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In this paper three simple flows of visco-plastic fluids of DeHaven type or fluids similar to them are considered. 

These flows are: Poiseuille flow in a plane channel, Poiseuille flow through a circular pipe and rotating Couette 
flow between two coaxial cylinders. After presentation DeHaven model it was presented some models of fluids 
similar to this model. Next it was given the solutions of equations of motion for three flows mentioned above.  
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1. Introduction 
 
 In recent years, rheologists have done a great deal of work on pseudo-plastic fluid flows; the 
viscosity of these kinds of fluids displays a non-linear relationship between the shear stress and the shear 
strain rate. To be more precise: in constitutive equations of these fluids the shear strain rate is a non-linear 
function of the shear stress. There are many known formulae to model this relationship. One of the first was 
a model presented by Miss S.B. Ellis in 1927 [1]. The next was power-series development and in 
consequence polynomials were suggested. The polynomial given by Kraemer and Williamson [2] was later 
independently proposed by Weissenberg’s student, Rabinowitsch [3]. In the end of the fifties of the past 
century DeHaven [4, 5] proposed his own model very similar to the model of Miss Ellis (probably he did not 
know her model; note that the same model as that proposed by Miss Ellis was formulated forty years later by 
three other researchers, namely by Mr Ellis et al. [6]). A bit later, at the beginning of the sixties of the past 
century, Rotem and Shinnar [7, 8] returned to the polynomial representation proposing their own model 
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Similar relations were proposed by Whorlow [9] 
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known as power-series models. 
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 Each of these models, by suitable choice of material coefficients reduces to the DeHaven model or to 
the Rabinowitsch model, respectively [10]. 
 Most popular models of fluids which are similar to the DeHaven fluid model are presented in Tab.1. 
 
Table 1. Models of fluids similar to the DeHaven fluid model [11]. 
 

Author(s) Original model 
Model taken 
into account i  Comments 
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“ ”n 1  
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One-dimensional form of the DeHaven model may be written as 
 

   in
0 i1 k       (1.4) 

 
whereas its three-dimensional form is as follows 
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   in
0 1 i1 k   A  ; (1.5) 

 
this form will be used in the next Section to illustrate some flows. 
The equations of motion are as follows 
 
  div 0v , (1.6) 
 

  div
d

dt
  T

v
, (1.7) 

 
  p  T 1  ; (1.8) 
 
it is necessary to include the constitutive Eq.(1.5) in these equations. Note that the body forces are neglected 
in Eq.(1.7). The flows of pseudoplastic fluids of DeHaven type were studied first by Matsuhisa and Bird 
[12], Wadhwa [13] and thereafter by many rheologists; lately, these flows have been studied by Keyfets and 
Kieweg [14] and Walicka et al. [15, 16]. 
 In that follows we will consider three simple flows of the DeHaven type which may be frequently 
used in practical applications. 
 
2. Poiseuille flow in a plane channel 
 
 Let consider the steady laminar one-dimensional flow of a DeHaven fluid, due to a pressure gradient, 
in a plane channel shown in Fig.1. 
 

 
 

Fig.1. Channel between two parallel plates. 
 

The flow field is given by the following relations 
 
     , , ,x y z z0 0 y p p z        . (2.1) 

 
The equations of motion given by Eqs (1.6) (1.8) reduce to 
 

  
yzddp

dz dy


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but the constitutive Eq.(1.5) takes the form 
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   inz
0 yz i yz

d
1 k
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
     . (2.3) 

 
The boundary conditions are stated as follows 
 

    , z
z

y 0

h 0 0
y 


   


 . (2.4) 

 
A single integration of Eq.(2.2) gives 
 

  yz 1
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C y
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   . (2.5) 

 
Upon putting this result into Eq.(2.3), one obtains the following expression 
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Introducing here the second boundary condition (2.5) one obtains the following equation 
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whose unique real root is 1C 0 , then Eq.(2.5) takes the form 
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Integration of this equation yields 
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Upon determination of the constant of integration from the first boundary condition (2.4), we obtain finally 
 

  
ii i n 1n 2 n 22 2

i
z

0 0 i

kh y dp h y dp

2 dz n 2 dz

                 
. (2.8) 

 
The flow rate Q  per unit width of the channel is defined as 
 

  
h

0
zdy2Q  

 
Upon using relation (2.8), we will obtain 
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 
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3k h2h dp dp
Q 1

3 dz n 3 dz
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Note that for the Newtonian flow we have ik 0  and 
 

  
3

Newt
0

2h dp
Q Q

3 dz
      

. (2.10) 

 
3. Poiseuille flow through a circular pipe 
 
 Let us consider the steady laminar flow of a DeHaven fluid in a circular pipe of radius R  (Fig.2).  
 

 
 

Fig.2. Geometry of a circular pipe. 
 
The flow field has the form of 
 
     , , ,r z z0 0 r p p z        . (3.1) 

 
The equations of motion given by Eqs (1.6) (1.8) reduce to 
 

  
 rzd rdp 1

dz r dr


  (3.2) 

 
whereas the constitutive Eq.(1.5) takes the form 
 

   inz
0 rz i rz

d
1 k

dr


     . (3.3) 

 
The boundary conditions are stated as follows 
 

  , for and forz
z 0 r R 0 r 0

r


    


. (3.4) 

 
A single integration of Eq.(3.2) gives 
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C r dp

r 2 dz
    
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and after introducing this result into Eq.(3.3), we have 
 

  
in

z 1 1
0 i

d C Cr dp r dp
1 k

dr r 2 dz r 2 dz

         
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. (3.5) 

 
Taking into account the second boundary condition (3.4), one obtains that 
 
  1C 0  
 
and Eq.(3.5) takes the form 
 

  
i in 1 n 1
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0 0

kd r dp r dp

dr 2 dz 2 dz

                      
, (3.6) 

 
whose integral is equal to 
 

  
 
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i

n 1n 22
i

z 2 n 1
0 0 i

kr dp r dp
C

4 dz dz2 n 2




               

. 

 
Upon determination of the constant of integration from the first boundary condition (3.4), we will obtain 
finally 
 

  
 

ii i

i

n 1n 2 n 22 2
i

z n 1
0 0 i

kR r dp R r dp

4 dz dz2 n 2

 


               

. (3.7) 

 
The flow rate Q  is defined us 
 

  
R

0

zrdr2Q . 

 
Upon using relation (3.7), we will find 
 

  
 
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i

nn4
i

n 1
0 i

8k RR dp dp
Q 1

8 dz dz2 n 4

                  
; (3.8) 

 
Note that for the Newtonian flow, we have ik 0  and 
 

  
4

Newt
0

R dp
Q Q

8 dz

       
. (3.9) 
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4. Rotating Couette flow between two coaxial cylinders 
 
 Let us consider the flow of a DeHaven fluid in the clearance between two coaxial cylinders shown in 
Fig.3. 
 

 
 

Fig.3. Geometry of the rotational flow between cylindrical surfaces. 
 

 The flow field is given by the relationships 
 
     , , ,r z0 r 0 p p r         . (4.1) 

 
The equations of motion (1.6) (1.8) now take the form 
 

  
2 dp

r dr
  , (4.2) 

 

   2
r

d
r 0

dr    (4.3) 

 
but the constitutive Eq.(1.5) takes the form 
 

   in
0 r i r

d
r 1 k

dr r


 
      

 
. (4.4) 

 
The boundary conditions are as follows 
 
  , for , , fori i oR r R 0 r R        . (4.5) 
 
Upon integration of Eq.(4.3), we will obtain 
 

  1
r 2

C

r
    
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and after introducing this result into Eq.(4.4), we will have 
 

  
    i

i

n 1
1 i 1

0 2 2n 2

C k Cd
r

dr r r r






      
 

 (4.6) 

 
because 1C 0 . The next integration gives 
 

       
 

i

i

n 1
1 1i

2 2 2n 1
00 i

C Ck
r C r

2 r 2n 2 r



 

 
   

 
. (4.7) 

 
On the basis of the second boundary condition (4.5) we will obtain 
 

  
   

 

i

i

n 1
1 1i

2 2 2n 2
00 o i o

C Ck
C

2 R 2n 2 R





 
  

 
 (4.8) 

 
and finally 
 

  
   

 
i

i i

n 1
1 1i

2 2 2n 2 2n 2
0 0 ii o oi

C Ck1 1 1 1

2 2n 2R R RR



 

   
             

. (4.9) 

 

The angular velocity  r
r
   at any position r  is expressed as 

 

       
 

i

i

n 1
1 1i

2 2 2n 2
00 i

C Ck
r C

2 r 2n 2 r





 
   

 
. (4.10) 

 
The unit torque acting on the cylindrical surface of radius r  is equal to 
 

  2
r 1T 2 r 2 C     . (4.11) 

 
Note that sT  is also the torque which has to be applied to the inner cylinder to maintain its motion. 

Denoting by rT  the anti-torque which must be applied to the outer cylinder to maintain its rest we have 
 

  
,

.
r 1

s 1

T 2 C
T

T 2 C

  
   

 (4.12) 

 
Introducing the notation 
 

  ,i

o o

R r
r

R R
     (4.13) 

 
one can write: 
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 

 

i

i i

2 2 2
0 o

n 1

i
2 2n 2 2n 2

0 i o

1 T 1 1
r

2 2 R r

k T 1 1

2n 2 2 R r



 

  
          

   
           





  (4.14) 

 
the formula which can be used for determining the material constants in the DeHaven model or similar 
models from measurements of torque and angular velocity in a coaxial annular viscosimeter [12] if it is 
equipped with a suitable software [17]. 
 
5. Conclusions 
 
 The simple flows of pseudoplastic fluids based on DeHaven model may find many applications in 
different branches of technology and industry. 
 It can cite e.g. the theory of lubrication. Basing on the method of solution the flow in a plane channel 
one may obtain the solution of the flow in bearing clearances; the solution for the flow in a circular pipe may 
be used to find the flow in bearing clearances with porous walls [11]. 
 
Nomenclature 
 
 1A  – the first Rivlin-Ericksen kinematic tensor 

 e  – Naperian logarithm base 
 , ik k  – pseudo-plasticity coefficients 

 n  – exponential rheological parameter 
 p  – pressure 
 Q  – flow rate 
   – shear stress tensor 
 T  – torque 
 t  – time 
 v  – velocity vector 
 k  – components of velocity vector 

 1  – unit tensor 
   – shear strain rate 
   – extra stress tensor 
   – magnitude of extra stress tensor 

   – shear viscosity 
 0 ,    – limiting values of shear viscosity 

   – fluid density 
   – shear stress  
   – angular velocity 
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