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An analysis is made on the three dimensional flow of a viscous incompressible fluid through a vertical 
channel in the presence of radiation in slip flow regime. The right plate is subjected to an uniform injection and 
the left plate to a periodic suction velocity distribution. The velocity and temperature fields have been derived 
using the perturbation technique. It is found that the velocity decreases with the increase of the slip parameter. It 
is also found that the velocity decreases with the increase of the radiation parameter but near the right plate it 
increases. For cooling of the plate, the velocity increases with the increase of the Grashoff number and decreases 
near the right plate but the reverse effect is observed for heating the plate. 
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1. Introduction 
 

The study of viscous fluid flows through a vertical channel is of practical importance due to its 
application to transpiration cooling of reentry vehicles and rocket boosters etc. and in gaseous diffusion. In 
boundary layer control, the decelerated fluid particles in the boundary layer are removed through slits in the 
wall into the exterior of the body. With sufficiently strong suction, separation can be prevented. Also suction is 
applied in chemical processes to remove reactants where blowing is used to add reactants, prevent corrosion 
and reduce drag. Hydrodynamic combined convective flow as well as free convective hydrodynamic flows in a 
vertical channel were studied by many authors. Mention may be made of the works of Aung [1], Sparrow et al. 
[2] and Aung and Worku [3]. Kettleborough [4] studied the transient laminar two dimensional motion 
generated by a temperature gradient perpendicular to the direction of the body force of a fluid between two 
heated vertical plates. Wang and Skalak [5] obtained the solution for a three dimensional problem of fluid 
injection through one side of a long vertical channel for a Newtonian fluid. An extension of this problem was 
studied by Sharma and Chaudhary [6] for a visco-elastic fluid, Baris [7] for a Newtonian thermodynamically 
compatible fluid of second grade and Baris [8] for Walter's B’ fluid. Singh et al. [9] studied the three 
dimensional free convection flow and heat transfer past a vertical plate with periodic suction. If the fluid 
temperature is rather high, radiation effects play an important role and this situation does exist in space 
technology. Nuclear power plants, gas turbines and various propulsion devices for aircraft, missiles, satellites 
are examples of such engineering areas. In this cases, one has to take into account the effects of radiation and 
free convection. When the temperature of the plate is high, the radiation effects are not negligible. Takhar et al. 
[10] studied the radiation effects on an MHD free convection flow of a gas past a semi-infinite vertical plate. 
Pathak et al. [11] studied the radiation effects on an unsteady free convective flow through a porous medium 
bounded by an oscillating plate with a variable wall temperature. Perdikis and Rapti [12] also studied the 
unsteady MHD free convection flow in the presence of radiation. Sharma et al. [13] presented an approximated 
solution for the radiation effect on the temperature distribution in a three-dimensional Couette flow with 
periodic suction. Guria and Jana [14] also have studied the effect of periodic suction on a three dimensional 
vertical channel flow. Due to the periodic suction the flow becomes three dimensional. Recently, Guria et al. 
[15] investigated the effect of radiation on a three dimensional vertical channel flow. 

The phenomenon of slip-flow regime has attracted the attention of a large number of scholars due to 
its wide ranging application. The problem of the slip flow regime is very important in this era of modern 
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science, technology and vast ranging industrialization. In practical applications, the particle adjacent to a 
solid surface no longer takes the velocity of the surface. The particle at the surface has a finite tangential 
velocity, it slips along the surface. The flow regime is called the slip flow regime and its effect cannot be 
neglected. The fluid slippage phenomenon at the solid boundaries appears in many applications such as 
micro channels or nano channels. In a geothermal region, a situation may arise when a slip of particles at the 
boundary may ocour. Gupta and Goyal [16], Jothimani and Devi [17], Jain and Tanija [18] solved the 
problems considering first order velocity slip conditions. Recently Jain and Gupta [19] studied the effects of 
the transverse sinusoidal injection velocity distribution on the free convective flow of a viscous 
incompressible fluid in slip flow regime under the influence of a heat source. The aim of our present paper is 
to study the effect of the radiation parameter and slip parameter on a three dimensional flow of a viscous 
incompressible fluid past a vertical channel. An approximate solution has been obtained by the series 
expansion method. 

 
2. Basic equations 

 
Consider a steady flow of a viscous, incompressible fluid between vertical parallel porous plates 

separated by a distance d . Here the x* - axis is chosen along the direction of the flow, the *y - axis is 

perpendicular to the plate of the channel and the *z - axis is normal to the * *x y - plane [see Fig.1]. The 

temperature at the plates y =0  and y = d  are wT  and 0T   w 0T >T  respectively.  

The plate * =y d  is subjected to a uniform injection 0V  and the plate y =0  to a periodic suction 
velocity distribution of the form  

 

 
*

* cos0
z

v = V 1
d

  
        

 (2.1) 

 

where  1   is the amplitude of the suction velocity. 

The velocity and temperature fields are independent of x  since the channel is infinitely long along 
the x   direction. The flow itself will be three dimensional due to cross flow. 
 

 
 

Fig.1. Physical model and co-ordinates system. 
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Let * * *u ,v ,w  be the velocity components in the direction of the * * *, ,x y z    axes respectively. The 
problem is governed by the following equations  

 

 
* *

* *

v w
= 0

y z

 


 
, (2.2) 

 

  
* * * *

* *
* * * *

2 2

02 2

u u u u
v w = g T T

y z y z
    

           
, (2.3) 

 

 
* * * * *

* *
* * * * *

2 2

2 2

v v 1 p v v
v w =

y z y y z

     
           

, (2.4) 

 

 
* * * * *

* *
* * * * *

2 2

2 2

w w 1 p w w
v w =

y z z y z

     
           

, (2.5) 

 

 * *
* * * *

2 2
r

2 2
p

qT T T T 1
v w =

Cy z y z y

   



     
           

 (2.6) 

 

where   is the kinematic coefficient of viscosity,   is the density, *p  is the fluid pressure, g  is the 

acceleration due to gravity,   is the thermal expansion and pC  is the specific heat at constant pressure. 

The equation of conservation of radiative heat transfer per unit volume for all wavelengths is  
 

     r h0
.q = K T 4e T G d

  
      

 
where he  is Plank’s function and the incident radiation G  is defined as  
 

  
=4

1
G = e d  

 
   

 

r.q  is the radiative flux divergence and   is the solid angle. Now, for an optically thin fluid exchanging 

radiation with an isothermal flat plate at temperature 0T  and according to the above definition for the 

radiative flux divergence and Kirchhoffs law, the incident radiation is given by  h 0G = 4e T   then 

 

       r h h 00
.q = 4 K T e T e T d

  
     . 

 

 Expanding  K T 
  and  h 0e T  in a Taylor series around 0T , for small  0T T  , we can rewrite 

the radiative flux divergence as  
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   h
r 0 00

0

e
.q = 4 T T K d

T

  


       

 
where    T0 0

K = K  .  

 
Hence an optical thin limit for a non-gray gas near equilibrium yields, the following relation  
 

  r 0.q = 4 T T I   , 

 
and hence  
 

  r
0

q
= 4 T T I

y










 

 
where  
 

 h
00

0

e
I = K d .

T

 


      

 
 The boundary conditions of the problem are  
 

 * * * * *, cos , , at0 wu = 0 v = V 1 z w = 0 T = T y = 0
d

         
, 

  (2.7) 

 * * * * *, , , , at0 1 0 0
u

u =U L v = V w = 0 T = T p = p y = d.
y







 


  

 
 Introducing the non dimensional variables  

 

 
 
 

* * * * * *

, , , , , ,
0

2
0 0 0 w 00

T Ty z p u v w
y = z = p = u = v = w= =

d d U V V T TV

 



, (2.8) 

 
Eqs (2.2)-(2.6) become  
 

 
v w

= 0
y z

 


 
, (2.9) 

 

 Gr
Re

2 2

2 2

u u 1 u u
v w =

y z y z

    
         

, (2.10) 

 

 
Re

2 2

2 2

v v p 1 v v
v w =

y z y y z

     
          

, (2.11) 
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Re

2 2

2 2

w w p 1 w w
v w =

y z z y z

     
          

, (2.12) 

 

 
RePr

2 2

2 2

1
v w = F

y z y z

      
         

 (2.13) 

 

where Re 0=V d /  , the Reynolds number, Pr = /  , the Prandtl number and  Gr 2
w 0 0= dg T T V  , the 

Grashoff number, p 0F = 4Id / C V ,  the radiation parameter, 1h = L / d , the slip parameter. Using Eq.(2.8), 

the boundary conditions (2.7) become  
 

  , cos , , , atu=0 v= 1 z w=0 =1 y=0       , 

  (2.14) 

 , , , , at
2

pu
u = 1 h v = 1 w= 0 = 0 p = y = 1.

y V


  
 

  

  
3. Solution of the problem 

 
In order to solve the differential Eqs (2.9)-(2.13), we assume the solution of the following form  
 

        , , ,2
0 1 2u y z = u y u y z u y z     , 

 

        , , ,2
0 1 2v y z = v y v y z v y z     , 

 

        , , ,2
0 1 2w y z = w y w y z w y z     , (3.1) 

 

        , , ,2
0 1 2p y z = p y p y z p y z     , 

 

        , , ,2
0 1 2y z = y y z y z .         

 
  On substituting Eq.(3.1) in Eqs (2.9)-(2.13) and equating the terms independent of  , we get the 
following system of differential equations  
 

 0v = 0 , (3.2) 
 

 Re ReGr0 0 0 0u v u =    , (3.3) 
 

 Re Pr Re Pr0 0 0 0v F = 0       (3.4) 
 

where primes denote differentiation with respect to y  and the corresponding boundary conditions become  
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, , a , and ,

, at

0
0 0 0 0

0 0

u
u = 0 v = 1 = 1 t y = 0 u = 1 h

y

v = 1 = 0 y = 1.


  



 
 (3.5) 

 
The solution of Eqs (3.2) - (3.4), subject to the boundary conditions (3.5) are  
 

  0v y = 1 , (3.6) 

 

    
m m y m m y2 1 1 2

0 m m2 1

1
y = e e e e

e e

   
 

   
, (3.7) 

 

   Rem y m y y1 2
0 1 2 3 4u y = A e A e A A e      (3.8) 

 
where  
 

 
   

Gr Re

Re

m2

1 m m2 1
1 1

e
A =

e e m m



 



 
, (3.9) 

 

 
   

Gr Re

Re

m1

2 m m2 1
2 2

e
A =

e e m m



  
, 

 

 
         

 

-Re -ReRe Re

Re

m m1 1
1 1 2 1

3 Re

1 A e 1 h e 1 m h A e 1 h e 1 m h
A =

1 e 1 h

 



          
 

, 

 

 
     

 Re Re

m m1 1
1 1 2 1

4

1 A 1 e 1 m h A 1 e 1 m h
A = .

1 e 1 h

 



        
 

 

 
 On substituting Eq.(3.1) in Eqs (2.9)-(2.13) and equating the coefficient of  , we get the following 
system of differential equations  
 

 1 1v w
= 0

y z

 


 
, (3.10) 

 

 Gr
Re

2 2
01 1 1

0 1 12 2

uu u u1
v v =

y y y z

   
         

, (3.11) 

 

 
Re

2 2
1 1 1 1

0 2 2

v p v v1
v =

y y y z

    
        

, (3.12) 
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Re

2 2
1 1 1 1

0 2 2

w p w w1
v =

y z y z

    
        

, (3.13) 

 

 
RePr

2 2
01 1 1

0 1 12 2

1
v v = F

y y y z

     
         

. (3.14) 

 
  The corresponding boundary conditions become  
 

  , cos , , at1 1 1 1u = 0 v = z w = 0 = 0 y = 0   , 

  (3.15) 

 , , , at1
1 1 1 1

u
u = h v = 0 w = 0 = 0 y = 1.

y





  

 
  These are the linear partial differential equations describing the three dimensional flow. To solve Eqs 
(3.10)-(3.14), we assume velocity components and pressure in the following form  
 

      cos1 11u y,z = u y z , 

 
      cos1 11v y,z = v y z , 

 

      , sin1 11
1

w y z = v y z 


, (3.16) 

 
      , cos1 11p y z = p y z , 

 
      , cos1 11y z = y z    

 

1v  and 1w  are so chosen that the continuity Eq.(3.10) is satisfied automatically. 
Substituting Eq.(3.16) in Eqs (3.11)-(3.14) and comparing the coefficients of harmonic terms, we 

obtain the following set of differential equations  
 

 Re Re'' ' 2 '
11 11 11 11v v v = p  , (3.17) 

 

 Re Re''' '' 2 ' 2
11 11 11 11v v v = p   , (3.18) 

 

  RePr RePr RePr'' ' 2 '
11 11 11 11 0F = v        , (3.19) 

 

 Re Re GrRe'' ' 2 '
11 11 11 11 0 11u u u = v u .      (3.20) 

 
When F = 0 , Eqs (3.17)-(3.20) coincide with Eqs (3.17)-(3.20) of Guria and Jana [19]. 

The corresponding boundary conditions are  
 

 , , , at'
11 11 11 11u =0 v = 1 v =0 =0 y =0  , 
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  (3.21) 

 , , , at'11
11 11 11 11

u
u = h v = 0 v = 0 = 0 y = 1.

y





  

 
  Solutions of Eqs (3.17)-(3.20) subject to Eq.(3.21) and on using Eqs (3.6)-(3.8) yield  
 

    cosm y m y y y3 4
1 5 6 7 8v y,z = A e A e A e A e z         , (3.22) 

 

    , sinm y m y y y3 4
1 5 3 6 4 7 8

1
w y z = A m e A m e A e A e z          

, (3.23) 

 

    , cos πzy y
1 7 8p y z = A e A e    , (3.24) 

 

 

     
        

    

,

cos ,

m m y m m yy y 1 3 1 41 2
1 1 2 1 3 4

m m y m m ym y m y 2 3 2 41 1
5 6 2 7 8

m y m y2 2
9 10

y z = B e B e K B e B e

B e B e K B e B e

B e B e z

    

     

  

    

    

 

 (3.25) 

 

 

 
       

       

       Re Re Re Re

,

cos

m y m y y y3 4 1 2
1

m m y m m y m y m y1 3 1 4 1 1
1 2 3 4

m m y m m y m y m y2 3 2 4 2 2
5 6 7 8

m y m y y y3 4
9 10 11 12

u y z = Ae Be Ce De

C e C e C e C e

C e C e C e C e

C e C e C e C e z

   

      

      

      

    

    

    

    

 (3.26) 

 
where  
 

  RePr Re Pr RePr2 2
1,2

1
m = 4F

2
  , 

 

  Re Re2 2
3,4

1
m = 4

2
   , 

 

   RePr Re Pr RePr2 2 2
1,2

1
= 4 F

2
     , 

 

    m3
1 3 3

1
r = e e m e m

2
         

, 

 

    m4
2 4 4

1
r = e e m e m

2
       

, 
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    m3
3 3 3 3

1
r = m e e m e m

2
          , 

  (3.27) 
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 The other constants are not given here to save space.  1v y,z ,  1w y,z  and  1p y,z  are the same 

as obtained by Guria and Jana [14] and [15]. This is due to fact that the velocity components  1v y,z , 

 1w y,z  and pressure  1p y,z  are independent of the radiation effect.  y,z  is same as obtained by Guria 

and Jana [15]. This is due to fact that  y,z  is independent of the slip effect.  

 
4. Results and discussion 

 
In order to get a physical insight into the problem the velocity field, temperature field, shear stresses 

and Nusselt number have been discussed for various non dimensional parameters. We have plotted the non-
dimensional velocity u in Figs 2-5 for different values of the slip parameter, radiation parameter, Grashoff 
number and Reynolds number for Pr =0.71, = 0.05 , z=0.0 . It is evident from Fig.2 that the velocity 
decreases with the increase of the slip parameter. It is found that the velocity decreases with the increase of 
the radiation parameter but near the right plate it increases. For cooling of the plate  Gr >0 , the velocity 

increases with the increase of the Grashoff number and decreases near the right plate but the reverse effect is 
observed for heating of the plate  Gr <0 . 
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Fig.2. Primary velocity u  for Gr=5.0, Re=5.0, Pr=0.71, = 0.05 , z=0.0. 
 

 
 

Fig.3. Primary velocity u  for Gr=5.0, Re=5.0, Pr=0.71, = 0.05 , z=0.0. 
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Fig.4. Primary velocity u  for Gr=5.0, Re=5.0, Pr=0.71, = 0.05 , z=0.0. 
 

 
 

Fig.5. Primary velocity u  for Gr=5.0, Re=5.0, Pr=0.71, = 0.05 , z=0.0. 
 

Knowing the velocity field it is interesting to know the shear stress at the plate. The shear stress at 

the plate y =0  due to the primary flow is given by  
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  In a non-dimensional form the shear stress at the plate y = 0  can be written as  
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 The shear stress due to the primary flow in terms of x  is given in Tabs 1 and 2 for different values 

of the slip parameter, radiation parameter, Reynolds number and Grashoff number and for Gr=5.0, = 0.05 , 
z=0.0 . 
 
Table.1. Shear stress component due to the main flow for Gr = 2.0 , Pr =0.71, Re= 2.0 , z=0.0 . 

  
 h        x       

   F = 2.0  F = 3.0  F = 4.0 F = 5.0  
2  3.50 3.57  3.66  3.75   
3  3.44 3.52  3.62  3.73  
4  3.39 3.48  3.59  3.71  
5  3.34 3.44  3.56  3.69  

 
Table.2. Shear stress component due to the main flow for F = 2.0 , Pr =0.71, h=0.5 , z=0.0 . 

  
 Gr       x       

   Re= 2.0  Re= 2.5  Re= 3.0 Re= 3.5  
2  3.66 4.21  4.69  5.34   
3  4.10 4.75  5.37  6.06  
4  4.53 5.29  6.05  6.18  

 
The shear stress due to the primary flow increases with an increase in the Reynolds number, 

Grashoff number as well as the radiation parameter but decreases with an increase in the slip parameter. 
Figure 6 represents the variations of   for different values of the radiation parameter. The 

temperature profile decreases with the increase of the radiation parameter. 
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Fig.6. Temperature profile   for Gr = 5.0 , Re= 5.0 , Pr =0.71, = 0.05 , z=0.0. 
 

The Nusselt number is the great measure of heat transfer from the plates to the fluid flowing up 
between the plates due to its practical importance. On definition of the Nusselt number depends on the rate of 
heat transfer from the plate to the fluid. The heat transfer coefficient from the plate to the fluid may be 
calculated as  
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  In a non-dimensional form the heat transfer coefficient at the plate y = 0  is given by  
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 (4.4) 

 
and the heat transfer coefficient at the plate y = 1  is given by  
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 (4.5) 

 
 We have plotted the rate of heat transfer in terms of the Nusselt number for different values of the 
radiation parameter, Prandtl number and Reynolds number and for Gr = 5.0 , = 0.05 , z=0.0 . In order to 
be realistic, the rate of heat transfer of air  Pr = 0.71  is plotted in Figs 7 and 8 and for water  Pr =7.0  in 

Figs 9 and 10. It is found that the rate of heat transfer is much lower in the case of water than in air at the 
plate y = 1  and a reverse effect is seen at the plate y = 0 . Also, it is seen that the heat transfer is more 

pronounced at the plate y = 0 . The rate of heat transfer at the plate y = 0  increases whereas that at the plate 

y = 1  decreases with an increase in the radiation parameter in case of both water and air. 
 

 
 

Fig.7. Rate of heat transfer Nu1 for Pr =0.71, Gr = 5.0 , = 0.05 , z=0.0 . 
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Fig.8. Rate of heat transfer Nu2  for Pr =0.71, Gr = 5.0 , = 0.05 , z=0.0 . 
 

 
 

Fig.9. Rate of heat transfer Nu1 for Pr =7.0 , Gr = 5.0 , = 0.05 , z=0.0 .  
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Fig.10. Rate of heat transfer Nu2  for Pr =7.0 , Gr = 5.0 , = 0.05 , z=0.0 . 
 

It is interesting to note that with an increase in the Reynolds number, the Nusselt number at the plate 
y = 0  rapidly increases whereas that at the plate y = 1  tends to zero. 

 
Conclusion 

 
The effect of slip on the steady flow of a viscous incompressible fluid between two vertical porous 

plates is studied in the presence of radiation. It is found that the slip effect reduces the primary velocity. It is 
also found that the rate of heat transfer at the left plate (plate with periodic suction) increases whereas that at 
the right plate(plate with constant injection) decreases with an increase in the radiation parameter F, in case 
of both air and water. It is seen that the heat transfer is more pronounced at the left plate. The rate of heat 
transfer is much lower in the case of water than that of air at the right plate and the reverse effect is seen at 
the left plate. Our problem is a non-trivial extension of Guria and Jana [15] in slip flow regime. 
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Nomenclature 

 
 iA ,i = 1, 8  – constants 

 A,B,C,D  – constants 
 iB ,i = 1, 10  – constants 

 iC ,i = 1, 12  – constants 
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 pC   – specific heat at constant pressure 

 d  – channel width 
 F  – radiation parameter 
 Gr  – Grashoff number 
 g  – gravitational acceleration  
 h  – slip parameter 
 1 2K ,K ,K   – constants 

 k  – thermal conductivity 
 im ,i = 1, 4  – constants 

 Nu Nu1 2,  – Nusselt number at the plates y = 0  and y = 1  

 Pr  – Prandtl number 
 p  – dimensionless pressure 

 p  – pressure 
 q  – local heat transfer at the plate 
 Re  – Reynolds number 
 ir ,i = 1, 4  – constants 

 T    – temperature of the fluid 

 wT   – plate temperature  y = 0  

 0T   – plate temperature  y = d  

 u ,v,w  – dimensionless velocity components in the x, y, z -axes respectively 

 u , v , w   – velocity components in the x, y, z -axes respectively 
 0V   – constant suction velocity 

 x, y,z  – dimensionless Cartesian coordinate system 

 x , y , z  – Cartesian coordinates system 
    – coefficient of thermal expansion 
    – amplitude of suction velocity 
    – non-dimensional temperature 
 1 2,   – constants 

    – viscosity 
 1 2,   – constants 

    – kinematic viscosity 
    – density 
 x z,   – shear stress due to primary and secondary flows 

 
Dimensional variables are indicated by dropping asterisk and are defined in Eq.(2.8). 
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