i Comments 

in n  
“n+1”  

power models 

Sisko 
n

0
       
 

 
 

–    

Carreau-
Yasuda  

0

n n1


 

 
        
      





 

 n0 n

        
 

; 
 

0     

n

n




 

Cross model for 
n   

Williamson- 
Moore model for 

n 1    

Elsharkawy-
Hamrock  

0
1

n n1

 
 

  
 




 

 n0
0 n

        
 

 

n
0

n

 


 
 

in 2 “Cubic” models 

Prandtl 
 

 
arcsin

0


   





  20
0 6

        
 

2
0

6

 

 
 

Eyring- 
Sutterby 

 arsinh
n

0
  

     





 20

0
n

6

        
 

2
0n

6

 


 

Prandtl-Eyring 
model for n 1  

Sutterby 

 

 arsinh

0

n

 

      


      






 20
n

6

        
 

; 
 

0     

2n

6




 

Powell-Eyring 
model for 

n 1  

Gecim- 
Winer 

 
 

tanh
0

 
      




  20
0 3

        
 

 

2
0

3

 


 
 

in 1  
“Quadratic” 

models 

Bair-Winer 0
1 e 

      




  0
0 2

        
 

 

0

3

 

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2. Equations of motion of the unified Sisko fluid model 
 
The general equations of motion of a viscous fluid in a three-dimensional form are as follows: 
 

 equation of continuity 
 
  0vdiv , (2.1) 
 
 equation of momentum 
 

  div
d

dt
  T

v
,      Λ 1T p  (2.2) 

or 
 

  div
d

p
dt

   
v

Λ , (2.3) 

  
here 

   in
0 i 1A   

 
AΛ . (2.4) 

 
 Many fluids of engineering interest appear to exhibit viscoelastic behaviour. Most popular are 
second grade fluids [16÷20]. 

The constitutive relation for the second grade fluids is given as follows (Rivlin and Ericksen, [19]) 
 

  2
2
11p AAAIT  , (2.5) 

 
where p  is the pressure,   is the coefficient of viscosity, ,  are material moduli, 1A  and 2A  are the first 
two Rivlin-Ericksen tensors defined by 
 

  TLL2DA 1 ,       2T
11

2
1

 
LLAAA  ,    vgradL ,  

   (2.6) 

  1
T

112 ALLAAA      or    LLaaA TT
2 2 gradgrad  

 

and 
 

  La v
vv






tdt

d
, (2.7) 

 
where v is the velocity vector, a  is the acceleration vector and    represents the material derivative with 
respect to time. 
 To obtain a model that are does exhibit both pseudoplastic and viscoelastic behaviour we propose the 
following two constitutive equations for generalized second grade fluids (Walicki and Walicka, [20], 
Walicka [16÷18]): 
 

 for model I 
 

  2
i 1 1 1 1 2p M      T 1 A A A , (2.8) 



1022  A.Walicka 

 for model II 
 

   2
i 1 2 1 2 2p M     T 1 A A A , (2.9) 

 
The viscosity function iM  is given as follows: 
 

    in
i 0 iM A  . (2.10) 

 
3. Poiseuille flow in a plane channel 
 
 Let us a consider the steady laminar fully developed flow of a generalized second grade Sisko fluid 
between two horizontal parallel plates (Fig.1). The flow takes place along to a pressure along the plates 
located at y h   and y h  , respectively. 
 

 
 

Fig.1. Channel between two parallel plates. 
 
The flow field has the form 
 

     , ,z y p p y z  kv . (3.1) 

 
Substituting Eqs (3.1) into Eq.(2.2), we obtain 
 

  
2

j 1 z z
j i i

d d
p M M 0

z dy y dy


                    
, (3.2) 

 

    ,
2

j 1 z
j j i

d
p 2 M 0

y dy


              
 (3.3) 

 
where j 1  for model I and j 2  for model II.  

 Let us define a modified pressure  ˆ jp  through 
 

     ˆ
2

j j 1 z
j j i

d
p p 2 M

dy
  

      
 

, (3.4) 

then from Eqs.(2.3) and (3.2), we obtain 
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 ˆ

,
j

zyddp

dz dy


   (3.5) 

 
where 
 

  .
in

z z
zy 0 i

d d

dy dy

       
 
 

  (3.6) 

 
Upon introducing Eq.(3.6) into Eq.(3.5), we have 
 

  
 ˆ inj

z z
0 i

dp d dd

dz dy dy dy

        
    

 

 
or 
 

  
   ˆ

.
inj 2 2

i iz z z
2 2

0 0

dp n 1d d d1

dz dydy dy

   
 

 
 (3.7) 

 
The boundary conditions on the plates are stated as follows 
 
  for .z 0 y h      (3.8) 
 
Let us develop z  into a power series 
 

  ... ,0 1 2
z 0 1 2             (3.9) 

 

where 
 

  
 

.i i

0

n 1
1

 
  


  (3.10) 

 
Putting Eq.(3.9) into Eq.(3.7) and retaining only the two first terms, we find 
 

  
 ˆ

.
inj 2 22

0 0 01
2 2 2

0

dp d d dd1

dz dydy dy dy

         
     

 (3.11) 

 
After equating the like powers of   we will obtain two equations: 
 

 for 0 : 
 

  
 ˆ

,
j 2

0
2

0

dp d1

dz dy





 (3.12) 
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 for 1 : 
 

  .
in 22

0 01
2 2

d dd

dydy dy

     
 
 

 (3.13) 

 
Solving these equations we will obtain 
 

  
 ˆ

,
j2 2

0
0

dph y 1

2 dz

     
 
 

 (3.14) 

 
and 
 

  
  

 ˆ
.

i
ii

n 1n 2 jn 2

1
i i 0

dph y 1

n 1 n 2 dz

      
   
 

 (3.15) 

 
Finally: 
 

  
 

 

 ˆ ˆ
i

ii
n 1n 2j jn 22 2

i
z

0 0 i 0

dp dph yh y 1 1

2 dz n 2 dz

           
      
   

. (3.16) 

 
The flow rate Q  is defined as 
 

  
 

 

 ˆ ˆ
.

i
i

n
j jh n3

i
z

0 0 i 00

dp dp3 h3h 1 1
Q 2 dy 1

3 dz n 3 dz

                         
   (3.17) 

 
Introducing the notation 
 

  
 ˆ j

0

dp1
X

dz
 


  (3.18) 

 
one can rewrite Eq.(3.17) in the form 
 

  
 

.
i

i
n

n 1i
3

0 i

3 h 3Q
X X 0

n 3 2h

  

 
  (3.19) 

 
Denoting its solution by sX , we have 
 

  
 ˆ j

0 s
dp

X
dz

   (3.20) 
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hence 
 

   ˆ j
0 sp C X z   (3.21) 

 
and 
 

  .i in 1 n 1iz
s s

0

d
yX y X

dy
 

  


 (3.22) 

 
The final formula for the pressure distribution is as follows 
 

     ˆ .
2

j j 1 z
j j i

d
p p 2 M

dy
  

      
 

  (3.23) 

 
Note that for the regular Sisko fluid 
 

   ˆ .jp p   (3.24) 

 
4. Poiseuille flow through a circular pipe 
 
 Let us consider the steady laminar flow of a generalized second grade Sisko fluid in a circular pipe 
of radius R  (Fig.2). We are concerned about the velocity field in the form of: 
 

 
 

Fig.2. Geometry of a circular pipe. 
 

   , , .z z z0 0 r         (4.1) 

 
The equations of motion are now 
 

    ,
2

j 1 z
j j i

dp 1 d
2 rM

r r dr dr


             
  (4.2) 

 

  ,z
i

dp 1 d
rM

z r dr dr

      
 (4.3) 

 
where j 1  for model I and j 2  for model II. 
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Here we have 
 

  ,
in

z
i 0 i

d
M

dr

       
   

 (4.4) 

 
therefore Eq.(4.3) can be presented as 
 

  
 rzd rp 1

z r dr





, (4.5) 

 
where 
 

  ;z
rz i

d
M

dr


   (4.6) 

 
hence 
 

  .
in 1

iz z

0 0

d dr p d d
r r

z dr dr dr dr

                   
 (4.7) 

 
The boundary conditions are 
 

  , for , , for .z
z

d
0 r R 0 r 0

dr


       (4.8) 

 
Develop z  into a power series: 
 

  ... ,2
z 0 1 2           (4.9) 

 

where 
 

  i

0


 


  (4.10) 

 
and on introducing this series into Eq.(4.7), we will obtain for the two first powers of   the following 
equations: 

 for 0  
 

  ,0

0

dd r p
r

dr dr z

       
 (4.11) 

 

 for 1  
 

  .
in 1

01 ddd d
r r

dr dr dr dy

              
 (4.12) 
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Solving these equations we have, respectively 
 

  ,
2 2

0
0

R r p

4 z

       
 (4.13) 

 
and 
 

  
   

.
ii i

i

n 1n 2 n 2

1 n 1
0 i

R r p

z2 n 2

 


        

 (4.14) 

 
Finally, according to Eq.(4.9), there is 
 

  
   

.
ii i

i

n 1n 2 n 22 2
i

z n 1
0 0 0 i

R r p R r p

4 z z2 n 2

 


                    

  (4.15) 

 
The flow rate is equal to 
 

     
.

ii
nR n4

i
z

0 i 00

4 RR 1 p 1 p
Q 2 r rdr 1

4 2 z n 4 2 z

                         
   (4.16) 

 
Introducing the notation 
 

  
0

1 p
Y

2 z


 

 
  (4.17) 

 
one can rewrite Eq.(4.16) in the form 
 

  
 

.
i

i
n

n 1i
4

0 i

4 R 4Q
Y Y 0

n 4 R

  

  
  (4.18) 

 
Denoting its solution by sY , we have 
 

  0 s
p

2 Y
z


  


 (4.19) 

 
and 
 

  .i in niz
s s

0

d
rY 1 r Y

dr

  
      

 (4.20) 

 
The pressure distribution is now given as follows 
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     ,
2

j 1 z
0 s j j i

d1 d
p r z C 2 Y z 2 rM dr

r dr dr


           
   

   (4.21) 

 
or 
 

       , , ,0 s j j jp r z C 2 Y z 2 J r z         (4.22) 

 
where 
 

       
     , i i

2
2 n 2 2n 2i i i i

1 s s s
i 0 i 0

2 n 3 2n 33
J r z rY rY rY

2 n 2 2n 2
       

           
 (4.23) 

 
or 
 

         
    , , .

i
ii

i

in 2
i 1 n 2n 2 i i i

2 0 1 i n 2 s
i 0i 0

i 1 n 3
J r z J r z 1 C rY

i 1 n 2


 




   
         

  (4.24) 

 
Note that for a regular Sisko fluid there is 
 

   .p p z   (4.25) 

 
5. Rotating Couette flow between two coaxial cylinders 
 
 The fluid flow configuration is shown in Fig.3; the inner cylinder of radius iR  rotates with a constant 

angular velocity   and the outer cylinder of radius oR  is fixed. The flow field of the fluid is given by 
 

   , , .r z0 r 0         (5.1) 

 
The equations of motion take the form 
 

    ,
2 2j 12

j 1 i
j j i j

Mdp d d d
2 M r 2 r

dr r dr dr r r dr r


                       

      
  (5.2) 

 
here j 1  for model I and j 2  for model II; 
 

   2
r

d
r 0

dr   , (5.3) 

 
where 
 

  r i
d

M r
dr r




      
  

 (5.4) 
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and 
 

  ;
in

i 0 i
d

M r
dr r

       
  

 (5.5) 

 
finally, 
 

  .
in

r 0 i
d d

r r
dr r dr r

 


                     
        

 (5.6) 

 

 
 

Fig.3. Geometry of the rotational flow between cylindrical surfaces. 
 
The boundary conditions for velocity are 
 

  

, for ,

, for .

i i

o

R r R

0 r R





   

  
 (5.7) 

 
Upon integration of Eq.(5.3), we will obtain 
 

  1
r 2

C

r
  . (5.8) 

 
This result introduced into Eq.(5.6), will yield 
 

  .
in 1

i1
2

00

C d d
r r

dr r dr rr


                  

 (5.9) 

 
To find the solution to this equation, develop the velocity   into a series 
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  ... ,2
0 1 2          (5.10) 

 
where 
 

  i

0


 


. (5.11) 

 
Putting now   from Eq.(5.10) into Eq.(5.9) and retaining only the two first terms, we will obtain for the 

same powers of   the following equations: 

 for 0  
 

  ,1
2

0

C d
r

dr rr
     

 (5.12) 

 

 for 1  
 

  .
in 1

01d d
r r

dr r dr r


           

    
 (5.13) 

 
Upon solving these equations, we have 
 

   0 1
0 2

0

C
C r

2 r
  


 (5.14) 

 
and 
 

     
 

.
i

i i

n 1
1 1

1 2 n 1 2n 1
i0

C
C r

2n 2 r



 


  

 
 (5.15) 

 
Finally, according to Eq.(5.10), we have 
 

  
   

 
.

i

i i

n 1
1 1i

2 n 1 2n 1
0 0 i0

C C
C r

2 r 2n 2 r



  

 
   

   
  (5.16) 

 
Note that on the basis of the second boundary condition (5.7) we have 
 

  
   

 

i

i i

n 1
1 1i

2 2 n 1 2n 2
00 o i o0

C Ck
C

2 R 2n 2 R



 

 
  

  
 (5.17) 

 
and from the first boundary condition (5.6), we have 
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   

 
i

i i

n 1
1 1i

2 2 2n 2 2n 2
0 0 ii o oi

C C1 1 1 1

2 2n 2R R RR



 

   
             

. (5.18) 

 

The angular velocity  r
r
   at any position r  is expressed as 

 

       
 

i

i i

n 1
1 1i

2 2 n 1 2n 2
00 i0

C C
r C

2 r 2n 2 r



 

 
   

  
, (5.19) 

 
then 
 

       
 

i

i i ii

n 1
1 1i

2 2 2 n 1 2n 2 2n 22n 2
00 i o0

C C1 1 1 1
r

2 r r r2n 2 R



  

   
               

, (5.20) 

 
where 
 

  , .i

o o

R r
r

R R
     (5.21) 

 
The unit torque acting on the cylindrical surface of radius r  is equal to 
 

  2
r 1T 2 r 2 C     . (5.22) 

 
Denoting, respectively, by sT  the torque acting on the inner cylinder to maintain its motion and by rT  the 
anti-torque applied to the outer cylinder to maintain its rest we have 
 

  
,

,
r 1

s 1

T 2 C
T

T 2 C

  
   

 (5.23) 

 

  

 

 

i

i i i

2 2 2
0 o

n

i
2 n 2n 2 2n 2

0 o i0

1 T 1 1
r

2 2 R r

T 1 1 1

2 R rn 1  

   
            

                  





  (5.24) 

 
the formula which can be used for determining the material constants in the Sisko model from measurements 
of torque and angular velocity in a coaxial annular viscosimeter [21]. 
 
5. Conclusions 
 
 Simple flows of generalized second grade pseudoplastic fluids based on Sisko model or similar 
models may find many applications in a different branches of technology and industry. It can cite for 
example the theory of lubrication or petrochemical technology. Basing on the general equations of motions 



1032  A.Walicka 

of the Sisko model of fluid it was presented equations of motion for thee flows, namely two Poiseuille flows 
in: plane channel, circular tube, and rotating Couette flow between two coaxial cylinders. The given 
solutions to Poiseuille flows may be used to modelling the flows in geological beds or porous layers whereas 
the Couette flow can serve to measuring the physical fluids parameters. 
 
Nomenclature 
 
 A  – square root from the second invariant of 1A   

 nA  – n-th order kinematic tensor of Rivlin-Ericksen  

 a  – acceleration vector 
 D  – rate of deformation tensor 
 ijD  – component on tensor D  

 e  – Naperian logarithm base 
 k  – third base vector in Cartesian coordinates 
 L  – tensor of velocity gradient 
 iM  – viscosity function 

 n  – exponential rheological parameter 
 p  – pressure 
   – shear stress tensor 
 T  – pressure 
 t  – time 
 V  – velocity vector 
 k  – components of velocity vector 

 1  – unit tensor 
 ,i i   – material coefficients for the second grade fluids 

   – shear strain rate 
 ij  – components of the unit tensor 

   – extra stress tensor 
   – shear viscosity 

   – angular coordinate 
 0 ,    – limiting values of shear viscosity 

   – fluid density 
   – shear stress  
   – angular viscosity  
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