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An unsteady boundary layer free convective flow and heat transfer of a viscous incompressible, microploar 
fluid over a vertical stretching sheet is investigated. The stretching velocity is assumed to vary linearly with the 
distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet 
is stretched, keeping the origin fixed in the micropolar fluid. The transformed highly non-linear boundary layer 
equations are solved numerically by an implicit finite difference scheme for the transient, state from the initial to 
the final steady-state. To validate the numerical method, comparisons are made with the available results in the 
literature for some special cases and the results are found to be in good agreement. The obtained numerical results 
are analyzed graphically for the velocity, the microrotation, and the temperature distribution; whereas the skin 
friction, the couple stress coefficient and the Nusselt number are tabulated for different values of the pertinent 
parameters. Results exhibit a drag reduction and an increase in the surface heat transfer rate in the micropolar 
fluid flow compared to the Newtonian fluid flow.  
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1. Introduction 
 
 The analysis of convective flow and heat transfer over a vertical stretching sheet has gained interest 
due to its various applications to engineering/industrial disciplines. Examples are numerous and they include 
the aerodynamic extrusion of plastic sheets, the boundary layer along a liquid film in condensation processes, 
paper production, glass blowing, metal spinning and drawing plastic films. Since the process of continuous 
stretching depends on unidirectional orientation the quality of the final product considerably depends on the 
flow and heat transfer mechanism. In particular, the analysis of momentum and thermal transport within the 
fluid on a continuously stretching surface is important for gaining some fundamental understanding of such 
processes. Crane [1] is the first among the others to study such a flow caused by an elastic sheet moving in 
its own plane with a velocity varying linearly with the distance from a fixed point. Since then heat and mass 
transfer aspects have been studied by several authors (Gupta and Gupta [2], Chen and Char [3], Grubka and 
Bobba [4], Ali [5], Vajravelu [6], and Datta et al. [7]) for different physical situations: These studies deal 
with fluid flow and heat transfer in the absence of buoyancy force. However, in many practical situations the 
solid object moves in a quiescent fluid due to the fluid flow induced by the motion of the solid object and/or 
by the thermal buoyancy. Therefore the resulting flow and the thermal fields are determined by these two 
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mechanisms; i.e., the surface motion and the thermal buoyancy. However, the buoyancy force effects were 
not considered in the afore-mentioned studies. Hence, the effects of thermal buoyancy on the flow and heat 
transfer over a stretching sheet were studied by several investigators (Chen and Strobel [8], Moutsolglou and 
Chen [9], Chen [10], Ingham [11], Ramachandran et al. [12], and Lee and Tsai [13], and Vajravelu [14]).   
      All the above investigators restrict their analyses to steady flow only. However, the flow and heat 
transfer problems are unsteady in nature, due to a sudden stretching of the flat sheet or due to the change in 
the temperature of the sheet. When the surface is impulsively stretched with certain velocity, the fluid flow is 
developed instantaneously. Elbashbeshy and Bazid [15] presented a similarity solution for the boundary 
layer equations, which describe the unsteady flow and heat transfer over a stretching sheet and extended by 
Abd El-Aziz [16] for some physically realistic phenomena. The unsteady flow over a stretching surface with a 
magnetic field in a rotating fluid was studied by Takhar and Nath [17]. The problem of heat transfer for the 
unsteady free convection flow over a continuous moving vertical surface has been investigated by Kumari et al. 
[18]. In all these studies the fluid is assumed to be Newtonian. However, most of the practical fluids are non-
Newtonian, and it was first introduced by Eringen [19] and [20] as the theory of micropolar and thermo-
micropolar fluids. This theory can be used to describe the behavior of fluids in many practical applications. 
These applications include the mathematical model for polymeric fluids, colloidal fluids, fluids with 
suspensions, liquid crystal, animal blood and exotic lubricants: For these fluids the classical Navier-Stokes 
theory is inadequate. An excellent review of micropolar fluids and their applications was presented by Ariman 
et al. [21]. Several researchers have considered stretching sheet problems in micropolar fluids including the 
papers of Ishak et al. [22; 23]. Available literature on convective flow over a stretching sheet shows that the 
combined effect of the unsteadiness and the thermal buoyancy has not been investigated for microploar fluids. 
      Motivated by these applications, in the present paper we explore the effects of thermal buoyancy on 
an unsteady boundary layer flow and heat transfer induced by a vertical stretching sheet immersed in a 
microploar fluid. In contrast to the work of Kumari et al. [18], the present work considers the effect of non-
Newtonian fluid viz., micropolar model which includes Newtonian fluid as a special case. Further, the 
surface velocity is assumed to vary linearly with the distance along the sheet, whereas the temperature 
distribution at the surface is assumed to be constant. Because of the complexity and non-linearity of our 
problem, the transformed governing parabolic partial differential equations in two variables are solved 
numerically using the Keller-box method for various values of the physical parameters. The obtained 
numerical results are presented graphically for the velocity, the microrotation, and the temperature 
distribution; whereas the skin friction, the couple stress coefficient and the Nusselt number are presented in 
tables for different values of the pertinent parameters. For special cases, our results are found to be in good 
agreement with those of the results available in the literature (Grubka and Bobba [4], Ali [5], Ishak et al. [29] 
and Prasad et al. [30]). Moreover, the results obtained for the flow and heat transfer characteristics reveal 
many interesting behaviors that warrant further study on the micropolar flow phenomena.  
 
2. Mathematical formulation of the problem 
 
 Consider an unsteady two-dimensional, laminar, free convection flow of an incompressible 
micropolar fluid at a vertical stretching sheet. The Cartesian coordinate system has its origin located at the 
leading edge of the sheet with the positive x-axis extending along the sheet in the upwards direction, while 
the y-axis is measured normal to the surface of the sheet and is positive in the direction from the sheet to the 
fluid. We assume that for time t < 0 the fluid flow and heat transfer are at steady state. The unsteady fluid 
flow and heat transfer start at t = 0, the sheet is being stretched with the velocity  ,wu x t

 
along the x-axis, 

keeping the origin fixed. The thermo-physical properties of the sheet and the ambient fluid are assumed to be 
constant except the variation of density with temperature in the buoyancy force term. Under these 
assumptions (with the Boussinesq and boundary layer approximations), the governing equations for the 
convective flow and heat transfer of the viscous microploar fluid are 
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 The appropriate initial and the boundary conditions for the problem are 
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 Here x and y are measured along and perpendicular to the sheet, t is the dimensionless time, u and v 
are the velocity components along the x and y directions,   is the microrotation component  perpendicular to 
the xy-plane, T is the temperature, g is the acceleration due to gravity,   is the coefficient of thermal 

expansion,   is the density, j is the microinertia density,  , k and   are, respectively, the kinematic 

viscosity, the rotational viscosity and gyroviscosity of the fluid, C p  
is the specific heat at constant pressure, 

K c  is the thermal conductivity, C  is the heat conductivity of the micropolar fluid, the subscripts i, w and 

  denote respectively, the initial condition, the condition at the wall and the condition at the free stream. 
The last term in right hand side of Eq.(2.2) is due to the buoyancy force.  
      In the literature, we see authors imposing various types of boundary conditions on the microrotation 
vector fields. For example, some authors have imposed the condition of zero spin on the surface i.e. 0   
which has the physical interpretation that there is a fluid solid interface with interactions so strong that the 
microstructure does not rotate relative to the surface. Some authors used n=0 which corresponds to strong 
concentration of the microelements near the boundary. The case n 1 2  indicates the vanishing of the 
antisymmetric part of the stress tensor which denotes weak concentration. The case n = 1 is used for 
modeling of turbulent boundary layer flows. Also, many authors have assumed  k 2 j   

 
i.e., 

j 1 k 2     , which predicts the correct behavior in the limiting case when the microstructure effects 

become negligible and the rotational spin   reduces to the angular velocity of the fluid (see for details 
Ahmadi [24], Kline [25]).  
      We now introduce the following dimensionless variables 
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where Rex  is the local Reynolds number, Grx  is the local Grashof number,   is the buoyancy parameter 

(ratio of local Grashof number and local Reynolds number), Pr p cC K   is the Prandtl number; and 

K k  ,  = l k jC   and C pC C     are the three micropolar fluid parameters and 
 
is the stream 

function defined in the usual way as , ,u y v x       and identically satisfy Eq.(2.1).  
       Using the above dimensionless variables Eqs (2.2), (2.3) and (2.4) can be written as 
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The corresponding boundary conditions (2.5) can be written as 
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where the function  P t  characterizes the unsteadiness in the flow field due to the variation of the moving 

sheet with time. Here, the prime denotes derivatives with respect to  , and the subscript t denotes the partial 
derivatives with respect to t.  
      The parameter K depends on the shape and concentration of the microelements. The parameter l can 
be thought of as the fluid properties depending on the relative size of microstructure in relation to a 
geometrical length, and   is the dimensionless heat conduction coefficient of the micropolar fluid. From the 
engineering point of view, the most important characteristics of the flow are the wall shear stress w , the 

wall couple stress wM  and the local rate of heat transfer from the wall .wq  Thus, our task is to investigate 

how the non-dimensional parameters influence these physical quantities.  
      These physical quantities are defined as 
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where C  is the thermal conductivity of the micropolar fluid. In terms of functions defining velocity, 

microrotation rate and temperature, the skin friction coefficient w , the wall couple stress coefficient wM  

and the local Nusselt number wq  may be written as 
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micropolar fluid). 
 
3. Exact solutions for some special cases 

 
 Here, we present exact solutions in certain special cases. Such solutions are useful and serve as a 
baseline for comparison with the solutions obtained via numerical schemes. For a Newtonian fluid 
K l 0     and no microrotation, i.e., H=0, the equations reduce to those of Kumari et al. [18]. Further, 
for a steady case, i.e., when P = 1 and when no free convection effects are considered, heat transfer 
degenerates: in this case the solutions for the velocity field and the temperature field are exactly similar to 
those of Gupta and Gupta [2] and Chen and Char [3]. In particular, the steady-state equations are obtained 
from Eqs (2.7) to (2.9) by substituting , , :t t t tt 0 P 1 P f G H 0       The equations are 
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 Equations (2.7) to (2.9) under the boundary conditions (2.10) and initial conditions (2.11) to (2.14) 
have been solved numerically using the Keller-box method. It should be noticed that the velocity 
distributions of the stretching sheet representing the accelerating and decelerating flows were studied. They 

were respectively given by    and .2 2P t 1 At P t 1 At     
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4. Numerical procedure 
 

 Equations (2.7) to (2.9) are highly non-linear, coupled partial differential equations. Exact analytical 
solutions are not possible for the complete set of equations subject to the boundary conditions (2.10). Hence 
we use an efficient implicit finite difference scheme for the solution process. The implicit finite difference 
scheme (see for details Cebeci and Bradshaw [26], Keller [27], and Vajravelu and Prasad [28]) is chosen for 
this purpose because it has been proven to be more than adequate to give accurate results for coupled 
boundary value problems. The coupled boundary value problems of third order in f, second order in H and 
second order in G, are reduced to a system of seven simultaneous differential equations of first order with 
respect to   by assuming , , , ,1 2 3 1f f f f f f H H     , and2 1 2H H G G G G    . Initially, all first 

order derivatives with respect to   are replaced by two-point backward difference formulae of the form  
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denote approximate values of f at the grid point  ,i j t  . To solve this system of equations we require five 

initial conditions; whilst we have only two initial conditions    , , , on ,f 0 t f 0 t f  one initial condition

 , onH 0 t H  and one initial condition on  , onG 0 G . The other three initial conditions 

     , , , and ,f 0 t H 0 t G 0 t    are not prescribed; however, the values of      , , , and ,f t H t G t   
 
are 

known for η at infinity. Hence, we employ the Keller-box numerical scheme where these three boundary 
conditions are utilized to produce three unknown initial conditions at 0  . To select ,  we begin with 
some initial guess value and solve the boundary value problem for a set of parameters to obtain 

     , , , and , .f 0 t H 0 t G 0 t  
 

Thus we start with the initial approximation as  ,3 0f 0 t   , 

   , and ,2 0 2 0H 0 G 0       and then let , and11 11 11    be the correct values of    , , ,3 2f 0 t H 0 t

 and ,2G 0 t  respectively. We integrate the resulting system of seven differential equations using the fourth 

order Runge-Kutta method and obtain the values of      , , , and , .3 2 2f 0 t H 0 t G 0 t  Finally the problem has 

been solved numerically using a second order finite difference scheme known as the Keller-box method. The 
solution process is repeated with another larger value of   until two successive values of 

     , , , and ,f 0 t H 0 t G 0 t    agree up to the desired decimal level signifying the limit of the boundary 

along  . The last value of   is chosen as appropriate value for that set of parameters.  
      The numerical solutions are obtained in four steps as follows: 

 Reduce Eqs (2.7) to (2.9) to a system of first-order equations; 
 Write the difference equations using central differences; 
 Linearize the algebraic equations by Newton’s method, and write them in a matrix-vector form; and 
   Solve the linear system by the block tri-diagonal elimination technique. 

 For each value of t  we get a set of algebraic equations: with each of the non-linear terms evaluated 
at the previous iteration, the algebraic equations are solved with iteration by the well-known Thomas 
algorithm. This process is repeated for the next t value and the problem is solved line by line until the desired 
t  value is reached. For the sake of brevity the details of the solution process are not presented here.  
      It is also important to note that the computational time for each set of input parameters should be as 
short as possible. The physical domain in this problem is unbounded, whereas the computational domain has 
to be finite, we apply the far field boundary conditions for the pseudo-similarity variable at finite value 
denoted by max .  We ran our bulk of computations with max 7  , which is sufficient to achieve 
asymptotically the far field boundary conditions for all values of the parameters considered. For numerical 
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calculations, a uniform step size of . and .0 005 t 0 001     are found to be satisfactory and the solutions 

are obtained with an error tolerance of 610 in all the cases. To assess the accuracy of the present method, 
comparisons of the wall-temperature gradient between the present results and the previously published 
results are presented, for several special cases in Tab.1.  
 
Table 1.  Comparison of the values of the wall-temperature gradient  G 0

 
obtained by Grubka and Bobba 

[3], Ali [5], Ishak et al. [29] and Prasad et al. [30] with the present results in the absence of 
microrotation when K l 0      for n = 0.5. 

 

Pr 
Grubka 

and Bobba  
[4] 

Ali [5] Ishak et 
al. [29] Prasad et al. [30] Present results 

0.01 -0.0099 **** -0.0099 -0.01017936 -0.01018 
0.72 -0.4631 -0.4617 -0.4631 -0.4631462 -0.4630462 
1.0 -0.5820 -0.5801 -0.5820 -0.5826707 -0.5826407 
3.0 -1.1652 -1.1599 -1.1652 -1.16517091 -1.16513091 

10.0 -2.3080 -2.2960 -2.3080 -2.308029 -2.308019 
100.0 -7.7657 **** -7.7657 -7.769667 -7.769657 

 
5. Results and discussion 
 
 Numerical computations are carried out to obtain the results for the convective boundary layer flow 
and heat transfer induced by a vertical stretching sheet immersed in a microploar fluid. The present study 
involves three more parameters in addition to the usual Prandtl number, namely, the micropolar fluid 
parameters, the unsteady parameter and the buoyancy parameter. In order to get a clear insight into the 
physical problem, the velocity, microrotation and the temperature profiles are presented graphically in Figs 
1-3. Values of the skin friction, the wall couples stress coefficient and the Nusselt number for different 
values of the physical parameters are recorded in Tab.2. In the present paper we have also considered two 
cases of unsteadiness, namely: accelerating and decelerating cases.  
 Figures1a and 1b illustrate the effects of the material parameter and the buoyancy parameter on the 
horizontal velocity profile  f    for different values of unsteady parameter. It is noticed from the figures 

that  f    decreases and tends to zero as the distance increases from the boundary. The effect of increasing 

values of the buoyancy parameter  and the material parameter K is to increase the velocity  f    and 

hence increases the boundary layer thickness.  The velocity gradient at the surface  ,f 0 t  decreases as K  

increases. Thus, micropolar fluids show drag reduction compared to viscous fluids. Physically, 0   means 
heating of the fluid or cooling of the surface (assisting flow); 0   means cooling of the fluid or heating of 
the surface (opposing flow) and 0   means the absence of free convection currents (forced convection 

flow). Also, an increase in the value of   can lead to an increase in the temperature difference  wT T : 

This leads to an enhancement of the velocity  f   due to the enhanced convection currents and thus an 

increase in the boundary layer thickness. This is true for both steady and unsteady cases. The influence of the 
unsteady parameter is to decrease the velocity  f   : this is due to the fact that the velocity gradient at the 

surface is larger for larger values of t which produces the larger skin friction coefficient and hence boundary 
layer thickness decreases. 
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Fig.1a.  Horizontal velocity profiles for different values of t and K with n=0.5, Pr=0.72,  =0.1, l=0.5, 
a=0.1,  =0.2. 

 

 
 

Fig.1b.  Horizontal velocity profiles for different values of t and   with n=0.5, Pr=0.72,  =0.1, l=0.5, 
a=0.1, K=0.5. 
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material parameters, namely: andK   on the temperature  G  . The effect of increasing values of the 

material parameters is to decrease the temperature distribution in the flow region. This is in conformity with 
the fact that an increase in the material parameters leads to decrease in the thermal boundary layer thickness. 
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This is true even for non-zero values of the unsteady parameter shown graphically in Figs 2a-2b. Figure 2c 
depicts the effect of the buoyancy parameter on the temperature profile  G   for different values of the 

unsteady parameter. From the graphical presentation, it can be observed that an increase in the value of the 
buoyancy parameter   results in a decrease in the thermal boundary layer thickness and this results in an 
increase in the magnitude of the wall temperature gradient (see Tab.2). This in turn produces an increase in 
the surface heat transfer rate. The variations of  G   for different values of the Prandtl number Pr  and the 

unsteadiness are displayed in Fig.2d. The effect of increasing values of the Prandtl number Pr  is to decrease 
the temperature  G  . That is, an increase in the Prandtl number Pr means a decrease in the thermal 

conductivity and hence decreases of thermal boundary layer thickness. This can be even noticeable for zero 
and non-zero values of t.  
 

 
 

Fig.2a.  Temperature profiles for different values of t and K with n=0.5, Pr=0.72,  =0.1, l=0.5, a=0.1,  =0.2. 
 

 
 

Fig.2b.  Temperature profiles for different values of t and   with n=0.5, Pr=0.72,  =0.1, l=0.5, a=0.1, 
K=0.5. 

0 1 2 3 4 5 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

t  =  4 . 0 , 2 . 0 , 0 . 0

G (  )



 K = 0 . 0 ,    K = 1 . 0 ,   K = 5 . 0

0 1 2 3 4 5 6
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

G (  )

t  =  4 . 0 , 2 . 0 , 0 . 0



  = - 0 . 3 ,     = 0 . 0 ,    = 1 . 0



416  K.V.Prasad, H.Vaidya and K.Vajravelu 

 
 
Fig.2c.  Temperature profiles for different values of t and   with n=0.5, Pr=0.72,  =0.2, l=0.5, a=0.1, 

K=0.5. 
 

 
 
Fig.2d.  Temperature profiles for different values of t and Pr with n=0.5, Pr=0.72,  =0.2, l=0.5, =0.1, 

a=0.1, K=0.5. 
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      The microrotation profiles  H   are presented in Figs 3a-3d for different values of the governing 

parameters. The microroation profiles are parabolic in nature for a fixed value of n = 0.5 and continuously 
decreases with η and becomes zero far away from the plate, satisfying the boundary conditions (2.10). As 
expected, the microrotation effect is more dominant near the surface. Also, the microrotation decreases as K 
increases in the vicinity of the plate but the opposite is true away from the plate. This is true even for zero 
and non-zero values of t as shown in Fig.3a. The buoyancy parameter has the similar effect on the 
microrotation as those seen in temperature profiles and is shown graphically in Fig.3b. Figure 3c 
demonstrates the dependence of the micropolar fluid parameter l. The effect of the microploar fluid 
parameter l is to enhance the thickness of the microrotation and hence the boundary layer thickness increases 
as l increases. Figure 3d elucidates the effect of n on the microrotation profile for different values of the 
unsteady parameter. The effect of n is to reduce the thickness of the microrotation and the thickness is 
smaller for n = 0.5 when compared to n = 1.0. This is true even for all values of the unsteady parameter.  
 

 
 

Fig.3a.  Microrotation profiles for different values of t and K with n=0.5, Pr=0.72,  =0.1, l=0.5, a=0.1,  =0.2. 
 

 
 

Fig.3b.  Microrotation profiles for different values of t and   with n=0.5, Pr=0.72,  =0.1, l=0.5, a=0.1, 
K=0.5. 
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Fig.3c.  Microrotation profiles for different values of t and l with n=0.5, Pr=0.72,  =0.1,  =0.2, a=0.1, 

K=0.5. 
 

 
 

Fig.3d.  Microrotation profiles for different values of t and n with l=0.5, Pr=0.72,  =0.1,  =0.2, a=0.1, 
K=0.5. 
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micropolar fluids show drag reduction compared to viscous fluids. The effects of , and PrK   are to 

decrease and l is to enhance the wall temperature gradient  ,G 0 0 .  

 
6. Conclusions 

 
 Some of the important findings of the study are as follows: 
 The effect of increasing values of   and K is to increase  f    and hence increases the boundary layer 

thickness. The velocity gradient at the surface  ,f 0 t  decreases as K  increases. Thus, micropolar 

fluids show drag reduction compared to viscous fluids. 
 The effect of increasing values of K is to decrease the temperature distribution in the flow region.  
 The effect of   results in a decrease in the thermal boundary layer thickness and this results in an 

increase in the magnitude of the wall temperature gradient (see Tab.2). This in turn produces an increase 
in the surface heat transfer rate. 

 The microrotation effect is more dominant near the surface and decreases as K increases in the vicinity of 
the plate but the reverse happens away from the plate.  

 Of all the parameters, the material parameters have the strongest effects on the drag, heat transfer 
characteristics, the horizontal velocity and the temperature fields.  
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Nomenclature 
 
 A – non-dimensional micropolar parameters 
 C – positive constant 

 fC  – skin friction 

 pC  – specific heat at constant pressure 

 f – dimensionless stream function 

 
Grx  – local Grashof number 

 g – acceleration due to gravity 
 j – microinertia density 
 K – material parameter  

 ( )K T  – temperature dependent thermal conductivity  

 cK  – thermal conductivity 

 l – micropolar fluid parameter 

 wM  – wall couple stress  

 N – heat conduction coefficient 

 wN  – local Nusselt number  

 Pr – Prandtl number 

 wq  – local rate of heat transfer from the wall   

 Rex – local Reynolds number 
 T  – temperature  

 wT  – temperature of the plate 

 t – unsteady parameter 
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 t  – dimensionless time 

 ,u v  – velocity components in the x and y directions 

 ,x y  – Cartesian coordinates 

   – dimensionless heat conduction coefficient  

 C  – heat conductivity 

   – thermal expansion coefficient 

 C  – thermal conductivity 

   – gyroviscosity 

   – similarity variable 

   – rotational viscosity 

   – buoyancy or mixed convection parameter 

   – kinematic viscosity 

   – kinematic viscosity 

   – density 

   – microrotation component 

 w  – wall shear stress  

   – stream function 
 
Superscript 
 
 ‘ – differentiation with respect to   
 
Subscripts 
 
 t – partial derivative with respect to t 

 w  – condition at the wall 

   – condition at infinity 
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