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This investigation analyses a three dimensional flow and mass transfer of a second grade fluid over a porous 
stretching wall in the presence of suction or injection. The equations governing the flow are attained in terms of 
partial differential equations. A similarity transformation has been utilized for the transformation of partial 
differential equations into the ordinary differential equations. The solutions of the nonlinear systems are given by 
the homotopy analysis method (HAM). A comparative study with the previous results of a viscous fluid has been 
made. The convergence of the series solution has also been considered explicitly. The influence of admissible 
parameters on the flows is delineated through graphs and appropriate results are presented. In addition, it is found 
that instantaneous suction and injection reduce viscous drag on the stretching sheet. It is also shown that suction 
or injection of a fluid through the surface is an example of mass transfer and it can change the flow field. 
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1. Introduction 

Non-Newtonian fluids have attracted the attention of researchers during the past few decades 
because of their wide-ranging industrial and technological applications. It is well known that it is insufficient 
to employ Newton’s law of viscosity for considering the behavior of non-Newtonian fluid dynamics. A 
single constitutive relationship between shear stress and rate of strain cannot be used to examine these types 
of fluids. There are various constitutive equations that are available to analyze the diverse characteristics of 
non-Newtonian fluids. Many non- Newtonian fluids of differential types that are used to explain the non-
Newtonian behavior have achieved much importance because of well established applications in different 
fields. There is a large class of applications of non-Newtonian fluids that are used in various fields of 
science, engineering and technology especially in material processing, chemical industry and bio-
engineering. Furthermore, applications in non-Newtonian fluids include petroleum drilling, paper 
production, glass blowing, and plastic sheet formation. There is also a significant interest of non-Newtonian 
fluid flow in oil reservoir engineering and furthermore the non-Newtonian fluids, such as mercury 
amalgams, liquid metals, biological fluids, plastic extrusions, paper coating and lubrication oils, have 
applications in many fields. The flow characteristics of non-Newtonian fluids are relatively different from 
those of Newtonian fluids. Due to the complexity of flow behavior, non-Newtonian fluids can be recognized 
on the basis of their behavior in shear. 

The constitutive equation of a second grade fluid consist a linear relation between the stress and the 
first Rivlin-Ericksen tensor, the square of the first Rivlin-Ericksen tensor and the second Rivlin-Ericksen 
tensor. This equation contains three coefficients and these coefficients have some restrictions. Dunn and 
Fosdick [1] as well as Dunn and Rajagopal [2] discussed the restrictions of the coefficients. Ali et al. [3] 
studied the problem related to the steady plane flow of a second grade fluid and employed Martin’s method. 
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Khan et al. [4] considered the flow of a second grade fluid between two longitudinally oscillating cylinders 
and provided exact analytic solutions for this flow. Hayat et al. [5] studied an unsteady Couette flow of a 
second grade fluid in a layer of a porous medium. Abdallah [6] obtained an analytical solution of heat and 
mass transfer over a permeable stretching plate affected by a chemical reaction, internal heating, the Dufour-
Souret effect and Hall effect. Exact solutions of flow problems of a second grade fluid through two parallel 
porous walls were extensively discussed by Ariel [7]. The unsteady unidirectional flow of a second grade 
fluid between the parallel plates with different given volume flow rate conditions was examined by Chen et 
al. [8].  
 The study of flow over a stretching wall has gained much importance in recent years due to its 
various industrial uses, e.g., in polymer sheets, artificial fibers and manufacturing and rolling plastic films. 
Various researchers are engaged in examining the effects of non-Newtonian fluids by considering the flow 
over a stretching wall. Aksoy et al. [9] presented the boundary layer equations and stretching sheet solutions 
for a modified second grade fluid. Hayat and Sajid [10] found an analytical solution for an axisymmetric 
flow and heat transfer of a second grade fluid past a stretching sheet. Further existence results for classical 
solutions of the equations of a second-grade fluid were discussed by Galdi and Sequeira [11]. Cortell [12] 
studied the MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous 
medium over a stretching sheet with chemically reactive species. Ellahi [13] observed the effects of an MHD 
flow and temperature dependent viscosity on the flow of a non-Newtonian nanofluid in a pipe. Hayat et al. 
[14] obtained a homotopy solution for an unsteady three-dimensional MHD flow and mass transfer in a 
porous space. Hayat et al. [15] considered a mixed convection boundary layer flow of a Maxwell fluid over a 
stretching surface. This boundary layer flow was studied with Soret and Dufour effects. Abel et al. [16] 
considered the heat transfer due to an MHD slip flow of a second-grade liquid over a stretching sheet 
through a porous medium with a non uniform heat source/sink. Zeeshan and Ellahi [17] considered the non-
Newtonian MHD fluid flow in a porous space with slip boundary conditions. Ellahi et al. [18] presented the 
steady flow of a Couette fluid with the effects of heat transfer and nonlinear slip. The flow behavior of 
nanofluids over a permeable stretching wall with the effects of heat transfer was considered by 
Sheikholeslami et al. [19]. Mehmood and Ali [20] studied the across mass transfer phenomenon in a channel 
of a lower stretching wall. A thermal analysis of flow in a porous medium over a permeable stretching wall 
was proposed by Tamayol et al. [21]. Raftari and Vajravelu [22] used the homotopy analysis method to 
analyze an MHD viscoelastic fluid flow and heat transfer in a channel with a stretching wall.  
 Mehmood and Ali [23] made a heat transfer analysis of a three-dimensional flow in a channel of a 
lower stretching wall. A three-dimensional squeezing flow in a rotating channel of a lower stretching porous 
wall was discussed by Munawar et al. [24]. A three dimensional flow of a viscoelastic fluid by an 
exponentially stretching surface with mass transfer was examined by Alhuthali et al. [25]. Nadeem et al. [26] 
studied the MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. A study related 
to the heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink was given by 
Qasim [27]. The associated heat transfer in a second grade fluid through a porous medium from a permeable 
stretching sheet with non-uniform heat source/sink problem was examined recently by Abel et al. [28].  
Hayat et al. [29] presented the three-dimensional flow of a Jeffery fluid over a linearly stretching sheet. 

The aim of the present study is to examine a three-dimensional flow for the second grade fluid over a 
stretching wall and this problem also involves the mass transfer phenomenon in the presence of suction and 
injection. The resulting nonlinear partial differential equations are reduced into nonlinear ordinary 
differential equations by similarity transformation. The homotopy analysis method (HAM) is employed to 
compute series solutions of the flow equations. We also present effects of pertinent parameters in the series 
solutions by plotting graphs. 
 
2. Physical problem and mathematical formulations 

Let us assume an incompressible second grade fluid flow between two infinite parallel plane plates 
situated at z = 0 and z = h. Suction/ injection can be obtained by assuming that both the plates are porous. 
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The lower plate is being stretched in two lateral directions with different rates and the z-axis is taken 
perpendicular to the plates as schematically shown in Fig.1. The governing system of equations is given as 
 

   1 2p        2
1 2 1T I A A A                (2.1) 

 
where p  is the pressure, I  is the unit vector, and1 2   are normal stress moduli, 1A  and 2A  are the 
kinematical tensors and these tensors can be written as 
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 The laws of conservation of mass and momentum for the present flow problem are given by 
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Fig.1. Schematic diagram and flow configuration of the problem 
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 The boundary conditions applicable to the flow problem are 
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                          -           at   .1u 0 v 0 w w z h                           (2.14)   
 

 Here a and b represent velocity gradients, h is width of the channel and ,0 1w w   are suction/ injection 

velocities at the lower and upper walls. The similarity transformation is presented as 
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 By using the above similarity transformations in Eqs (2.3)-(2.6), the equation of continuity is 
satisfied whereas the governing partial differential equations are reduced to the following form 
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and the boundary conditions are transformed to 
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where “ 0p ” is the pressure at origin and “”is the fluid density. At the stretching plate, the skin friction 
coefficients in the x-and y-directions have been calculated as, 
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(2.21)                     

 

where Re and Re
2 2

x y
ax ay

 
 

 are local Reynolds numbers. Also, Eqs (2.16)-(2.17) represent the system 

of second grade fluid equations. However, if the value of We is set to zero in the system, it will reduce to the 
viscous fluid equations [20]. 
  
3. Solution of a second grade fluid in a channel of a lower stretching wall  

 
 Liao [30] suggested a new kind of an analytical method for solving nonlinear problems, explicitly 
known as the homotopy analysis method (HAM). This technique is mainly based on the homotopy from the 
concept of topology. HAM does not depend upon whether or not nonlinear equations under consideration 
hold small or large parameters, hence this method can solve more of powerfully nonlinear equations [31-32] 
as compared with perturbation techniques. Moreover, it gives us great freedom to choose auxiliary linear 
operators and initial guesses and gives a family of approximations which are converging in a large region. 
The auxiliary linear operator L [ , ]f g  is selected for Eqs (2.16)- (2.17) 

 

  L
4

4

d

d



.                                                                                                (3.1)  

 
 Also, the initial guesses for the approximations satisfying the initial conditions in Eq.(2.18)  
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satisfying the following properties 
 

  L 2 3
1 2 3 4c c c c 0                                      (3.4)  

 
where , , and  1 2 3 4c c c c  are arbitrary constants. The zeroth order deformation equations can be made as 
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in which  ,p 0 1  is the embedding parameter and gf  , are non- zero auxiliary parameters. By Taylor’s 

theorem,
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 The general HAM equations for mth order can be given by 
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with the following boundary conditions 
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Linear Eqs (3.6)-(3.7) with the boundary conditions (3.8) are solved by the homotopy analysis 
method (HAM). 
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4. Results and discussion 
 

4.1. Convergence of HAM solution 
 

                  
Fig.2. f  Curve for  f 0  at 7th order approximation. 

 

                                

Fig.3. g  Curve for  g 0  at 7th order approximation. 
 

 The auxiliary parameters involved in the definite analytic expressions in Eq.(3.8) are f  and g . 

The convergence region and rate of approximations can be derived for solutions by these parameters. Graphs 

of  f 0  and  g 0  have been plotted at 7th order of approximations for a considerable range of values of 

these parameters. Figure 2 shows the admissible values for    f is . .f3 8 0 2    and for g  is 

. .g2 6 0 2    . 

 

4.2. Discussion on graphs 
 

 This subsection focuses on the influence of emerging parameters on the velocity profile  f   . 

Figure 4 demonstrates the effect of the suction parameter 0w  on the velocity component  f    graph at 

keeping the upper wall to be nonporous as  1w 0 . It is shown that the velocity starts to rise. It is observed 
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that large values of the suction parameter 0w  depreciate the reverse flow, by virtue of this the skin friction at 

the stretching wall increases. In Fig.5 it can be noticed that the velocity increases at very small values of 0w

in the presence of an upper wall injection. It can also be seen that the velocity increases rapidly by increasing 
the value of 0w  and it disappears the reverse flow. Figure 6 illustrates mass transfer phenomenon  from the 
upper plate to the lower plate. In a channel flow both walls are taken as porous sheets and it has been 
assumed that both walls are subjected to mass transfer. Further, from Fig.7 it can be seen that both walls of 
the channel are subjected to uniform injection. In this case the velocity component increases to a certain 
value of   and then it will decrease. Figure 8 shows that when both walls are subjected to uniform suction, a 
reverse flow of velocity develops significantly. From Figs 7 and 8, it can be concluded that velocity 
overshoot and reverse flow can be controlled by mass transfer. Figure 9 shows the shear rate at the stretching 
wall against 1w  for various values of 0w . At a fixed value of 0w  it gives appropriate values of 1w  in order to 

reduce the viscous drag. Figure 10 shows the influence of the parameter   on the velocity component  f    

which illustrates that an increment in the values of   increases the velocity in one direction. 
 Figure 11 shows the same behaviour as in Fig.10 by changing the values of We. Figure 12 shows 
that the velocity component  f    increases with increasing values of Re. Numerical results are shown in 

Tabs 1-6. The tables show the calculation of our solutions at different orders of approximation. 
 

 
 

Fig.4. The effect of the parameter 0w  on  f    for 1w 0 , We . , .0 01 0 8   , Re .2 0 , .0 01   and .0 5  . 
 

        
 

Fig.5.  The effect of the parameter 0w  on  f    for .1w 1 5 , We . , .0 01 0 8   , Re .2 0 , .0 01   

and .0 5  . 
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Fig.6.  Velocity  f    by reversing the direction of mass transfer at . ,0 8   .0 01  , We . ,0 02

Re . ,2 0 .0w 2 0   and .0 5  . 
 

      
 

Fig.7. The effect of injection on  f    at . ,0 8  .0 01  , We . ,0 01 Re . ,2 0 .1w 2 0  and .0 5  . 
 

  
 

Fig.8. The effect of suction on  f    at . ,0 8   .0 01  , We . ,0 01 Re . ,2 0  .0w 0 5  and .0 5  . 
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Fig.9. Velocity gradient at the plate vs. 1w  at . ,0 8   .0 01  , We . ,0 1  Re . ,2 0 0   and .0 5  . 
 

 
 

Fig.10.  The influence of the parameter   on  f    at . ,0 8   We . ,0 02  Re . , .1 00 03 w w 0 05  

and  0.5.    

 

 
 

Fig.11.  The influence of the parameter We on  f    at . ,0 8   . , Re . , . ,10 01 0 01 w 0 05    .0w 0 01

and 0.5.   
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Fig.12.  The influence of the parameter Re on  f    at . ,0 8   . , We . , .1 00 6 0 02 w w 0 05    

and . .0 5     

 
5. Numerical values at different orders of approximation 

 
Table 1.  The variation of  f 0  for various We and   at . ,0 8   .0 1w w 0 5     and Re .2 0  at 2nd 

order of approximation. 
 

We        
    

0 0.1 0.2 0.3 0.4 

0 4.1223 5.42253 8.43438 13.1579 19.5929 

0.1 4.1223 5.54464 8.86189 14.0741 21.1812 

0.2 4.1223 5.67161 9.30888 15.0341 22.8473 

0.3 4.1223 5.80345 9.77534 16.038 24.5914 

0.4 4.1223 5.94016 10.2613 17.0857 26.4133 

 
Table 2. The variation of  g 0  for various We and   at . ,0 8   .0 1w w 0 5     and Re .2 0  at 2nd  

order of approximation.  
 

We        
   

0 0.1 0.2 0.3 0.4 

0 2.93998 0.239006 -4.22427 -10.4498 -18.4377 

0.1 2.93998 0.042245 -4.85395 -11.7486 -20.6418 

0.2 2.93998 -0.161436 -5.51132 -13.1097 -22.9565 

0.3 2.93998 -0.372036 -6.19636 -14.533 -25.382 

0.4 2.93998 -0.589556 -6.90908 -16.0186 -27.9181 
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Table 3.  The variation of  f 0  for various We and   at . ,0 8   .0 1w w 0 5     and Re .2 0  at 4th 

order of approximation. 
 

 
 
 
 
 
 
 
 
 

Table 4.  The variation of  g 0  for various We and   at . ,0 8   .0 1w w 0 5     and Re .2 0  at 4th 

order of approximation. 
 

We        
   

0 0.1 0.2 0.3 0.4 

0 2.96693 -1.58619 -23.8697 -92.2035 -247.883 
0.1 2.96693 -2.16961 -28.7061 -111.432 -301.427 
0.2 2.96693 -2.81342 -34.1854 -133.438 -363.04 
0.3 2.96693 -3.52186 -40.3626 -158.478 -433.493 
0.4 2.96693 -4.29934 -47.2945 -186.819 -513.593 

 
Table 5.  The variation of  f 0  for various We and   at . ,0 8   .0 1w w 0 5     and Re .2 0  at 5th 

order of approximation. 
 

We        
   

0 0.1 0.2 0.3 0.4 

0 4.16364 6.69439 18.3573 35.1417 18.3082 
0.1 4.16364 7.04537 19.6426 30.9893 -22.2192 
0.2 4.16364 7.42132 20.6812 23.1378 -18.6256 
0.3 4.16364 7.82107 21.3615 10.5847 -164.44 
0.4 4.16364 8.24298 21.5544 -7.81368 -275.798 

 
Table 6.  The variation of  g 0  for various We and   at . ,0 8   .0 1w w 0 5     and Re .2 0  at 5th 

order of approximation. 
 

We        
   

0 0.1 0.2 0.3 0.4 

0 4.1223 5.42253 8.43438 13.1579 19.5929 
0.1 4.1223 5.54464 8.86189 14.0741 21.1812 
0.2 4.1223 5.67161 9.30888 15.0341 22.8473 
0.3 4.1223 5.80345 9.77534 16.038 24.5914 
0.4 4.1223 5.94016 10.2613 17.0857 26.4133 

 
 
 

We        
   

0 0.1 0.2 0.3 0.4 

0 4.16205 6.48427 18.1202 50.5349 119.943 
0.1 4.16205 6.80138 20.3068 58.1717 139.409 
0.2 4.16205 7.14589 22.7157 66.6237 160.994 
0.3 4.16205 7.51904 25.3584 75.9361 184.82 
0.4 4.16205 7.9221 28.2468 86.1543 211.007 
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Table 7. A comparison of present solution and [20] for velocity functions ( )f 0  and ( )g 0 . 
 

 
Re

 
0.5 

 
1.0 

 
1.5 

 
2.0 

 
2.5 

       ( )f 0  
   Present       
  Solution 
    [20] 

 
4.01733 

 
4.01649 

 
4.05095 

 
4.04796 

 
4.10001 

 
4.094 

 
4.16364 

 
4.15418 

 
4.24093 

 
4.22808 

( )g 0  
     Present     
    Solution 

 [20] 

 
2.24558 

 
2.24381 

 
2.4891 

 
2.48597 

 
2.72998 

 
2.72592 

 
2.96796 

 
2.96311 

 
3.20305 

 
3.19699 

 

6.  Concluding remarks 
 
 The present article describes the three dimensional second grade fluid flow in a channel of lower 
stretching wall. Injection is carried into one plate and suction from another plate. Mass transfer is very 
helpful to control such types of flow. The basic equations governing the flow have been reduced to a set of 
nonlinear differential equations using similarity transformations. These nonlinear differential equations have 
been solved by means of HAM. We inspect quantitatively and qualitatively the influence of different 
parameters on the flow in a channel.  
 
The following conclusions can be obtained from the graphical results: 
 

 Convergence regions for f and g have been investigated at 7th order of approximations for acceptable 
values of auxiliary parameters f and g . 

 It is noticed that the velocity initially increases in the absence of the upper wall injection parameter  
( 1w 0 ) but after reaching some point, the velocity graph is inversely related to the suction 

parameter 0w  and it starts to decline after getting increasing values of the suction  parameter 0w  and 
shows reverse flow. 

 The variation of the suction parameter 0w   increases the velocity component  f    in the presence 

of upper wall injection. 
 It is observed that transferring of mass from the upper plate to the lower plate is considered in order 

to decrease the viscous drag on stretching sheet.  
 It has been shown that when both walls are subjected to injection, then velocity grows up to a certain 

value of   and then it decreases. 

 Further, it has been demonstrated that a reverse flow has been seen when both walls are subjected to 
uniform suction. 

 In favor to reduce the viscous drag then graph of shear stress against 1w  has been made. 

 The velocity component  f    increases toward one direction with increasing values of   and We.  

 It can be seen that the velocity component  f    increases with increasing values of Re. 

 It can be seen from the tables that convergence of HAM solution can be obtained by taking higher 
orders of approximation.    
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Nomenclature 

 
 ,1 2A A  – kinematical tensors 

 ,a b   – velocity gradients 

 ,f g  – dimensionless stream function 

 h – width of the channel  
 I – unit vector 
 p – pressure 
 0p  – pressure at the origin 

 Re – local Reynolds number 
 T – extra stress tensor 
 u – x-component of fluid velocity  
 v – y-component of fluid velocity  
 We

 

– Weissenberg number 
 w – z-component of fluid velocity  

 ,0 1w w    – suction/ injection velocities at the lower and upper walls 

 ,1 2   – normal stress moduli 

   – ratio of velocity gradients 
   – similarity variable 

 

 

– ratio of normal stress moduli 
   – coefficient of shear viscosity 
   – kinematic viscosity 
 

 
– density of the fluid 

 xz  – skin friction coefficient in the x – direction 

 yz
 

– skin friction coefficient in the y – direction 

   – gradient operator 
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