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In this paper, the problem of interface wave scattering by bottom undulations in the presence of a thin 
submerged vertical wall with a gap is investigated. The thin vertical wall with a gap is submerged in a lower fluid 
of finite depth with bottom undulations and the upper fluid is of infinite height separated by a common interface. 
In the method of solution, we use a simplified perturbation analysis and suitable applications of Green’s integral 
theorem in the two fluid regions produce first-order reflection and transmission coefficients in terms of integrals 
involving the shape function describing the bottom undulations and solution of the scattering problem involving a 
submerged vertical wall present in the lower fluid of uniform finite depth. For sinusoidal bottom undulations, the 
first-order transmission coefficient vanishes identically. The corresponding first-order reflection coefficient is 
computed numerically by solving the zero-order reflection coefficient and a suitable application of multi-term 
Galerkin approximations. The numerical results of the zero-order and first-order reflection coefficients are 
depicted graphically against the wave number in a number of figures. An oscillatory nature is observed of first-
order reflection coefficient due to multiple interactions of the incident wave with bottom undulations, the edges 
of the submerged wall and the interface. The first-order reflection coefficient has a peak value for some particular 
value of the ratio of the incident wavelength and the bottom wavelength. The presence of the upper fluid has 
some significant effect on the reflection coefficients. 
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1. Introduction 
 
 Breakwaters are generally constructed to protect a harbor from the open sea. The thin vertical 
barriers are generally used as simple models of breakwaters to protect a sheltered area by reflecting back the 
incident waves into the rough sea. The problems of water wave diffraction by thin rigid barriers of various 
configurations are well studied in the literature by employing a number of mathematical techniques (cf. Dean 
[1], Ursell [2], Evans [3], Porter [4], Mandal and Kundu [5], Mandal and Dolai [6] etc.). The problems of 
water wave scattering by an irregular bottom have received some considerable interest in the literature on 
linearised theory of water waves due to their importance in finding the effects of naturally occurring bottom 
obstacles such as sand ripples on the wave motion. There exists only one explicit solution for the two-
dimensional problem of wave propagation over a particular bottom topology considered by Roseau [7]. For 
general bed forms, various approximate numerical methods have been utilized in the literature. Such as the 
conformal mapping by which the undisturbed fluid region with a variable bottom is transformed into a 
uniform strip (cf. Kreisel [8], Fitz-Gerald [9], Hamilton [10]), integral equation formulation to study surface 
wave propagation over variable bottom topology (cf. Newman [11], Miles [12]).  

Research on this class of problems was aimed at investigating the mechanism of wave-induced mass 
transformed that forms sand ripples and these ripples produce reflected waves thus providing a model of 
break water to protect the offshore area. Davies [13] considered the problem of wave reflection by sinusoidal 
bottom undulations using the linear perturbation theory followed by an application of Fourier transform. He 
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obtained the reflection and transmission coefficients from the behaviour of the velocity field at infinity and 
observed that when the wavelength of the sinusoidal undulations is half that of the incident wave, a 
significant amount of wave reflection occurs. Davies and Heathershaw [14] confirmed this theoretical result 
by conducting experiments in a water tank. 

In the aforesaid problems, the bottom irregularity is the only hindrance to the propagation of surface 
gravity waves. Mandal and Gayen [15] investigated the problem of water wave scattering by bottom 
undulations in the presence of a thin partially immersed barrier. They used a perturbation method to the 
governing partial differential equation producing a series of boundary value problems (BVPs) for potential 
functions of increasing orders, of which they considered only the first two BVPs for the zero-order and first-
order. The solution for the zero-order problem was known in the literature (cf. Losada et al. [16], Mandal 
and Dolai [6], Porter and Evans [17]). The first-order potential function satisfied a radiation problem in water 
of uniform finite depth involving first-order reflection and transmission coefficients in the radiation 
condition. Analytical expressions for these first-order coefficients were obtained by using Green’s integral 
theorem in terms of integrals involving the shape function describing the bottom topology and the solution of 
the zero-order problem. The first-order reflection coefficient was obtained numerically by using multi-term 
Galerkin approximations and depicted graphically. 

The above mentioned problems involve only a single fluid. However, interface wave problems 
arising out of two superposed immiscible homogeneous fluids which have been investigated in the literature 
are very few, may be due to the complexity in handling the coupled interface conditions. Staziker et al. [18] 
considered the problem of wave scattering by undulations of arbitrary shape at the bottom connecting two 
fluid regions of same uniform depth by employing the integral equation method. Maiti and Mandal [19] 
investigated the problem of scattering of waves obliquely incident on small cylindrical undulations at the 
bottom of a two-layer fluid wherein the upper layer has a free surface and the lower layer has a undulating 
bottom. A simplified perturbation analysis was used to obtain first-order reflection and transmission 
coefficients. Recently, Dolai and Dolai [20] considered the problem of interface wave diffraction by bottom 
undulations in the presence of a thin plate submerged in the lower fluid. 

The problem of interface wave scattering by bottom undulations in the presence of a vertical wall 
with a gap is investigated in this paper. The wall with a gap is submerged in the lower fluid of finite depth 
with bottom undulations and the upper fluid is of infinite height separated by a common interface. In the 
method of solution, we use a simplified perturbation analysis and suitable applications of Green’s integral 
theorem in the two fluid regions produce first-order reflection and transmission coefficients in terms of 
integrals involving the shape function describing the bottom undulations and solution of the scattering 
problem involving a submerged vertical wall present in the lower fluid of uniform finite depth. For 
sinusoidal bottom undulations, the first-order transmission coefficient vanishes identically. The 
corresponding first-order reflection coefficient is computed numerically by solving the zero-order reflection 
coefficient and suitable application of multi-term Galerkin approximations. The numerical results of zero-
order and first-order reflection coefficients are depicted graphically against the wave number in a number of 
figures and an oscillatory nature of first-order reflection coefficient is observed due to multiple interaction of 
the incident wave with bottom undulations, the edges of the submerged wall and the interface. The first-order 
reflection coefficient has peak value for some particular value of the ratio of the incident wavelength and the 
bottom wavelength. The presence of the upper fluid has some significant effect on the reflection coefficients. 

Lamb [21] reported that in the mouths of some of the Norwegian fjords there exist layers of fresh 
water over salt water. This remark forms a basis for the practical interest in the problem considered here, 
wherein a two-fluid model is constructed to investigate the effect of the upper fluid on reflection and 
transmission coefficients for the classical problem of water wave scattering by a submerged vertical wall and 
bottom undulations. Also, this model may be used for practical purposes to find the effect of air on the 
reflection and transmission coefficients by interpreting the two fluid problems as an atmosphere-ocean 
system. However, as the ratio of the densities of air and water is 0.0013, this is too small to produce any 
appreciable effect on the reflection coefficients.  
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2. Formulation of the problem 
 
 We consider two dimensional irrotational motions in two immiscible, inviscid, homogeneous and 
incompressible superposed fluids, the lower fluid is of finite depth having small undulations at the bottom 
and the upper fluid is of infinite height. A Cartesian co-ordinate system is chosen in which the y -axis is 

taken vertically downwards into the lower fluid and the plane y 0  is the undisturbed position of the 

interface. Let 1  be the density of the lower fluid occupying the region ( )0 y h c x     and  2 1    be 

the density of the upper fluid occupying the region y 0 . Here )(xc  is a continuous bounded function 

describing the shape of the bottom, ( )c x 0  as | |x   and   is a very small dimensionless parameter 
giving a measure of smallness of the bottom undulations. Let a thin vertical wall with a gap be submerged 
into the lower fluid below the mean interface. The position of the wall is described by ,x 0 y L   with 

( , ) ( , )L a b d h   and very long in the z  direction, so that the problem of ensuing motion is two 

dimensional and depends on ,x y  only. A simple sketch of the problem is given in Fig.1. 
 

 
 

Fig.1. Geometry of the problem. 
 

The incident wave train propagating at the interface from negative infinity is partially reflected by 
the wall and bottom undulations and transmitted through the gaps. Assuming the linear theory, the time 
harmonic progressive waves from negative infinity can be represented by the velocity potentials  

Re inc{ ( , )exp( )}x y i t    in the lower fluid and Re inc{ ( , )exp( )}x y i t    in the upper fluid, where 
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0k  being the real positive root of the transcendental equation 
 

  ,tanh)}({ KkhKksk                                         (2.2) 
 

with / , / ( ),2
2 1K g s 0 s 1         being the frequency of the incoming waves and g being the 

gravity. Due to the presence of the wall, the incident wave train is partially reflected by the wall and bottom 
undulations and transmitted through the gaps. If the resulting motion is described by the velocity potentials 
Re{ ( , )exp( )}x y i t   and Re{ ( , )exp( )}x y i t    in the lower and upper fluids, respectively, then   and   
satisfy  
 

  
2
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2 0

0
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                                 (2.3) 

 
the interface condition 
 

   , on  ,y y y yK s K y 0                                       (2.4) 

 
the condition on the wall 
 
  on , ,x 0 x 0 y L                                                   (2.5) 
 
the bottom condition 
 
  on ( ),n 0 y h c x                                             (2.6) 
 
n  denote the normal derivative, the edge condition 
 

  /1 2r         is bounded as       ,r 0                                          (2.7) 
 
r  is the distance from the submerged ends of the wall, and the infinity conditions 
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where T and R  are, respectively, the unknown transmission and reflection coefficients and are to be 
determined. 
 The bottom condition (2.6) can be expressed approximately as 
 

     ( ) on .2
y x

d
c x O 0 y h

dx
                                         (2.9) 

 
 This suggests that a perturbation technique can be employed to solve the BVP described by Eqs (2.3) 
to (2.8) approximately. This is described in the next section. 
 
3. Method of solution 
 
 The approximate boundary condition (2.9) suggests that , , ,R T   can be expressed in terms of   as 
given by 
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 Substituting the expressions (3.1) in Eqs (2.3) to (2.5) and (2.7) to (2.9), we find after equating the 

coefficients of 0  and   from both sides, that the functions ( , ), ( , ), ( , ) and ( , )0 0 1 1x y x y x y x y     satisfy 
the following BVPs: 
BVP-I: The functions ( , ) and ( , )0 0x y x y   satisfy 
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BVP-II: The functions ( , ) and ( , )1 1x y x y   satisfy 
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 It may be noted that the BVP-I corresponds to the problem of interface wave scattering by a thin 
vertical wall with a gap submerged in the lower fluid of uniform finite depth h. In the absence of the upper 
fluid, this problem has been solved in the literature approximately in the sense that numerical estimates for 

0R  and 0T  have been obtained (cf. Banerjea et al. [22]). 

The BVP-II is a radiation problem in a two-fluid medium in which the bottom condition involves 0  

the solution of BVP-I. Without solving ( , ), ( , )1 1x y x y   explicitly, 1R  and 1T  can be determined in terms 

of integrals involving the shape function ( )c x  and ( , ).0x x h  

Applying Green’s integral theorem to the functions ( , ) and ( , )0 1x y x y   in the region bounded by 
the lines , ; , ; , ;y 0 X x X x X 0 y h y h 0 x X           , ; , ; ,x 0 d y h x 0 d y h y h          

; ,X x 0 x X 0 y h        and a closed contour around ,x 0 a y b   , where X  is large and positive, 

and ultimately makes X  , produces 
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 Again, applying Green’s integral theorem to the functions ( , ) and ( , )0 1x y x y   in the region 

bounded by the lines , ; , ; , ,y 0 X x X x X Y y 0 y Y X x X               where Y  is large and 

positive and make ,X Y  . We find 
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 Multiplying (3.3) by s  and subtracting from Eq.(3.2), we find  
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 The interface conditions satisfied by ,0 0   and ,1 1   imply 
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so that the term in the square bracket in the right side of Eq.(3.4) vanishes identically. Thus, Eq.(3.4) 
produces  
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 Similarly, applying Green’s integral theorem to ( , ) and ( , )0 1x y x y    in the lower region, 

( , ) and ( , )0 1x y x y    in the upper region described above, we find 
 

  ( ) ( , ) ( , )1 0 0 x 0 xiT N c x x h x h dx




     .                                     (3.7) 

 

 Thus, both and 1 1R T  are derived in terms of integrals involving the shape function ( )c x  and zero-

order potential function ( , )0 x y . Unfortunately ( , )0 x y  cannot be obtained analytically. However, it can be 
expressed as 
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where ( , , )nk n 1 2   are real roots of tank kh K 0   and , ( , , )n nA B n 1 2   are unknown constants. 

, , ,0 0 n nR T A B  can be estimated numerically by using multi-term Galerkin approximations employed by 
Porter and Evans [17]. The details are given in the Appendix. 
 Thus, and 1 1R T  can be computed numerically once the shape function ( )c x  is known. We consider 

sinusoidal undulations at the bottom so that ( )c x  can be taken in the form 
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where m is a positive integer. Thus there exists m number of sinusoidal ripples at the bottom with wave 
number  . In this case 1T  vanishes identically, and 1R  is given by 
 

         

( ) sin ( ) sin ( )

sinh

cos( ) cos( )( cos )

sinh

sinh ( ) ( )

2
0 0 0 0 0 0

1 2
0 00

2
0 0 0 0 0 0

2 2 2
0 00 0

0 0 0 n n
n n 2 2 2

0 n 0 n 0n 1

N c k R 1 2k l 2k l
R

2k 2kk h

iN c k R 2k l 2k l2 1 l 2

2k 2kk h 4k

2iN c k k k
k A

k h k k k k





     
       

            
       

 
     

 ( )sin ( ) cos( )

( )

( )sin ( ) cos( )
exp( ) .

( )

0 0 n 0
2 2 2

n 0

0 0 n 0
n2 2

n 0

k k l k k l

k k

k k l k k l
k l

k k

          
   

         
    

 

 
4. Numerical results 
 

 For numerical computations of 0R  and 1R , we need to evaluate the constants ( , , )nA n 1 2   

associated with the solution ( , )0 x y  of the BVP-I. These are evaluated numerically by using multi-term 
Galerkin approximations. In the numerical computations we take at most five terms to produce fairly 
accurate numerical estimates for 0R  and 1R . The zero-order reflection coefficient | |0R  corresponds to the 

interface wave scattering due to the submerged wall with a gap in lower fluid of uniform finite depth h  is 
plotted in Fig.2 against the wave number Kh. The first-order reflection coefficient | |1R  corresponds to the 
interface wave scattering due to the submerged wall in the lower fluid with bottom undulations as shown in 

Figs 3 to 9 against Kh and in Fig.10 against 02k
 


. 

 In Fig.2, | |0R  is plotted against the wave number Kh for / . , / . , / . , ,. ,.a h 2 b h 4 d h 6 s 0 1 3    . It 

is observed that for s 0  (single fluid), | |0R  coincides with the known results in the literature evaluated by 



Scattering of interface wave by bottom undulations … 311 

other methods (cf. Banerjea et al. [22]). It is also observed that | |0R  first increases then decreases with Kh. 

Again, as s  increases, | |0R  increases for some Kh. 
 

 
 

Fig.2. Profiles of | |0R  for / . , / . , / . , ( ),. ( ),. ( )a h 2 b h 4 d h 6 s 0 A 1 B 3 C    . 
 
 Figure 3 depicts | |1R  against Kh due to bottom undulations without any wall for 

/ . , . ,0c h 0 1 h 1 0 m 1     (single ripple), , . , .s 0 0 1 0 3 . It is observed that | |1R  is oscillatory in nature with 

a peak value. Also, as s  increases, the number of zeros of | |1R  increases. This behaviour is quite expected 

due to multiple interactions of the incident wave with bottom undulations and the interface. Again, | |1R 0  
for large Kh which is quite obvious because waves are confined at the interface for large Kh and there will be 
no impact on bottom undulations. 
 

 
 

Fig.3. Profiles of | |1R  for / . , , , ( ),. ( ),. ( )0c h 1 h 1 m 1 s 0 A 1 B 3 C     . 
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 Figures 4 depicts | |1R  against Kh due to bottom undulations and submerged vertical wall with a gap 

in the lower fluid for / . , . ,0c h 0 1 h 1 0 m 1    , / . , / . , / . ,a h 2 b h 4 d h 6    , . , .s 0 0 1 0 3 . It is observed 

that | |1R  is oscillatory in nature. Again, due to the presence of the upper fluid and submerged vertical wall 

in the lower fluid, as s increases, | |1R  increases for some Kh and zeros of | |1R  are shifted towards the 
origin.  

 
 

Fig.4. Profiles of | |1R  for / . , , , / . , / . , / . , ( ),. ( ),. ( )0c h 1 h 1 m 1 a h 2 b h 4 d h 6 s 0 A 1 B 3 C        . 
 

 
 

Fig.5. Profiles of | |1R  for / . , , , . , / . , / . , / . ( ),. ( ),. ( )0c h 1 h 1 m 1 s 1 b h 6 d h 8 a h 1 A 3 B 5 C        . 
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 Fig.6. Profiles of | |1R  for / . , , , . , / . , / . , / . ( ),. ( ),. ( )0c h 1 h 1 m 1 s 1 a h 1 b h 3 d h 4 A 6 B 8 C        . 
 

 Figures 5 and 6 depict | |1R  against Kh for / . , , , . , / . , / . ,0c h 1 h 1 m 1 s 1 b h 6 d h 8      
 

/ .a h 1 .3,.5 and / . , , , . , / . , / . ,0c h 1 h 1 m 1 s 1 a h 1 b h 3       / . . ,.d h 4 6 8 . The oscillatory 

behaviours of | |1R  are observed. Also, | |1R  increases for small Kh and decreases for large Kh as the depth 
of the submerged gaps increases. 
 Figure 7 depicts | |1R  against Kh for / . , , / . , / . , / . ,0c h 1 h 1 a h 2 b h 4 d h 6      . ,s 1 , ,m 2 4 6  

As m increases, | |1R  also increases, becomes more oscillatory and the number of zeros also increases. This 
is due to multiple interactions of the incident wave between the ripple tops, the submerged wall and the 
interface. 
 Figure 8 shows the effect of /0c h  (non-dimensional ripple amplitude) on | |1R  for 

, , / . , / . , / . , . , / . ,. ,. .0h 1 m 1 a h 2 b h 4 d h 6 s 1 c h 2 4 6         As /0c h  increases, | |1R  also increases and 

the zeros of | |1R  remain unchanged with the change of /0c h .  

 Figure 9 shows the effect of h  (wavelength of the ripple) on | |1R  for / . ,0c h 1
 

, / . , / . , / . , . , . ,. ,. .m 2 a h 2 b h 4 d h 6 s 1 h 2 6 8        As h  increases, | |1R  also increases, becomes less 
oscillatory and the number of zeros decreases 

It is known that in the absence of the barrier in a single fluid, | |1R  has a peak value when 

02k
1  

  
(twice the ratio of incident wavelength to the bottom wavelength). A similar feature of | |1R  is 

also observed in Fig.10 depicting | |1R  against   for / . , , . ,0c h 1 m 2 Kh 1 5    . ; / ,s 1 a h 0 
/ , / ;b h 0 d h 1  / . , / . ,a h 1 b h 4  / . ;d h 8 / . , / . ,a h 4 b h 6  / . .d h 8  However, the value of   for 

which | |1R  attains its peak, is somewhat more than unity and the peak value reduces as the depth of the 
submerged wall increases. 
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Fig.7. Profiles of | |1R  for / . , , . , / . , / . , / . , ( ), ( ), ( )0c h 1 h 1 s 1 a h 2 b h 4 d h 6 m 2 A 4 B 6 C        . 
 

 
 

Fig.8. Profiles of | |1R  for , , . , / . , / . , / . , / . ( ),. ( ),. ( )0h 1 m 1 s 1 a h 2 b h 4 d h 6 c h 2 A 4 B 6 C        . 
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Fig.9. Profiles of | |1R  for / . , , . , / . , / . , / . , . ( ),. ( ),. ( )0c h 1 m 2 s 1 a h 2 b h 4 d h 6 h 2 A 6 B 8 C        . 
 

 
 

Fig.10.  Profiles of | |1R  for / . , , . , .0c h 1 m 2 Kh 1 5 s 1    , / , / , / ( ),a h 0 b h 0 d h 1 A    / . ,a h 1
/ .b h 4 , / . ( ), / . , / . , / . ( )d h 8 B a h 4 b h 6 d h 8 C    . 



316  P.Dolai 

 
5. Conclusion 
 
 The problem of interface wave scattering by bottom undulations in the presence of a thin vertical 
submerged wall with a gap in the lower fluid is considered here by employing a simplified perturbation 
analysis. By suitable applications of Green’s integral theorem in the two-fluid regions, the first-order 
reflection and transmission coefficients and 1 1R T  are obtained in terms of integrals involving the shape 
function describing the bottom undulations and the solution of the corresponding scattering problem for fluid 
of uniform finite depth. For sinusoidal ripples at the bottom, the zero-order and first-order reflection 
coefficients | |0R  and | |1R , respectively, are depicted in a number of figures for various values of the 

parameters. As a function of the wave number Kh, | |1R  is oscillatory in nature due to multiple interaction of 
the incident wave with bottom undulations, the edges of the submerged wall and the interface. Due to the 
presence of the upper fluid, as the density ratio s  of the superposed fluids increases, | |0R  and | |1R  also 

increases for moderate Kh. Also, | |1R  has a peak value for some particular value of the ratio of the incident 

wavelength and the bottom wavelength. The overall value of | |1R  are somewhat decreased due to the 
presence of the submerged wall compared to the case when there is no wall. 
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Nomenclature 
 
 , ,a b d  – depth of the edges of the submerged barrier 
 g – gravity 
 h – depth of the lower fluid 
 K – wave number 

 0R
 

– zero-order reflection coefficient 

 1R  – first-order reflection coefficient 

 s – density ratio 

 0T
 

– zero-order transmission coefficient 

 1T  – first-order transmission coefficient 

 t – time 
 x – horizontal distance 
 y – vertical distance 

   – very small dimensionless parameter 

 1  – density of the lower fluid 

 2  – density of the upper fluid 

   – wave frequency 

   – velocity potential in the lower fluid 

   – velocity potential in the upper fluid 

 
References 
 
[1] Dean W.R. (1945): On the reflection of surface waves by a submerged plane barrier. – Proc. Camb. Phil. Soc., 

vol.41, pp.231-238. 



Scattering of interface wave by bottom undulations … 317 

[2] Ursell F. (1947): The effect of a fixed barrier on surface waves in deep water. – Proc. Camb. Phil. Soc., vol.43, 
pp.374-382. 

[3] Evans D.V. (1970): Diffraction of water waves by a submerged vertical plate. – J. Fluid Mech., vol.40, pp.433-
451. 

[4] Porter D. (1972): The transmission of surface waves through a gap in a vertical barrier. – Proc. Camb. Phil. Soc., 
vol.71, pp.411-422. 

[5] Mandal B.N. and Kundu P.K. (1987): Scattering of water waves by vertical barriers and associated mathematical 
methods. – Proc. Indian Natn. Sci. Acad., vol.53, pp.514-530. 

[6] Mandal B.N. and Dolai D.P. (1994): Oblique water wave diffraction by thin vertical barriers in water of uniform 
finite depth. – Appl. Ocean Res., vol.16, pp.195-203. 

[7] Roseau M. (1976): Asymptotic wave theory. – North Holland, pp.311-347. 

[8] Kreisel G. (1949): Surface waves. – Quart. Appl. Math., vol.7, pp.21-44. 

[9] Fitz-Gerald G.F. (1976): The reflection of plane gravity waves traveling in water of variable depth. – Phil. Trans. 
Roy. Soc. Lond., vol.34, pp.49-89. 

[10] Hamilton J. (1977): Differential equations for long period gravity waves on fluid of rapidly varying depth. –  
J. Fluid Mech., vol.83, pp.289-310. 

[11] Newman J.N. (1965): Propagation of water waves over an infinite step. – J. Fluid Mech., vol.23, pp.399-415. 

[12] Miles J.W. (1967): Surface wave scattering matrix for a shelf. – J. Fluid Mech., vol.28, pp.755-767. 

[13] Davis A.G. (1982): The reflection of wave energy by undulations on the seabed. – Dyn. Atmos. Oceans, vol.6, 
pp.121-123. 

[14] Davis A.G. and Heathershaw A.D. (1984): Surface wave propagation over sinusoidally varying topology. –  
J. Fluid Mech., vol.144, pp.419-443.  

[15] Mandal B.N. and Gayen, Rupanwita (2006): Water wave scattering by bottom undulations in the presence of a thin 
partially immersed barrier. – Appl. Ocean Res. vol.28, pp.113-119. 

[16] Losada I.J., Losada M.A. and Roldan A.J. (1992): Propagation of oblique incident waves past rigid vertical thin 
barriers. – Appl. Ocean Res., vol.14, pp.191-199. 

[17] Porter R. and Evans D.V. (1995): Complementary approximations to waves scattering by vertical barriers. –  
J. Fluid Mech., vol.294, pp.160-186. 

[18] Staziker D.J., Porter D. and Stirling D.S.G. (1996): The scattering of surface waves by local bed elevations. – 
Appl. Ocean Res., vol.18, pp.283-291. 

[19] Maiti, Paramita and Mandal B.N. (2006): Scattering of oblique waves by bottom undulations in a two-layer fluid. – 
J. Appl. Math. and Computing, vol.22, pp.21-39. 

[20] Dolai D.P. and Dolai P. (2010): Interface wave diffraction by bottom undulations in the presence of a thin plate 
submerged in lower fluid. – Int. J. Appl. Mech. and Engg., vol.15, pp.1017-1036. 

[21] Lamb H. (1932): Hydrodynamics. – Cambridge University Press, p.371. 

[22] Banerjea S., Kanoria M., Dolai D.P. and Mandal B.N. (1996): Oblique wave scattering by submerged thin wall 
with gap in finite depth water. – Appl. Ocean Res., vol.18, pp.319-327. 

 

 

Received: September 10, 2015 

Revised:    March 17, 2016 

 
 



318  P.Dolai 

Appendix 
  
 A brief outline for numerical evaluation of and ( , , )0 nR A n 1 2   is given here. 
Let  
 

  
( ) ( , ) ( , ),

.( , )
( ) ,

0 0

0

f y 0 y 0 y
0 y h0 y

g y
x

      
   

  

                                       (A1) 

 
 Then 
 

  

( ) for ( , ) ( , ),

( ) for ( , ) ( , ).

f y 0 y L 0 a b d

g y 0 y L a b d h

  

  




                                     (A2) 

 
 Using Eq.(3.8) in the definition of ( )g y  in Eq.(A1), we find 
 

  

cosh ( )
( ) ( ) cos ( ),

sinh
.

cosh ( )
( ) cos ( ),

sinh

0
0 0 n n n

0 n 1

0
0 0 n n n

0 n 1

k h y
g y ik 1 R k A k h y

k h
0 y h

k h y
g y ik T k B k h y

k h









    

  
    






              (A3) 

 
 The use of Havelock inversion theorem produces 
 

  

sinh
( ) ( )cosh ( ) ,

sinh

( )cos ( ) .
sin

0 0
0 0 0 0 0

0 0 L

n
n n n n n

n n L

4k k h
ik 1 R ik T g y k h y dy

2k h 2k h

4k
k A k B g y k h y dy

2k h 2k h





   


   






                   (A4) 

 
 Again, using Eq.(3.8) in the definition of ( )f y  in Eq.(A1), we find 
 

     cosh ( )
( ) cos ( ), .

sinh
0

0 0 n n n
0 n 1

k h y
f y T 1 R B A k h y 0 y h

k h






                   (A5) 

 
 The use of Havelock inversion theorem produces 
 

  

sinh
( )cosh ( ) ,

sinh

( )cos ( ) .
sin

0 0
0 0

0 0 L

n
n n

n n L

4k k h
2R f y k h y dy

2k h 2k h

4k
2A f y k h y dy

2k h 2k h

  

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





                             (A6) 
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 If we define 

  

sinh ( )
( ) , ,

sinh ( )

sinh ( )
( ) , ,

sinh

2
0

0 0 0 0

2
0

0 0 0

k h 2 f y
F y y L

2k h 2k h ik 1 R

k h 4g y
G y y L

2k h 2k h R

 
 
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

                                 (A7) 

 
then ( ) and ( )F y G y  satisfy the integral equations 
 

  
cosh ( )

( ) ( , ) , ,
sinh

0
F

0L

k h y
F t y t dt y L

k h


  K                                   (A8) 

 

  
cosh ( )

( ) ( , ) ,
sinh

0
G

0L

k h y
G t y t dt y L

k h


   K                                      (A9) 

where 

  

sinh cos ( )cos ( )
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sinsinh

sinh cos ( )cos ( )
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sinsinh

2
0 0 n n n

F 2
n n0 n 1
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
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            (A10) 

 
together with 
 

  

cosh ( )
( ) ,

sinh

cosh ( )
( )

sinh

0
2

0 0L

0

0L

k h y 1
F y dy

k h k C

k h y
G y dy C

k h
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                                       (A11) 

where 

  .
0

1
C i 1

R

 
  

 
                                                       (A12) 

 
 It may be noted that the functions ( ), ( )F y G y  and the constant C  are all real. The integral Eqs (A8) 

and (A9) are to be solved by ( )N 1  multi-term Galerkin approximations of ( )F y and ( )G y  in terms of 
Chebyshev polynomials given by (cf. Porter and Evans [17]) 
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where 
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with 
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and n nU T  being the Chebyshev polynomials of second and first kinds respectively. The unknown 

coefficients ( ) ( ) ( ) ( ), , , ( , , , , )1 2 1 2
n n n na a b b n 0 1 2 N   are obtained by solving the system of linear equations 
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 Once ( ) ( ) ( ) ( ), , , ( , , , , )1 2 1 2
n n n na a b b n 0 1 2 N   are solved, the real constant C  can be determined by 

using any one of the equations in Eq.(A11) after substituting from Eqs (A13) or (A14). Then 0R  can be 
found using Eq.(A12). 
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 To find the constants nA , we use either the second relation in Eq.(A4) or in Eq.(A6). Noting the 

relations in Eq.(A7) and the multi-term expansions Eqs (A13) or (A14), nA  is ultimately approximated as 
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or 
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 (A.22) 

 
 In the numerical computations for 1R , both the sets of multi-term Galerkin approximations for ( )F y  

and ( )G y  have been used. Almost the same numerical results for 1R  are obtained. 

 


