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In this study an eigen value approach has been employed to examine the mechanical force applied along with
a transverse magnetic field in a two dimensional generalized magneto micropolar thermoelastic infinite space.
Results have been obtained by treating rotational velocity to be invariant. Integral transforms have been applied
to solve the system of partial differential equations. Components of displacement, normal stress, tangential couple
stress, temperature distribution, electric field and magnetic field have been obtained in the transformed domain.
Finally numerical inversion technique has been used to invert the result in the physical domain. Graphical
analysis has been done to described the study.
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1. Introduction

The micropolar theory of elasticity was developed with the possibilities of its wide-ranging practical
applications in diverse fields such as geophysics, optics and acoustics and so on. Contemporary engineering
materials are usually made up of constituents possessing internal structures. Some of the material in this
category are polycrystalline materials, materials with fibrous or coarse grain. Classical elasticity is
inadequate to represent the behaviour of such materials. An analysis of these type of materials requires a
special theory “Micropolar Elasticity” developed by Eringen [1] which deals with deformation of oriented
particles. Basically a micropolar continuum is a collection of interconnected particles in the form of small
rigid bodies which can undergo both translational and rotational motions. Classic examples of such materials
are granular media and multimolecular bodies, whose microstructure act as an evident part in their
macroscopic responses.

The current area of study namely: magneto micropolar thermoelasticity is an extension of this theory.
This theory deals with the effects of the magnetic field on the elastic deformation produced by uneven
heating throughout the body which may or may not be subjected to mechanical forces. In this case, in
addition to elastic and electro-magnetic fields, thermal field is also present. Each of these fields contributes
to the total deformation of the body and interacts with each other. Maxwell’s equations still govern the
electro-magnetic field while the elastic field is determined by the modified Hooke’s law and the thermal field
by Fourier’s law of heat conduction in its modified form. Due to superposition of the electromagnetic field
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on the elastic field, the elastic-stress relation gets modified with the introduction of Lorentz’s force as body
force and in turn the elastic field influences the electro-magnetic field by modifying Ohm’s law.

Basic equations of magneto micro thermoelasticity were obtained by Kaliski [2]. Also, the wave type
of the above equations were studied by Kaliski and Nowacki [3]. Paria [4], Knopoff [5], Banos [6],
Chadwick [7], and Purushothama [8] contributed to magneto elasticity theories. Nowacki [9] studied a
simplified two dimensional problem of magneto-micropolar elasticity. Ezzat and Youssef [10] investigated
the problem of micropolar thermal elasticity in perfectly conducting media. Bakasi et al. [11] studied
magneto thermal elastic problems with thermal relaxations and heat sources in a three dimensional infinite
rotating elastic media. A problem of generalized magneto thermoelasticity in a conducting medium with
variable material properties was also studied by Youssef [12]. The effect of rotation was analyzed by Kumar
and Rupender [13] by using a two dimensional model in an electromagnetic micropolar generalized
thermoelastic medium in the presence of a transverse magnetic field subjected to a mechanical force or
thermal source and observed that the application of a thermal source is more significant than the mechanical
force. Ezzat and Bary [14] compared the one-temperature theory with the two temperature theory in a
generalized magneto thermoelastic medium in a perfectly conducting medium using the state space approach
subjected to a thermal shock and traction-free surface and found that the two-temperature generalized theory
describes the behavior of the particles of an elastic body more accurately than the one-temperature theory.
Ezzat and Awad [15] introduced the modified Ohm’s law, including the temperature gradient and charge
density effects, and the generalized Fourier’s law including current density effect to the equations of the
linear theory of micropolar generalized magneto thermoelasticity. A normal mode analysis is used to obtain
the solution. He and Cao [16] used the generalized thermoelastic theory with thermal relaxation in the
context of L-S theory to investigate the magneto thermoelastic problem of a thin slim strip placed in a
magnetic field and subjected to a moving plane of heat source and found that the magnetic field significantly
influences the variations of non-dimensional displacement and stress but has no effect on the non-
dimensional temperature. Singh and Kumar [17] studied the interaction of the electromagnetic field with the
elastic field in the presence of temperature by applying the mechanical force and thermal source by using
modified Fourier and Ohm’s law.

Increasing attention is devoted to the interaction between magnetic fields and strain in a micropolar
thermoelastic solid due to many applications in the fields of geophysics, plasma physics and related areas.
The deformation at any point of the medium is useful to analyze the deformation field around mining tremors
and drilling into the crust of the earth. It may also find application in various engineering problems, crystal
physics and solid-earth geophysics. The present study can be regarded as a better representation of the elastic
model for studying the earth’s planetary motion as it involves rotational velocity in addition to its thermal
and electromagnetic field. The scope of the present study is to examine the interaction in the magneto
micropolar thermoelastic material due to a mechanical source.

2. Basic equations

Following Baksi et al. [11], the linear equations of electrodynamics of a slowly moving medium for
a homogenous and perfectly conducting elastic solid in the simplified form along with field equations of
motion and constitutive relations in the theory of micropolar generalized thermoelasticity, taking into
account the Lorentz force are given by Eqs (2.1)-(2.9)
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Eigen value approach to two dimensional problem ... 207

divh=0, (2.4)

(7»+2p+K)V(V.u)—(},t+K)V><(V><u)+K(V><¢)+F—U[l+r]%)VT:

o’u Ou (2-3)
=p| —+Qx(Qxu)+2Qx— |,
pl:atz (xu) at}
| 8% o
(a+B+7)V(V) vV x(Vxd)+K(Vxu)-2Kp=pj 8_2+QXE , (2.6)
t
. [0 o’ 0 o
K'VT=pc' | —+1,— [T +0T,| =—+1,1,— |(Vu), 2.7
P [at oatzj o{at oMo atzj( ) ( )
0
cij=7Luk,k8ij+u(u,-,j+uj,i)+K(uj,i—eijk ¢k)—u I+r,5 TESZ.J-, (2.8)
my; = oy ;8 +Bo; ; +7v0;; 29
where v=(3A+2u+K)a, and F=p,(JxH,), (2.10)

H, is the external applied magnetic field intensity vector, A the induced magnetic field vector, E the
induced electric field vector, J the current density vector, u the displacement vector, L, and €, the magnetic

and electric permeabilities, respectively, and 8, — the Kroneker delta.

3. Formulation and solution of the problem

We consider a homogenous, isotropic, perfectly conducting micropolar generalized thermoelastic
medium, permeated by an initial magnetic field H, acting along the x, -axis.

For a two dimensional problem we take the displacement vector u, rotation vector £ and
microrotation vector ¢ as (by assuming € to be invariant)

u=(u;,0u;), ¢=(0,0,,0), Q=(0,Q,,0), E=(E;0,E;),

3.1
h=(0,h,0), H() =(0,H02,0).
Using expressions mentioned in Eq.(3.1) in Eqgs (2.1)—(2.4), (2.8)-(2.9) we get
2 2 2
(7\.+2“+K)a L;’ +(h+p) Ou; +(u+K)a b;’ _g 2,
ax] 8x]5x3 ax3 8x3
5 3.2)
0 \oT ou
—w,HyJ; —v|I+1,— |—= L_30%u ,
Wol1 gy 3 ( Iatjaxl P{ o 2 1}
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o o’ o’
(A +p) i3 +(X+2u+K)i+(u+K)i+K%+
5 (3.3)
0\ oT 07u; P
+u HyJ;, —v| I+1,— |—= -3Q%u;, |,
WotlgJ g ( I@tj6x3 p{ o 2 3:|
%y, &’ ou;  Ou Nex
o Sl S | S | kg, =02, (3.4)
2 2
K'VT =pc’ 2+1:Oa— T +voT, g+ronoa— %+% , (3.5
ot or? ot or’ ox;  Oxs
ou ou
o3 =pu—+(p+K) L+ Ko, (3.6)
ox; Ox;3
ou ou 0
Oy =h—L+(A+2u+K)—2-v| I+1,—|T, 3.7
3=, ( u )x3 ( 16J (3.7)
0
mys =y 222 (3.8)
Ox;3
ou
E, =p,H,,—, 3.9
1= RoHor— (3.9)
ou
E;=—pgHgp,—+, (3.10)
ot
h=—H,| 2y s | (.11)
ox; Ox3
We define the dimensionless quantities as
* 0 * pC](T) * * *
xi :_xl', ui =—Uu;, t =0)l, T() :(DT(), T] :(X)TI,
¢ vT
* Mo * Mo « 1 * ©
J =—F"J, h=——"—h, o, =—0;, m,; = m;, (3.12)
" og’ug Hypep OokoH; Yovn Y Yoty Y
2—
R N R S LUL Y N E
H,,c ® 2 vT,
LotdprCy pcy 0

where
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A+2
2 =ATMTR
p K

Using the dimensionless quantities as defined in Eq.(3.12), the system of Eqgs (3.2)-(3.11) after
suppressing the asterisks can be rewritten as

2 2 2
ou ou oo
(o +a5) 21+(0‘2+0‘5)ax 6; ale_ 46x2+
1 %3 3 3
(3.13)
_9)0 o’
—o.; 1+11m5 . ( 6 a7) 5~ — Ol
i
2 2 2
oc3a u23+((x2+a5) ] +(a; +ay) u23+ 4?&+
X; X70X3 X3 X1
(3.14)
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_(X,7 ]+T1(D5 ax —( 6 7) > _(X,9U3,
3
%, , 0%, Ou; _ Ous %0,
- + +o, | ———=|—a;30, =0, —5, (3.15)
”(axf o 12 ox; 0%, 1392 =014 75
o T | Lt 5 | rra | Lsn el |[0u, o (3.16)
15 16 5 002 17\ 5 oMo o \ox, oxs ) .
Ou Ou
O34 =0°2()g3+0‘2171+0‘22¢2 ) (3.17)
1 3
ou ou
33 =0‘18§]+0‘196_;—0‘20T, (3.18)
1 3
0
ms; :azsga (3.19)
3
ou
E =0, —, 3.20
1= %24, (3.20)
ou
E; :_%48_;’ (3.21)
h=—H,,| Q4 s (3.22)
ox; Ox3

where
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A+2n+K A+ +K
a,z#vi}@, oczz(—ju)vi}@, a3=(“—3)vT0c_o,
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¢ pcy P pei
2K VT, V&’ K T)w’ _ VT ®
Qp3=—">% > Q=77 ;5= > O =p0ly, oy =—,
pc ¢ ¢ P
Qg =—>> 19~ 3 ) 205> Gy=—>H ", Op=—"j7’,
pei ¢ pc pe; pe;
—2
o) vT vT,
Q3 =—"7> 245" 5> 25T 5=
pey pci pc; @
We take the Laplace and Fourier transform as
L{f(xl,xit)} = J.e_”f(xj,xit)dt = j_"(xl,xis) , (3.24)
0
F{f(x,)xj,’s)} = J‘e_lxl’éf(x],xit)dt = f(é,xit) (3.25)

After applying the transformation as defined in Eqgs (3.24)-(3.25) on Egs (3.13)—(3.16), we get
- 1 L -

3 (3.26)
+OL4D(T)2 —i&a., (I+c_0r1)f],

Diiy = ! [—i&(a2+oc5)Dﬁ1+{oc3§2+(a6+0L8)s2—oc9}ﬁ3+
o + ot (3.27)
—ito,d, + 0, (1+(,_0T]S)Df:|,
_ ] o .
D*9, =—[0°12 (Di, —l§u3)+(0‘11§2 —ay3 —a1452)¢2} (3.28)

Oy
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D’T :L[iéa” (s +1:0r|0c_0s2)ﬁ1 +0,; (s +10n0c_0s2)Dﬁ3 +(0L15<§2 +s +c_010s2)7~"} , (3.29)

Qs
G3; =1f5,l3 + 0y Dit; + 0550,
833 = if sl + 09 Dily — T
3, = 0‘23D4~>2 >
EI = f53U3,
E3 = —f5sﬂj >

h=—if5,u; — o5 Diig

where D=—.
dz

Equations (3.26)-(3.29) can be written in a matrix form as
DW(E»X_?’S) = AW(E.,,)C_';,S)

where
W:{U}, v=[a, @ & T|.

0 —ig;, g3 0 S0 0

o 1 4= g,y 0 0 gy 4= 0 fon iy
s ] — ) 2 .

g3l 0 0 0 0 —ifsy f33

0 %) 0 0 War 0 0

14
0
0

S

1 is identity matrix of order 4, O is null matrix of order of 4 and [ ]/ is the transpose of matrix.

Where
1 2 2 gy &
Ji=— [(0514'0‘5)@ + (g +ag)s —0‘9} J1a=="(1+@1;s),
o3 o3
0387 + o’ +ags’ —ag o8 8ay)
Jaz = s J=- s = ’

2 2
oy 8" —0,s” =0y Eo;; — 2
S33= s Ju=- (S + TyNyws ),
Oy Azs

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(2.39)
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1 2 — 2 E(a; +os) Oy
f44=—(a15§ + 5+ 108 )9 gp="—_—— > &=
os o3 a3
E(as+a,) a o o
s+ _ 7 — _Op _ 97 — 2
gy =——", gy = (1+‘CI(DS), 831 = 8= (S+TOT]0(DS )
o, +0; o; +os Oy s

To solve the above equation, we take W (&,x3,5) = X (&,5)e® , for some parameter g.
Using this value in Eq.(3.36), we get

AW(a’x_?’S):qW(EJ’x_?’S)’ (340)

which leads to the eigen value problem.
A characteristic equation corresponding to the matrix A4 is given as

|4-ql|=0, (3.41)
which on expansion gives

g% =0,4° + 050" —hsq” + 0, =0 (3.42)
where

My =848 ¥ J11+ Jaua ¥ o2+ f33— 812821 + 8138315

Mo =—=141812824 + J1aS 01 + 813824831842 + 133824842 + J11842 — J14S21842 + 11S 44 +
H11py Y1133+ TooSag + J33S a0+ 2233+ 23032 = 144812821 — 133812821 +
+/23812831 + [44813831 + 132813821 + /22813831

My =—132001813824 — [33S41812824 + J14S33 41 + F1aS 22 S 01 + J147 23831842 +
111033842 — J14S21133842 + Joo S 11 ag + J11S 33 40 + J11 S22 S35 +
oS35 0a + Fo3 32 00 = 3344812821 + J230 44812831 + [320 44813821 + [22S448138315

My =FJ14S 2332 01+ J14S33 01020 + J110 22033 00 + J110 2332 44 - (3.43)

The eigen values of matrix 4 are the characteristic roots of Eq.(3.42). The eigen vectors X (&,s)
corresponding to eigen value g, can be determined by solving the homogenous equations

[A-qI|X(&5)=0, (3.44)

which gives
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apdp
Xpl bp
Xp(ﬁ,s)zX s Xy = s Xpr=9q,Xp for 9=9q, p=1234,

p2 Cpdp

dp
—4pdp
le bp

and Xj(ﬁ,s)z , X = » Xpp=q,X,,forj=p+4, q=-q,, p=1234(3.45)

XjZ —pdp
dp

where

a, = [{—gu (f44 —Qf;)'*‘if44g42}(f33 _Q5;)_g13g31qf; (f44 —Qf; )} )
z[{(fu —qf)(f44 —615;)+if14f41}(f23 _qlzy)_g13g31q127 (f44 _Qf, )} )
:[{(fu —qsz)(f44 —‘112;)+f14f41}f32 +831Q§ {—g12 (f44 _qu)"'lfl4g42}:| ,

i a,+gu,b
d —=— (f41 p T 842 p). (346)

p 2
f44_qp

Thus a solution of Eq.(3.40) becomes

4

Z[ p(&5)e7 1B, X,y (Gs5)e q”ﬂ (3.47)

p=1

where Bl-'s are eight arbitrary constants.
Now after using Eqgs (3.26)-(3.35), (3.37) and (3.47), we obtain values of dl,zl3,<T)2,7~", G35

G33, M3y,E;,E; and h as

4
0= 3 a0, 8, ~a,q,B,. 06 " |. (3.48)
p=l"
4
iy =>[b,B,e%" +b,B,, e W}, (3.49)
p=I"
~ 4 —
b, = _Z[chpeqp)g +epBpge s ] ) (3.50)
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4
T3 |8, +d,Byuge ™ |, (3.51)
=/

4
633 = Z[(iapqpf:gl +OL]9bpqp _a,zodp)Bpeqpxj +
ool (3.52)

. —q X
+(—lf51apqp —a9b,q, _a20dp)Bp+4e ’ 3},
4

631 = Z|:(l.fv52bp +a21aquj _azch)BpeqPX3 +
P (3.53)

. 2 ~4pX3
+(lf52bp +0,a,9, —azch)Bp+4e },

4
Mz, = —a232[bpcpqp3peqpx3 —cpqup+4e_q”x3 } , (3.54)
p=I
~ 4 —_
Ey=f5Y) byBye'™ +b,B e 7 |, (3.55)
p=I
~ ! q,x —q X
E; z_f532[anPBPe " —apdpByise 3} (3.56)
p=I

4
h=-ifs, Z[(_iaquf.slf +05b,4q, )Bpeqpx3 +
=l (3.57)

. —q X
+(lf54apqp +asb), _qp)Bp+4e g 3]-

4. Boundary conditions

We consider an infinite micropolar elastic space in which a concentrated force F =-F8(x;)3(¢)
where £, is the magnitude of the force, acting in the direction of the x; -axis at the origin. The boundary

conditions for the present problem on the plane x; =0 are
uy (x1,0%t) =y (x,,07,¢) =0, @.1)
s (%,,07,) = uy (x,,07,1) =0, (4.2)

03 (x,0%.1) = (x,07.1) =0, 4.3)
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T(x,,0%,t)=T(x,07.¢) =0,

%(x,,f,t)—%(x,,o_,t) =0,

C3y (x1,0+,t)—031 (xl,()_,t) =0,
035 (1,07 1) =033 (x1,072) = =B (x,)3 (1),

msy (x],0+,t) — M3 (x],O_,l‘) =0.
After solving Egs (4.1)-(4.8), we get

B, =B; = Fyey [112123 —l13l5 } ,

1197 | 1al33 = 135003
B,=B, =- Bylyscq ’
q; (122133 - 132123)
B3 - B7 - 1)012204 ,
q3 (122133 - 132123)
Fyey [al (112123 — 11305, ) —ayllhs + a312211]]

asq4 (122133 - 132123)

(4.4)

(4.5)

(4.6)

(4.7)

4.8)

(4.9)

(4.10)

(4.11)

(4.12)

Using these values of B;'s in Eqs (3.48)-(3.57), we obtain transformed components of displacement,
microrotation, temperature distribution, tangential and normal stress, induced electric field and magnetic

field, where

lj=aycy —cray, l1y=aycy —ayc;,

(djes—cidy)

Ly =(dyey—cydy) = (arcs —cjay)

(d1c4 —cdy )

ly; = (d3c4 —c3dy ) - (a1c4 _ c,a4)

(bjey —ciby)

I3 =(byey —csby) - (arcs —cja)

(bies —ciby)

33 =(bscy —csby ) - (aycs—cyay)

l;3=ascq —aycs,

(a204 - 02614) 5

(0304 _C3a4) ,

((1204 _02a4) N

(a3c4 —C3ay ) .

(4.13)
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5. Inversion of the transforms

The transformed components of displacement, microrotation, temperature distribution, tangential and
normal stress, couple stress, induced electric field and magnetic field are dependent on x;,s and &. To

obtain them in the physical domain in the form of f(x;,x;,¢), we invert integral transforms by using the
inversion technique as used by Singh et al. [18].

6. Numerical result and discussion

Following Eringen [19], we take the following values of relevant parameters for the case of
magnesium crystal as

A=94x10"N/m?, pn=4x10"N/m?, K=Ix10N/m’, p=174x10°kg/m’,
xg=1,  j=02x10"m’, K =1.1753x10"m’, o =0.0787x107 Nsec/m’
Ty=6.131 x 107s,  1,=8.765x 10", €=0.073, T,=296K,

1

o, =0.779x107° N, €)=
36m

107 Fm™,  py=4nx107Hm™, Q=1I.

The computations are carried out for the non-dimensional time ¢=1/2 and range 0<x;<9. The
distribution of non-dimensional normal displacement u;, non-dimensional normal stress o©3;, non-
dimensional tangential couple stress mj;, and non-dimensional temperature distribution 7" with non-
dimensional distance x; have been shown in Figs 1-4.

47 —— G-L(MGTER)

—=—|-S(MGTER)

3 _
------- L-S(MMGTE)

2,5 +
---o--- G-L(MMGTE)

— — - G-L(MMGTER)
1 MMGTER)

Fig.1. Variation in normal displacement ;.
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—_> T

1

0,25 0,5 0,75

0

-0,5 -0,25

_____

—— G-LMGTER)
—a— L.S(MGTER)
------- L-S(MMGTE)
-~ G-L(MMTGE)
— — = G-LIMMGTER)
— & - L.S(MMGTER)

Fig.2. Variation in normal force stress o33 .

L ——->X
[ = . = % - —————y
) 2 4 &= 8 _ __——— 8
1 e ——————— =

-7 B e ——
I - - -
£ e ——— T T
i g T - :a: """
[ AT g T — G-L(MGTER)

R o .-

_-7 I —=— |-S(MGTER)
¥ e L-S(MMGTE)
T ---&--- G-L(MMGTE)
& — — - G-L(MMGTER)
— = - L-S(MMGTER)

Fig.3. Variation in tangential couple stress m;, .

—— G-L(MGTER)
—=— L-S(MGTER)
------- L-S(MMGTE)
---4--- G-L(MMTGE)
— — - G-L(MMGTER)
— = - L-S(MMGTER)

-

Fig.4. Variation in temperature field 7.
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The solid line and solid line with solid square represent a micropolar generalized thermoelastic
medium, for Green and Lindsay [20] theory as G-L (MGTER) and for Lord and Shulman [21] theory as L-S
(MGTER), respectively with the rotation effect. The small dashes line and small dashes line with circles
represent a magneto micropolar generalized thermoelastic medium, for L—S theory as L-S (MMGTE) and for
G-L theory as G-L (MMGTE), respectively. The large dashes line and large dashes line with triangles
represent magneto micropolar generalized thermoelastic medium with the rotation effect, for G-L theory as
G-L (MMGTER) and for L-S theory as L-S (MMGTER), respectively. The variations in normal

displacement u;, normal stress ©3;, tangential couple stress mj, and temperature distribution 7" with
distance x; have been shown for mechanical force in Figs 1-4.

It is clear from Fig.l that near the source w3 has higher values for G-L (MGTER) and L-S
(MGTER) theories as compared to its values for all other theories. Also, as x; increases, the electromagnetic
and rotation effect tend to diminish. Figure 2 again shows that electromagnetism and the rotation effect have
much less impact in the range 3 <x; <9 for normal stress ©3;. Figure 3 shows that tangential couple stress
keeps on increasing as we move away from the point of application of the source for all theories. Finally,
Fig.4 shows that variation in the temperature distribution 7 with the rotation effect, near the source has
higher values and then keeps on decreasing with x; whereas without the rotation effect it has lower values

near the source and then keeps on increasing with x;.

7. Conclusion

From the above discussion it is evident that normal displacement, normal stress, tangential couple
stress and temperature distribution 7" are affected significantly by the application of rotation and magnetic
field. Significant difference can be obtained in the temperature distribution by including the rotation effect.
Also, when the case of rotation effect is considered, normal stress shows opposite behaviour for L-S and G-L
theories.

Nomenclature

¢ —specific heat at constant strain
E —induced electric field
H, - external applied magnetic field
h —induced magnetic field
J —current density vector
j — microinertia
u — displacement vector
o,B,y,k — micropolar elastic constants
a, — coefficient of linear thermal expansion
3; — Kronecker delta
gy — electric permeability

g, — alternating tensor

ik
A,u  —Lame’s constants
w; — couple stress tensor
py — magnetic permeability
p —density
p. — volume charge density
o;; — stress tensor
19,1; — relaxation times
¢ — microrotation vector
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