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An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded 
by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a 
rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by 
two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be 
incompressible, electrically conducting with different viscosities and electrical conductivities. The governing 
partial differential equations are reduced to the linear ordinary differential equations using two-term series. The 
resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and 
secondary) in the two regions respectively, by assuming their solutions as a combination of both the steady state 
and time dependent components of the solutions. Numerical values of the velocity distributions are computed for 
different sets of values of the governing parameters involved in the study and their corresponding profiles are also 
plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such 
as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and 
heights are discussed. Also an observation is made how the velocity distributions vary with the rotating 
hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in 
the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number 
causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases 
both the primary and secondary velocity distributions in the two regions. 
 
Key words: magnetohydrodynamics, two-layered fluids/immiscible fluids, rotating fluids, oscillating flow, 

unsteady flow, porous plates. 

 
1. Introduction 
 

The simultaneous influence of rotation and an external magnetic field on electrically conducting 
two-layered/two-phase fluid flow systems seems to be dynamically important and physically useful in many 
diversified fields mainly from geophysical applications to the atmosphere and oceans and to motions within 
the Earth’s core. It is apparent that the rotating flow of an electrically conducting fluid in the presence of a 
magnetic field is encountered in cosmological and geophysical fluid dynamics. It can provide an explanation 
for the observed maintenance and secular variation of the geomagnetic field (Hide and Roberts [1]), the  
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sunspot development, the solar cycle and the structure of rotating magnetic stars (Dieke [2]). Moreover, the 
presentation of an MHD two-layered/two-phase flow model with porous boundaries subject to normal 
suction is timely in view of the recent interest in the liquid metal flow in MHD power rotating generators, in 
proper design of cooling blankets in a magnetically confined thermo nuclear reactors. Also, this type of study 
would provide guidance for the investigation of boundary layer behavior along porous plates with fluid 
injection/suction. Since the review article of Squire [3], a great number of research work on MHD flows of 
viscous incompressible electrically conducting fluids in a rotating system under different conditions and of 
various aspects of the problem has been initiated by many researchers, namely, Gilmam and Benton [4], 
Benton and Loper [5], Nanda and Mohanty [6], Gupta [7], Debnath [8], Seth et al. [9], Seth et al. [10] and 
others. The oscillatory flows in rotating channels are important from a practical point of view, since fluid 
oscillations may be expected in many MHD devices and in natural phenomena where fluid flow is generated 
due to an oscillating pressure gradient or due to vibrating plates (or walls). The investigations on oscillatory 
flows of viscous incompressible electrically conducting fluids in a rotating system under different conditions 
and various aspects of the problem have been carried out by many authors, such as Mukherjee and Debnath 
[11], Seth and Jana [12], Singh [13], Ghosh [14], Gupta et al. [15], Ghosh and Pop [16], Hayat and Hutter 
[17], Guria and Jena [18] and many more. 
 The problems concerned with two immiscible fluids or multi-layered fluids flow situations which 
arise in the petroleum industry, geophysical fluid dynamics and in magnetohydrodynamics have been studied 
and reported in the literature by several authors. The stratified laminar flow of two immiscible liquids in a 
horizontal pipe was studied by Packham and Shail [19]. Hartmann flow of a conducting fluid in a channel 
between two horizontal insulating plates of infinite in extent with a layer of non-conducting fluid between 
upper channel wall and the conducting fluid was studied by Shail [20]. He observed that an increase of the 
order of 30% can be obtained in the flow rate for suitable ratios of depths and viscosities of the two fluids 
with realistic values of the Hartmann number. In addition, there are numerous publications which are made 
available in the literature on experimental and theoretical aspects of magnetohydrodynamic two-phase/two-
layered flow problems by several researchers, notably, Lielausis [21], Michiyoshi et al. [22], Chao et al. 
[23], Dunn [24], Gherson [25], Lohrasbi and Sahai [26], Serizawa et al. [27], Malashetty and Leela [28], 
Ramadan and Chamkha [29], Chamka [30], Raju and Murty [31] and others. All the above stated 
investigations were carried out by the authors for steady flow situations. However, a significant number of 
practical problems dealing with immiscible fluids are unsteady in nature. In many practical problems, it is 
advantageous to consider both immiscible fluids as electrically conducting, one of which is highly 
electrically conducting compared to the other. The fluid of low electrical conductivity compared to the other 
is helpful to reduce the power required to pump the fluid in MHD pumps and flow meters. In view of these 
facts, Healy and Young [32] studied a oscillating two-phase channel flows. Debnath and Basu [33] discussed 
the unsteady slip flow in an electrically conducting two-phase fluid under transverse magnetic fields. 
Chamkha [34] studied the unsteady MHD convective heat and mass transfer past a semi-infinite vertical 
permeable moving plate with heat absorption. Umavathi et al. [35] investigated an oscillatory Hartmann two-
fluid flow and heat transfer in a horizontal channel, Tsuyoshi Inoue and Shu-ichiro Inutsuka [36] studied 
two-fluid magnetohydrodynamic simulations of converging Hi flows in the interstellar medium. Raju and 
Sreedhar [37] discussed unsteady two-fluid flow and heat transfer of conducting fluids in channels under a 
transverse magnetic field. Raju and Valli [38] discussed an unsteady two-layered fluid flow and heat transfer 
of conducting fluids in a channel between parallel porous plates under a transverse magnetic field. 
Subsequently, these authors [39] studied an MHD two-layered unsteady fluid flow and heat transfer through 
a horizontal channel between parallel plates in a rotating system. 
 Keeping in view the above mentioned wide range of applications, in this paper an unsteady 
magnetohydrodynamic (MHD) two-layered fluids flow in a horizontal channel between two parallel plates in 
the presence of an applied magnetic and electric field is investigated, when the whole system is rotated about 
an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in the channel 
bounded by two parallel insulating plates, when both fluids are considered as electrically conducting. Also, 
the two fluids are assumed to be incompressible with variable properties as different viscosities and electrical 
conductivities. The resulting governing partial differential equations are then reduced to linear ordinary 
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differential equations by using two-term series. Analytical solutions for primary and secondary velocity 
distributions are obtained in both fluid regions of the channel. Profiles of these solutions are plotted to 
discuss the effect on the flow and their dependence on the governing parameters involved, such as the 
Hartmann number, Taylor number (rotation parameter), ratio of the viscosities, heights and electrical 
conductivities. Also, an examination is made how the velocity distributions vary through a hydromagnetic 
interaction in the case of steady and unsteady motions with rigid rotation. 

The structure of the paper is as follows. Introduction of the problem is given in § 1. The formulation 
and mathematical analysis of the problem is given in § 2. Solutions of the problem are given in § 3. While, § 
4 gives the results and discussion based on the velocity profiles, which are displayed in Figs 2 to 13. The 
conclusion is given in § 5, followed by Nomenclature and References. 
 
2.  Formulation and mathematical analysis of the governing equations of motion, energy, 

boundary and interface conditions 
  
 We consider an unsteady magnetohydrodynamics (MHD) two layered-fluids flow between two 
parallel plates extending along the x- and z- directions at y = h1  and y = -h2, when the fluids and plates are in 

a state of rigid rotation with uniform angular velocity   about the y-axis normal to the plates. The length of 
the plates is much greater than the distance between them. The fluids in the upper and lower regions, i.e., 0  
y  h1 and –h2  y  0 are designated as Region -I and Region-II respectively.  
 

 
 

Fig.1 Physical regime and co-ordinate system. 
 
Figure 1 represents the physical regime and co-ordinate system choosing the origin midway between the two 
plates. Fluid flow in both the upper and lower regions is generated due to a common constant pressure 

gradient 
p

x

   
 in a channel bounded by two parallel porous plates, one being stationary and the other 

oscillatory. A constant transverse magnetic field of strength B0 is applied to the plates. A constant electric 
field E0 is also applied in the z- direction. The induced magnetic field is being neglected by assuming that it 
is small when compared with the applied field. The two fluids are subjected to a constant suction v0 applied 
normal to both the plates. If  , , , ( , )i i iu v w i 1 2 , are the velocity components in the two fluids and 

 , ,i i iiq u v w , then the equation of continuity . iq 0   gives iv =- v0 (v0 > 0). Both regions are occupied 

by two immiscible electrically conducting, incompressible fluids with different densities ,1 2  , viscosities 
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,1 2   and electrical conductivities ,1 2  , respectively. Under these physical conditions, the flow regime in 
the [x, y, z] coordinate system can be represented as in the analysis of Lohrasbi and Shahai [26] by the 
following simplified equations of motion, the corresponding boundary and interface conditions for both fluid 
regions in a rotating frame of reference as:  
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 The subscripts 1 and 2 in the above equations represent the values for Region-I and Region-II 
respectively. The quantities u1, u2 and w1, w2 are the x- and z-components of fluid velocities known as the 
primary and secondary velocity distributions in the two regions, respectively.   is the angular velocity, 

where  =( , ,0  0).; and ‘t’ is the time. The boundary conditions on velocity are the no-slip condition at the 
lower plate and an oscillatory type at the upper plate. We also assume that the continuity of velocity, shear 
stress at the interface between the two fluid layers at y = 0.  
 The boundary and interface conditions on 1u , 1w  and ,2 2u w  for the two fluids are considered as  

   1 1u h      and     1 1w h 0       for      t 0 , 

    

                            = Real  i te  ,       for        t 0 ,       (2.5)  

                                                                    
   2 2u h 0  ,           2 2w h 0  ,           (2.6)  

 
     1 2u 0 u 0 ,          1 2w 0 w 0 ,              (2.7) 

 

  1 2
1 2

du du

dy dy
           and           at1 2

1 2
dw dw

y 0
dy dy

          (2.8) 

 
where   (amplitude) is a small constant quantity such that 1   and   is the frequency of oscillation at 
the plate, and the perturbed fields initially are zero, since the system is at rest for t 0 . 
 The following non-dimensional quantities are introduced to make the governing equations and 
boundary/interface conditions dimensionless 
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       (2.9) 

  h (the ratio of heights ) = 2

1

h

h
,  

    (the ratio of electrical conductivities) = 1

2




,  

  eR  (the electric load parameter) = 0 0 pE B u .     

 The non-dimensional forms of Eqs (2.1) to (2.4) in both the fluid regions after the use of 
transformations (2.9) and for simplicity neglecting the asterisks are obtained as:                
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 With the use of the above transformations (2.9), the non-dimensional forms of boundary and 
interface conditions are given by 
 
          1u 1       and       1w 1 0          for       ,t 0     

 

  = Re  i te  ,       for      t 0 ,                                                                          (2.14)  

 
   2u 1 0  ,         2w 1 0  ,                                               (2.15) 

 
     1 2u 0 u 0 ,            1 2w 0 w 0 ,                                                    (2.16) 

 

   /1 2du du
1 h

dy dy
        and       / at1 2dw dw

1 h y 0
dy dy

   .                                (2.17) 

 
 Conditions (2.15) denote no-slip conditions at the lower wall and conditions (2.14) are due to 
oscillation of the upper wall for any time t. Also, conditions (2.16) and (2.17) represent the continuity of 
velocities and shear stress at the interface y = 0.   
 
3. Solutions of the problem 

 

 The governing momentum Eqs (2.10), (2.11) and (2.12), (2.13) are to be solved subject to the 
boundary and interface conditions (2.14) - (2.17) for the velocity distributions in both regions.  Actually 
these equations are coupled partial differential equations, which cannot be solved in a closed form. But, they 
can be reduced to linear ordinary differential equations by assuming the following two term series 
 
              ( , ) ( ) cos . ( )1 01 11u y t u y t u y    ,                (3.1) 
 
         ( , ) ( ) cos . ( )1 01 11w y t w y t w y    ,             (3.2) 
 

      ( , ) ( ) cos . ( )2 02 12u y t u y t u y    ,                                  (3.3) 
 

     ( , ) ( ) cos . ( )2 02 12w y t w y t w y    ,                                          (3.4)  
 
in which the terms    ,01 02u y u y  are velocities in basic steady state case in the two regions, while,   ,11u y   

 12u y  are the corresponding time dependent components of  the solutions, which are the factors of Real

 i te   to be determined with the help of Eqs (2.10) to (2.13). 

 Making use of the expressions given in Eqs (3.1) - (3.4) into Eqs (2.10) - (2.13) and  separating the 
steady-state and transient time dependent parts, the following differential equations for    ,01 02u y u y ; also, 

   ,11 12u y u y  in terms of the complex notations: , ,01 01 01 11 11 11q u iw q u iw     ,02 02 02q u iw   

12 12 12q u iw   are obtained in both fluid regions as:  
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Region-I 
For steady-state part 
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Region – II 
For steady-state part 
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 The corresponding boundary and interface conditions on velocity become: 
 
For steady-state part 

 
 ( )01q 1 0  ,     (3.9) 
 
 ( )02q 1 0  ,     (3.10) 
 
 ( ) ( )01 02q 0 q 0 ,     (3.11) 
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For transient time dependent part 
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 11 12dq dq1

dy h dy



      at       y = 0.    (3.16)           
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 The differential equations given in Eqs (3.5) - (3.6) along with the boundary and interface conditions 
from (26) to (33) represent a system of linear ordinary differential equations and conditions. These equations 
are solved in closed form for both the steady state and transient time dependent cases separately in two parts. 
Hence, the complete solutions for velocity distributions of the unsteady flow problem become: 
 
Region-I 
 

   ,1q y t  ( )01q y + Real  i te  ( )11q y , 

            (3.17)                     
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Region-II 
 

   ,2q y t  ( )02q y + Real  i te  ( )12q y , 

   (3.18) 

              =   i tRe  e3 4 7 8m y m y m y m y5
3 4 7 8

4

a
c e c e al c e c e

a
     .         

 
 The solutions of the non-periodic terms give the steady-state fluid flow solutions for both regions 
and without going into details, the steady-state velocity profiles are shown in Figs 2 to 13. The solutions of 
the periodic terms represent the transient velocity distribution in both regions of the channel. The solutions of 
the unsteady problem given in Eqs (3.17) to (3.18) are evaluated numerically for different non-dimensional 
governing flow parameters involved in the study. Also, these results are plotted as graphs and are shown in 
Figs 2 to 13. The value for   is fixed at 0.5 and Pr 1  for all graphs, also the constants appearing in the 
above solutions are given in the Appendix. 
 
4. Results and discussion 
 
 In the present study, we examine the influence of the Hartmann number (M), Taylor number/rotation 

parameter (T), porous parameter   , viscosity ratio   , electrical conductivity ratio () and height ratio 

(h) on the primary and secondary velocity distributions. The analytical solutions for velocity distributions, 
such as primary and secondary velocity distributions, namely u1, u2 and w1, w2 in the two fluid regions are 
given for small   (the coefficient of exponent of periodic frequency parameter). These solutions are 
evaluated for various parametric conditions to plot their profiles. The numerical results are depicted 
graphically in Figs 2 – 13 for dimensionless primary and secondary velocity distributions: u1, u2 and w1, w2, 
respectively in both the regions (Region-I and Region-II) to elucidate the interesting features of the rotating 
magnetohydrodynamic steady and unsteady flow motions. The solid lines and the dash-dot lines show the 
profiles for the unsteady and for the steady flow motions, correspondingly. We note that, the analysis is in 
good agreement with the study of Malashetty and Leela [28] when the motion is in steady state condition, no 
rigid rotation and for non-porous plates (i.e., T = 0, 0  ). Also, this study matches with the solutions of 
Raju and Valli [38] for the case of non-rigid rotation (T = 0). So the study leads some confidence, in addition 
the solutions satisfy all boundary and interface conditions. 
 Figures 2 and 3 show the effect of differing Hartmann number (M) on both primary and secondary 
velocity distributions in the two regions. From Fig.2, it is noticed that the primary and secondary velocity 
distributions in both regions increase as   increases for fixed values of the remaining parameters. From 
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Fig.3, it is seen that the secondary velocity distribution enhances as M increases up to its value equal to 2 
and thereafter it diminishes in both the regions. Also, the maximum primary velocity in the channel tends to 
move above the channel centre line towards the upper fluid region as M increases, when all the remaining 
governing parameters are fixed. But, the maximum secondary velocity distribution in the channel tends to 
move above the channel centre line towards Region-I (i.e., in the upper fluid region) up to M = 3, there after 
it tends to move below the channel centre line towards Region-II (i.e., in the lower fluid region) as the 
Hartmann number increases.  
 

 
 

Fig.2.  Primary velocity profiles ,1 2u u  (unsteady flow) ,1 2u u   (steady flow) for different M and T=1, 

.1 5  , .0 333  , .0 1  , h=0.75, Re=-1, .0 8  , .0 5  , 1 , t    . 
 
 

Fig 2.Primary Velocity profiles u1,u2 (unsteady 
flow), u1*,u2* (steady flow) for different M  and 

T=1, ρ =1.5,  α=0.333 , σ=0.1, h = 0.75 ,Re=-1, 

λ=0.8 , ε = 0.5, ω=1,      t = π/ω  -1.5
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Fig.3.  Secondary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different M and T=1, 

.1 5  , .0 333  , .0 1  , h=0.75, Re=-1, .0 8  , .0 5  , 1 , t    . 
 
 The effect of varying values of the Taylor number (the rotation parameter) T on both the primary 
and secondary velocity distributions in the two fluid regions is shown in Figs 4 and 5. From Fig.4, it is 
found that there is a reduction in the primary velocity distributions in region-I and region–II with an 
increase in the Taylor number (T). Probably, when the Coriolis force becomes stronger, there will be a 
heavy reduction in the primary velocity distributions due to the formation of thin boundary layers making 
the velocity distributions become very small for different values of T. From Fig.5, it is observed that an 
increase in T rises the secondary velocity distribution in both the regions and remains the same when T > 

Fig 3.Secondary Velocity profiles w1,w2 
(unsteady flow), w1*,w2* (steady flow) for 

different M  and T=1, ρ =1.5, α=0.333 , σ=0.1, h = 

0.75 ,Re=-1, λ=0.8 , ε = 0.5, ω=1,  t = π/ω  
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2. Of course, this is due to the tendency for instability at low values of T. Also, as T increases, the 
maximum primary and secondary velocity distributions in the channel tend to move above the channel 
center line towards Region-I. 
 

 
 

Fig.4.  Primary velocity profiles ,1 2u u  (unsteady flow) ,1 2u u   (steady flow) for different T and .1 5  , 

.0 8  , M=2, .0 333  , .0 1  , Re=-1, h=0.75, .0 5  , 1  , t    . 
 
 

Fig 4.Primary velocity profiles u1,u2 (unsteady 
flow), u1*,u2* (steady flow) for different T  and ρ 

=1.5 ,λ=0.8 , M=2 , α=0.333, σ=0.1, Re = -1,  h= 

0.75,     ε = 0.5, ω=1, t= π/ω .
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Fig.5.  Secondary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different T and 

.1 5  , .0 8  , M=2, .0 333  , .0 1  , Re=-1, h=0.75, .0 5  , 1 , t    . 
 
           Figures 6 and 7 show the effect of varying values of the porous parameter (suction number)   on 
both primary and secondary velocity distributions in the two fluid regions. From both the figures, it is found 
that there is a reduction in the velocity distributions with increasing values of the parameter  . Also, the 

Fig 5.Secondary Velocity profiles w1,w2 
(unsteady flow), w1*,w2* (steady flow) for 

different T  and ρ =1.5 ,λ=0.8 , M=2 , α=0.333, 
σ=0.1, Re = -1,  h= 0.75,     ε = 0.5, ω=1, t = π/ω .-1.5
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maximum primary and secondary velocity distributions in the channel tend to move above the channel centre 
line towards Region-I as   increases.  
 

 
 

Fig.6.  Primary velocity profiles ,1 2u u  (unsteady flow) ,1 2u u   (steady flow) for different   and .1 5  , 

T=1, M=2, .0 333  , .0 1  , Re=-1, h=0.75, .0 5  , 1  , t    . 
 
 
 

Fig 6.Primary Velocity profiles u1,u2 (unsteady 

flow), u1*,u2* (steady flow) for different λ and ρ 
=1.5 ,T=1 , M=2 , α=0.333, σ=0.1, Re = -1,  h= 0.75, 

ε = 0.5, ω=1, t = π/ω .
-1.5

-1

-0.5

0

0.5

1

1.5

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

λ=0.01

λ=0.1

λ=0.2

λ=0.5

λ=0.8

λ=2

λ*=0.01

λ*=0.1

λ*=0.2

λ*=0.5

λ*=0.8

λ*=2

 



436  T.Linga Raju and B.Neela Rao 

 

 
 

Fig.7.  Primary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different   and .1 5  , 

T=1, M=2, .0 333  , .0 1  , Re=-1, h=0.75, .0 5  , 1 , t    . 
 
            In Figs 8 and 9, we have illustrated the variation of the primary and secondary velocity distributions 
in the two regions with the electrical conductivity ratio . A substantial increase in the primary and 
secondary velocity distributions is observed as the electrical conductivity ratio  increases. The maximum 

Fig 7.Secondary Velocity profiles w1,w2 
(unsteady flow), w1*,w2* (steady flow) for 

different λ and ρ =1.5 ,T=1 , M=2 , α=0.333, σ=0.1, 
Re = -1,  h= 0.75,     ε = 0.5, ω=1, t = π/ω .
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primary and secondary velocity distributions in the channel tend to move above the channel centre line 
towards Region-I as  increases.  
 

 
 

Fig.8.  Primary velocity profiles ,1 2u u  (unsteady flow) ,1 2u u   (steady flow) for different   and .1 5  , 

T=1, M=2, .0 8  , .0 333  , Re=-1, h=0.75, .0 5  , 1 , t    . 
 
 
 
 

Fig 8.Primary Velocity profiles u1,u2 (unsteady 
flow), u1*,u2* (steady flow) for different σ and ρ 

=1.5 ,T=1 , M=2 , λ=0.8, α=0.333, Re = -1,   h= 
0.75, ε = 0.5, ω=1, t = π/ω .
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Fig.9.  Primary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different   and .1 5  , 

T=1, M=2, .0 8  , .0 333  , Re=-1, h=0.75, .0 5  , 1  , t    . 

 
 The influence of the viscosity ratio,  , on the primary and secondary velocity distributions in the 
two regions is depicted in Figs 10 and 11. It is noticed that the primary and secondary velocity distributions 
are increasing with an increasing values of  .  

Fig 9.Secondary Velocity profiles w1,w2 
(unsteady flow), w1*,w2* (steady flow) for 

different σ and ρ =1.5 ,T=1 , M=2 , λ=0.8, α=0.333, 
Re = -1,  h= 0.75,     ε = 0.5, ω=1, t = π/ω .-1.5
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The maximum primary and secondary velocity distributions in the channel tend to move above the channel 
centre line towards region-I as   increases.  
 

 
Fig.10.  Primary velocity profiles ,1 2u u  (unsteady flow) ,1 2u u   (steady flow) for different   and .1 5  , 

T=1, M=2, .0 8  , .0 1  , Re=-1, h=0.75, .0 5  , 1 , t    . 
 
 
 
 

Fig 10.Primary Velocity profiles u1,u2 (unsteady 
flow), u1*,u2* (steady flow) for different α and ρ 
=1.5 ,T=1 , M=2 , λ=0.8, σ=0.1, Re = -1,  h= 0.75,   

ε = 0.5, ω=1, t = π/ω .
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Fig.11.  Primary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different   and .1 5 
, T=1, M=2, .0 8  , .0 1  , Re=-1, h=0.75, .0 5  , 1 , t    . 

 
 The effect of varying values of the height ratio h on both the primary and secondary velocity 
distributions in the two regions is shown in Figs 12 and 13. It is seen that an increase in h increases both the 

Fig 11.Secondary Velocity profiles w1,w2 
(unsteady flow), w1*,w2* (steady flow) for 

different α and ρ =1.5 ,T=1 , M=2 , λ=0.8, σ=0.1, 
Re = -1,  h= 0.75,     ε = 0.5, ω=1, t = π/ω .

-1.5

-1

-0.5

0

0.5

1

1.5

-0.05 0 0.05 0.1 0.15

α=0.01
α=0.05
α=0.1
α=0.333
α=0.5
α*=0.01
α*=0.05
α*=0.1
α*=0.333
α*=0.5

 

 



Unsteady two-layered fluid flow of conducting fluids … 441 

primary and secondary velocity distributions in the two regions. Also as the parameter h increases, the 
maximum velocity in the channel tends to move above the channel centre line towards region-I. 
 

 
 

Fig.12.  Primary velocity profiles ,1 2u u  (unsteady flow) ,1 2u u   (steady flow) for different h and .1 5  , 

T=1, M=2, .0 8  , .0 333  , Re=-1, .0 1  , .0 5  , 1 , t    . 
 
 
 

Fig 12.Primary Velocity profiles u1,u2 (unsteady 
flow), u1*,u2* (steady flow) for different h and ρ 

=1.5 ,T=1 , M=2 , λ=0.8, α=0.333, Re = -1,  σ= 0.1,  
ε = 0.5, ω=1, t = π/ω .
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Fig.13.  Primary velocity profiles ,1 2w w  (unsteady flow) ,1 2w w   (steady flow) for different h and .1 5  , 

T=1, M=2, .0 8  , .0 333  , Re=-1, .0 1  , .0 5  , 1 , t    . 

 
5. Conclusion 
 
 The transient flow of electrically conducting two–layered fluids flow through a horizontal channel 
bounded by two parallel porous plates (one being stationary and the other oscillating) in a rotating system 
with an applied transverse magnetic field is studied analytically. The fluid is generated due to a common 
constant pressure gradient in a channel bounded by two parallel porous plates. The fluids in both regions are 
assumed to be immiscible, incompressible with different viscosities and electrical conductivities. The 

Fig 13. Secondary Velocity profiles w1,w2 
(unsteady flow), w1*,w2* (steady flow) for 

different h and ρ =1.5 ,T=1 , M=2 , λ=0.8, α=0.333, 
Re = -1,  σ= 0.1,     ε = 0.5, ω=1, t = π/ω .
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governing equations of motion are derived and are non-dimensionalised using an appropriate group of 
dimensionless variables controlled by physical parameters, namely, the Hartmann number (M), Taylor 

number (T), porous parameter   , ratio of the viscosities ( ), electrical conductivities () and heights (h). 

The resulting partial differential equations are transformed into a set of linear ordinary differential equations 
using two-term series as a combination of both steady state and transient time dependent parts, which in turn 
are solved in a closed form. The solutions are evaluated numerically to plot their graphs for the velocity 
distributions (primary and secondary) in both the regions. Comparisons with previously published theoretical 
studies are mode, achieving excellent agreement. A very good agreement is also obtained with the analytical 
solutions of Malashetty and Leela [28] when the motion is in steady state with non-porous plates and without 
rigid rotation. And only in the absence of rigid rotation, the results agree well with the solutions of Raju and 
Valli [38]. The primary velocity distributions in the two fluid regions are seen to increase with an increase in 
Hartmann number M, whereas the secondary velocity distribution increases and then remains the same when 
the value of M>2 for selected values of the remaining parameters. It is found that an increase in T decreases 
the primary velocity distribution in the two regions, while an increase in the Taylor number T causes a rise in 
the secondary velocity distribution of the fluids in both regions for smaller values of T and remains in the 
same when the value of T > 2. It is observed that an increase in the porous parameter decreases both the 
primary and secondary velocity distributions in the two regions. Hence, it is concluded that the velocities in 
the two regions can be enhanced with the suitable values of the ratios of viscosity, heights, electrical and 
thermal conductivities. However, it is hoped that the results reported herein will serve to motivate further 
experiments on this type of problems and are expected to be useful in verifying numerical algorithms used to 
solve more multifaceted or pragmatic problems of this type.  
 
Nomenclature 
 

 
, ,

,

, , , ,

, , ..etc.

1 2 3 1 2 3

1 2 3

a a a c c c

m m m
 – functions / real constants represented in the equations and solutions 

 B0 – applied uniform transverse magnetic field 
 E0 – constant electric field in the z-direction 
 h  – ratio of the heights of the two regions 
 h1 – height of the channel in the upper region (Region-I) 
 h2 – height of the channel in the lower region (Region-II) 
 M – Hartmann number 
 Pr – Prandtl number 
 p – pressure 
 Re – electric load parameter 
 T – Taylor number (rotation parameter) 
 t – time 

 pu  =
2
1

1

p h

x

    
, characteristic velocity 

    ,01 02u y u y  – primary velocity distributions in the basic steady state case in two regions 

    ,11 12u y u y  – time dependent primary velocity components in the two regions 

 1u , 
2u  – x- component of velocity distributions in the two fluid regions, known as the primary velocity 

distributions 
 0v  – constant suction velocity 

 1w , 
2w  – z- component of velocity distributions in the two fluid regions called the secondary velocity 

distributions   
    ,01 02w y w y  – secondary velocity distributions in the basic steady state case in two regions 

    ,11 12w y w y  – time dependent secondary velocity components in the two regions 

 (x, y, z) – space co-ordinates in the rectangular Cartesian co-ordinate system 



444  T.Linga Raju and B.Neela Rao 

   – ratio of viscosities 
   – ratio of thermal conductivities 

 λ  – porous parameter (suction number) 
   – ratio of electrical conductivities   
 ,1 2   – electrical conductivities of the two fluids 

 ,1 2   – densities of the two fluids 

 ,1 2   – viscosities of the two fluids 

   – amplitude (a small constant quantity such that 1  ) 
   – frequency of oscillation 

   – angular velocity, where   = ( , ,0  0)  
 
Subscripts 
 
 1, 2 – refers to the quantities in the upper and lower fluid, regions respectively  
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