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In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the 
postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new 
thermodynamics potentials P and S depending upon internal thermodynamic forces  are introduced. The most 
general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to 
this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic 
coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper 
not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the 
velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even 
when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the 
surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces  
but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, 
the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the 
yield surface. 

 
Key words:  thermodynamic potentials, couplings effects, stresses, deformations, temperature, entropy, enthalpy, 

constitutive and rate equations, yield surface, plastic potential. 

 
1. Introduction 
 

 The paper is a generalization of papers (Śloderbach [1], [2], [3]). This generalization consists in a 
formal derivation of two new thermodynamic potentials P and S dependent on the set internal 
thermodynamic forces   with the use of Legendre transformations. Owing to that, it was possible to close 
the system of physical thermo-elasto-plastic couplings (thermo-mechanical and elasto-plastic couplings). 
Suitable couplings were presented as a closed diagram of couplings. Moreover, derivation of a new 
thermodynamic potential P allowed a precise description of values of the stored energy of plastic 
deformation (SEPD), (see Bever and Holt [4]; Oliferuk et al. [5], [6]; Śloderbach and Rechul [7]; Śloderbach 
and Pająk [8]) obtained during experiments (Oliferuk et al. [5], [6]) and specification of the equation of 
evolution for internal thermodynamic forces , and determination of their initial values. The thermodynamic 
method of preparation space (Perzyna, [9]) was used for this purpose. The literature on coupled thermo-
elasto-plasticity is very vast and here we present only some selected problems, mainly those closely related 
to our present paper. The first papers concerning non-isothermal coupled thermo-elasto-plasticity can be 
found in Lehmann [10], Perzyna [9], Prager [11], Raniecki [12], [13], Raniecki and Sawczuk [14], [15], 
Raniecki and Thermann [16], Śloderbach [1], [2], Ziegler [17]. In all those papers, the displacement and 
velocity gradients were small, which means that the assumptions of the infinitesimal theory of the continuum 
were used. The first unclosed diagrams of couplings of thermo-elasto-plasticity can be found in Raniecki 
[12], [13], Raniecki and Sawczuk [14], Śloderbach [1]. The first closed diagrams of couplings and equations 
of thermo-elasticity were presented in Nye [18] and those for thermo-elasto-electro-magnetic effects in 
Newnham [19]. 
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 The selected effects of couplings of thermo-elasto-plasticity for large deformations (no closed 
system and diagram of couplings) can be found in Benall and Bigoni [20], Candija and Brnic [21], Casey 
[22], Lehmann [23], Nguyen [24], Perzyna [9], Raniecki and Thermann [16], Śloderbach and Pająk [25]. 
Most of the papers concerning large deformations described associated laws of plastic flow (see e.g., Benall 
and Bigoni [20], Candija and Brnic [21], Casey [22], Lehmann [23], Nguyen [24], Perzyna [9], Raniecki and 
Thermann [16]). Nguyen in paper [24], tried to specify some thermo-mechanical couplings in the range of 
large elasto-plastic deformations of metallic materials being under the influence of high pressures and 
quasistatic and dynamic loadings. Thus, derivation of the full and closed set of equations for couplings of 
thermo-elasto-plasticity for the case of large deformations and closure of the diagram of couplings (like in 
this paper) still remains an open scientific problem for future researchers.  

 In this paper, field equations of the generalized copuled theory of thermo-elasto-plasticity will be 
derived making use of the notions of classical thermodynamics of irreversible processes (Callen [26], Dillon 
[27], Gumiński [28], Kestin [29], Perzyna [9], Petryk [30]). The concept of macroscopic internal parameters 
will be used to describe the thermodynamic state of a thermo-elestic-plastic body (Dillon [27], Kestin [29], 
Perzyna [9], Raniecki [12]; [13], Śloderbach [1]; [2]). The above papers concerning similar problems will be 
used as a model. All the thermodynamic potentials are presented in general forms (not in additive forms) and 
as a result it is possible to describe the effects of elastic-plastic coupling observed in non-metal bodies such 
as, for instance, soils, rocks, concrete and other porous materials (Hueckel [31]).  

 Section 2 is devoted to the fundamental assumptions concerning the equation of state (the Gibbs 
equation) and the source of entropy. Discussion of general thermostatic properties of elastic-plastic bodies is 
presented in point 3. This chapter also presents the basic thermodynamic identities including coupling 
effects. 

 The next parts contain the velocity equations of plastic flow. The evolution equations are also 
formulated for internal parameters on the basis of a general approach and a concept resulting from 
assumption of the Gyarmati postulate (Gyarmati [32]). The equations of evolution have been formulated for 
internal parameters on the basis of the general approach (not including potentials for the flows – 
thermodynamic streams), (see Dillon [27], Lehmann [23], Perzyna [9], Pęcherski [33], Prager [11], 
Śloderbach [1], [2]) and the idea resulting from assumption of the Gyarmati postulate (Gyarmati [32], Petryk 
[30], Raniecki [12], [13], Raniecki and Thermann [16], Śloderbach [1], [2], [34]; Śloderbach and Rechul [7], 
Śloderbach and Pająk [25]). 

 During derivation of general rate equations, the frequently applied postulate about the occurrence of 
the thermodynamic potential (Gyarmati postulate) is not used. As in papers (Śloderbach [1], [2]), the 
constitutive equations of plastic flow are non-associated even in a specific case when the Gyarmati postulate 
is assumed (Gyarmati [32]). Application of that postulate need not lead to associated rules of plastic flow. 
However, its application causes that a direction of the sum of tensors of plastic strain rates and rates of 
irreversible plastic strains and rates of irreversible strains caused by plastic strains (effect of the elastic-
plastic coupling) is perpendicular to the instantaneous area of plasticity. The occurrence of the elastic-plastic 
coupling effect allows the application of those equations to describe the behaviour of metallic materials 
under isothermic and non-isothermic conditions, and porous materials, sinters, rocks and soils (Hueckel [31], 
Śloderbach [1], [2]). 

 Neither the usual postulate of existence of dissipation potential (the Gyarmati postulate) is used to 
derive the velocity equations. Similarly as in the papers (Śloderbach [1], [2], [3], Śloderbach and Pająk [25]) 
the equations of plastic flow have non-associated forms. The use of that postulate does not necessarily lead 
to the associated laws of plastic flow. If turns out, however, that, as a consequence of that assumption, the 
direction of the sum of the plastic strain rate tensor and the coupled part of elastic strain tensor is normal to 
the instantaneous surface of plasticity. 

 It will be assumed throughout the entire paper that the displacement and velocity gradients are small, 
which means that the assumptions of the infinitesimal theory of the continuum are used. It is assumed for 
simplicity that all the equations and the entire description are expressed in rectangular Cartesian coordinates. 
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2. Fundamental assumptions. The Gibbs equation and the source of entropy 
 

 Let us assume that the local thermodynamic state is described by the following parameters of state 
(Raniecki [13], Raniecki and Sawczuk [14], Śloderbach [1], [2], [3]) 

e – tensor of small elastic strain, 
s – specific entropy (per unit mass), 
(N) – set of symmetric internal tensor parameters of second order (N=1,…,n),  
 = T, that is ij = ji, 
(M) – set of internal scalar parameters (M = 1,…,m). 
 Now the symbol K will denote the set of internal parameters in the form of a vector of pair K  

{(N),(M)}, (N = 1,…n) and (M = 1,…,m). 
 Let us assume that the fundamental equation of state, i.e., the Gibbs equation, has the following form 

of a differential of the specific internal energy U (Śloderbach [1], [2]) 
 

   , ,e e

0 0

1 1
dU s K Tds d dK    

 
:    (2.1) 

 
where  is now the vector pair of the internal set thermodynamic forces associated with the set of internal 
parameters K, where    {(N)

 , (M)}, (N = 1,…n) and (M = 1,…,m). 
 The local approach to the principle of conservation of energy is as follows (Raniecki [13], 

Śloderbach [1], [2]) 
 

  div
0 0

1 1
U  

 
 : q   (2.2) 

 

where divq = 
xi

qi




, xi  - orthogonal coordinates which express the initial location of the particle. The 

equation of local entropy balance per unit volume of the body has the form (Raniecki [13], Śloderbach [1], 
[2])  

 

  div s
0s

T
      
 

 q
 (2.3) 

 

where 
T
 
 
 

q
 - is the entropy flux and  s is the entropy produced in a definite particle per unit time and 

volume.  
 The local formulation of the second law of thermodynamics is given by the inequality  
 

  s  0. (2.4) 
 
 The entropy production can be evaluated by solving a set of three Eqs (2.1) to (2.3) for 

 , and sU s    

  s 1
T D T

T
   q : ,           T = gradT (2.5) 

 
where D – expresses dissipation of mechanical energy per unit time and volume 
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  pD   :     , (2.6) 
and  

  e p      . (2.7) 
 
 The set of forces n (2.5) and (2.6)  
 

  






  T

T

1
,,X d grad , (2.8) 

 
is referred to as a set of dissipation forces or a set of thermodynamic impulses, and  

 

   q,K,x pd   , (2.9) 
 
is a set of measures of thermodynamic flow rates joined with the set Eq.(2.8).  
 
3. Discussion of the thermostatic properties of an elastic-plastic body 
 

 Some different thermodynamic potentials may be used for the description of the thermo thermostatic 
properties of material. This leads, of course, to equivalent descriptions. 

 Apart from three classical potentials, i.e., internal energy, free energy (Helmholz function) and Gibbs 
potential (Gibbs function), two additional potentials dependent on the internal thermodynamic forces   
have been derived using the Legendre transformation.  

 In this paper, the authors use the following parameters of state: [(s, T), (e, ), (K,  )]. We can 
distinguish eight subsets from that set, containing suitable three parameters of state: {s, e, K}, {s, e,  }, {s, 
, K}, {s, ,  }, {T, e, K}, {T, e,  }, {T, , K}, {T, ,  }. The first five subsets will be used as 
parameters of state for the corresponding five thermodynamic potentials. That system of five independent 
parameters of state makes it possible to assume the diagram of thermo-elasto-plastic couplings as a closed 
diagram having features of transitivity.  

Let us denote the sets of five independent parameters of state as follows 
 

  

     

   

, , , , , , , , ,

, , , , , .

s e T e T
K K K

T e T

Y s K Y T K Y T K

Y T Y T



 

  

   

 

 

  

 

 (3.1) 

 
The first three sets are widely used (Raniecki [13], Raniecki and Sawczuk [14], Raniecki and 

Thermann [16], Śloderbach [1], [2]) and they are independent variable quantities in three potentials: internal 
energy, free energy and the Gibbs function, respectively. The fourth set was introduced in Śloderbach and 
Rechul [7] in order to specify a new potential P useful in description of the stored energy of plastic 
deformation (SEPD) (see Bever and Holt [4], Oliferuk et al. [5], Oliferuk [6], Śloderbach and Rechul [7], 
Śloderbach and Pająk [8]). The fifth set was introduced in this paper for the first time in order to specify a 
closed system of thermomechanical couplings and the elastic-plastic coupling in thermo-elasto-plasticity, as 
well as in order to close of the graphical diagram of couplings (Raniecki [12], [13], Śloderbach [1], [2]). 

The relevant thermodynamic potentials suitable for sets of independent parameters of state (3.1) will 
be denoted as follows 

 

   -internal energy, (3.2)1  sKYUU 
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       
  s

KYss
T
K TsUYAA  - free energy (Helmholtz function), (3.2)2 

 

   
 

T e
K

e e TYK

1
G G Y A

  

 
       

 - Gibbs function, (3.2)3 

 

   
 T

T

0 K=K Y

1
P P Y A







 
      

  - potential depending on set TY 
 , (3.2)4 

 
(see Śloderbach and Rechul [7]) 
 

   
 

T

T0 K K Y

1
S S Y G






 
      

  - new potential depending on set TY 
 . (3.2)5 

 
 Their total differentials are  
 

,

,

,

.

e

0 0

e

0 0

e

0 0

e

0 0

e

0 0

1 1
dU Tds d dK

1 1
dA sdT d dK

1 1
dG sdT d d

1 1
dP sdT d d

1 1
dS sdT d d


     


     

 
        


     
 


      

 









:

:

:

:

:

 

 

 

 

 

 (3.3) 

 
 Thermal equations of state are given in Tab.1. 
    

 sYUU   
(3.4) 

 
(3.5) 

  T
KYGG  

(3.6) 
 TP P Y 

  

(3.7)

 TS S Y 
  

(3.8)
1 2 3 4 5

 sU Y
T

s







 
 
T

YA
s

T
K







 
 
T

YG
s

T
K







  TP Y
s

T




 


 
 TS Y

s
T




 


 

  T
K

e
0

A Y1


 
 

 
 Te K

0

G Y 
 
 

 
 T

e
0

P Y1



 

 
 

 T
e

0

S Y1



 

 
 

 s

0

U Y1


 
 




 

 T
K

0

A Y1


 
 

 
 T

K

0

G Y1


 
 

 
 εT

0

P Y1 
  
 

 
 T

0

S Y1



 
 

  

  
The fundamental physical quantities describing the thermostatic properties of solids are defined as 

follows (Śloderbach [1], [2]) 

  T
KYAA

 
e

0

1














sYU
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         
,

T T T
T

s Y U Y s Y
c Y T c T

T T T

  



  

  
  
  

 , (3.9) 

 

     e T
T

Y
Y








L







,              T

T
e

Y
Y








M







, (3.10) 

 

  

       

       

, ,

,

e T e T
KT T

K

T T
KT T

K

Y Y
Y Y

Y Y
Y Y

 
 



 
 



 
 

 

 
 

 

Z R

N S





 

 

 (3.11) 

where 

     
1

YT



 


         and           

1

YT



 Z S


 (3.12) 

 
where Z – is the vector of pairs of tensors of the fourth and second order representing the isothermal 

variation of elastic deformation due to the internal processes accompanying plastic deformation in state TY . 
Physically, it means a change of Young’s modulus caused by plastic deformations. Figures 2 and 3 show the 
linear and non-linear changes of Young’s modulus and of elastic deformations with the stresses during the 
unloading processes. N – is the vector of pairs of tensors of the fourth and second order representing 
isothermal variation of the state of stress due to internal processes accompanying plastic deformation in the 

state TY 
 . 
 The quantities (3.9) to (3.12) are not independent. They satisfy the set of the following identities 

resulting from the existence of thermodynamic potentials (Raniecki [12], [13], Raniecki and Sawczuk [14],  
Raniecki and Thermann [16], Śloderbach [1], [2])  

 

   -1

YT
K

  
 
 

M L , (3.13) 

 

  ijmn mnrs is jr ir jsY
2 M L T

K
      

 
 

 
    and    Mijmn = Mmnij = Mjimn = Mijnm. (3.14) 

 

 
 












T
KY0

T
cc


 M:     and     

e
T
KY

T
 




 ,     
   s s

0

Y T Y1

s

 
 


  




, (3.15) 

 

 
   

 
T T
K K

e
0 0

Y

s Y Y1 1

T
T
K

 



 
    

     
M  





,         

   T T

0

s Y Y

T

  
 

 
 


, (3.16) 

 

  
     

, ,

T e T T
K K K

ij ji 0
0

s Y Y s Y1

T

    
     

   




 
 and 

   T T

0

s Y Y

T

  
 

 
 


. (3.17) 
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 The thermodynamic potentials being not expressed in an additive form but in the most general form 
(Śloderbach [1], [2], Śloderbach and Pająk [25]) give the following additional identities of thermostatic 
couplings, which will be used in a further part of the paper  

 

  
   
   

T T
K K

T T
K K

Y Y

Y Y

 

 

   

   

LN L N Z

MZ M Z N
 (3.18) 

 

            
and

T T e T T
K K K KT T

K Ke

Y Y Y Y
Y Y

   
 

   
      

  
N N Z Z

 

 


, (3.19) 

and 

  
   

 
T T
K K

0

s Y s Y 1
  

 
  

MZ
 

 , (3.20) 

 

  
   

 
T T
K KY Y

T T

  
 

 
MZ . (3.21) 

 
 The identities (3.18), (3.20) and (3.21) are sometimes called thermodynamic identities of the second 

order. The identities expressing thermostatic couplings (3.19) have the following physical interpretation. A 
variation in internal forces  as a result of elastic strain results in a process of hardening (softening) of the 
materials, and variation in internal forces as a result of stress is connected with a variation in the moduli of 
elasticity as a result of variation in internal parameters, see Eqs (3.11)1 and (3.11)3. The identities (3.18), 
(3.20) and (3.21) are complex identities and are sometimes referred to as identities of the second order. 

 The most important thermostatic properties of elastic-plastic materials can be discussed by assuming 

consecutively  , , , , , , ,T T T T s s s s
K KY Y Y Y Y Y Y Y       

       as a set of independent parameters of state and 

evaluating the increments in the dependent parameters [cf. columns 2, 3, 4 and 5 of Tab.1 and the formulae 
(3.9)-(3.21)]. Thus, we obtain the following expressions 
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 Thermostatic couplings in the area of thermo-elasto-plastic interactions are presented in Fig.1. It uses 

similar but incomplete schemes of couplings presented in papers (Raniecki [12], [13], Raniecki and 
Sawczuk, 1973; Śloderbach [1]) or thermo-elastic couplings completed with the electric and magnetic fields, 
including, for example, phenomena of thermo-electric polarization (Newnham [19]). 
 

 
 

Fig.1. Closed diagram of couplings occurring in thermomechanics of elastic-plastic bodies.  
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 The diagram shows 15 possible coupled connections between two independent parameters of state. 

Particular types of thermodynamic, thermomechanical and mechanical (elastic-plastic) couplings are denoted 
as the Greek letter  with a suitable subscript or with subscript and dash. It was assumed that couplings with 
the upward (vertical or at an angle) and horizontal (to the right) arrows were expressed by the symbol i (i = 
1, 2,…,15) (with no dash). The couplings with downward arrows (vertical or at an angle) and horizontal (to 

the left) arrows were denoted by the symbol with subscript and dash i  (i = 1, 2,…,15). Dimensionless 

coefficients i and i  have no physical meaning. The ideas presented in Raniecki and Sawczuk [14], 
Raniecki [12], [13], Śloderbach [1], [2], have been introduced for simplification of interpretation of different 
terms of effects of couplings occurring in the equations. They can be also useful for some simplifications in 
general constitutive equations. They are a kind of numbers which take a value 1 or zero when any of effects 
of couplings shown in Fig.1 is neglected. For example, when 4 = 0 is substituted, thermal expansion is 
neglected, if 11 = 0 – a change of internal forces caused by a change of elastic strains is neglected, when 

6 0  - heat of elastic deformations is not taken into account, in the case of 9 0   - influence of internal 
changes on elastic strains is omitted, etc. If we are concentrated only on internal changes in the material 
caused by plastic strains and occuring as plastic hardening, i.e., the effects denoted by numbers 9-12 in 
Fig.1,they can also be called the effects of elastic-plastic coupling (Hueckel [31], Śloderbach [1], [2], 
Śloderbach and Pająk 25]). 

 Theoretically, there are 30 physical kinds of thermodynamic, thermomechanical and mechanical 
(elasticplastic) couplings. Not all of them, however, have their physical interpretation and physical 
explanation, and not all of them have been observed. They are a result of the assumption of a general (non-
additive) form for thermodynamic potentials and formal derivation of total differentials for the chosen 
dependent parameters of state, depending on the assumed systems of independent parameters of state, see 
expressions (3.22) – (3.27).  

 The symbol 0 shows dissipation heat which is not a thermostatic thermal effect and it is not 
specified in the diagram in Fig.1.  

 Some of those couplings have already their names and definitions, such as heat capacity, elasticity, 
thermal expansion, elastic thermal stresses, thermostatic piezoelectric effect, heat of  internal changes, heat 
of elastic strains, internal thermal forces. Other couplings have only formal names resulting from a change of 
the given physical quantity dependent on the independent parameter, such as a change of internal forces 
accompanying internal changes, a change of elastic strains caused by internal changes, a change of the stress 
state caused by internal changes, a change of internal forces caused by a change of the stress state, influence 
of temperature on internal changes and influence of internal changes on a change of temperature, etc.  

 
4. Systems of constitutive thermo-elasto-plastic equations 

 
 Eliminating s  from Eqs (2.3), (3.22)1,2, we obtain two alternative equations for temperature. By 

finding   from Eq.(3.5)2, and e  from Eq.(3.6)2, and making use of Eqs (3.9)-(3.12), respectively, we 
obtain the following two alternative sets of equations composed of the equation for the temperature and the 
relation between the rates of elastic strain, elastic stress and temperature 
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where q0 = -divq. 
 Increment of the temperature is  
 

   = T – T0,  (4.3) 
 

where T0 - is the temperature of reference [K]. 
 Let us observe that the elastic strain rate involved in Eq.(4.1)2 can be represented in the form 
 

  
eIIeIe    , (4.4) 
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where eI  - is termed the „uncoupled” part of the elastic strain rate, and eII  is the “coupled” part of the 
elastic strain rate connected with the internal processes accompanying the plastic strain. Such a separation of 

the tensor e  into two parts was adopted and interpreted in Hueckel [31], Śloderbach [1], [2], [34] in the 
case of isothermal and nonisothermal processes. By confronting (4.4) with (2.7) it is found that 
 

  peIIeIpe    , (4.6) 
 

or   peIIeIpe dddddd   . (4.7) 
 

 A graphical illustration of such a separation of strains is shown in Figs 2 and 3 for a stress and strain 
cycle, respectively.  
 

 
 

Fig.2. Graphical  interpretation of the strain rate tensor distribution. 



472  Z.Śloderbach 

 

 

 
Fig.3.  The hysteresis loop and the cyclic strain curve with the selected elastic deformation, “uncoupled” 

(linear elastic) and “coupled” respectively. 
 

 Figures 2 and 3 present linear and nonlinear changes of elastic deformations with the stresses during 
the unloading processes. Physically, it means a linear and nonlinear change of Young’s moduli caused by 
plastic deformations. In Figs 2 and 3 we can see a decrease of plastic deformations being a result of a 
decrease of Young’s modulus value for the considered materials. An inverse phenomenon (increase of 
Young’s modulus value) seems to be possible for other modern materials.  

 The closed cycles of stresses and strains play the most important role in problems of mechanical 
(high-cycle) fatigue (Killer [35]) or thermo-mechanical (low-cycle) fatigue (Coffin [36], Costa and Silva 
[37], Okrajni et al. [38]). In recent years, a wide research related to thermo-mechanical fatigue (most often to 
low-cycle fatigue) of many technical devices and their components has been mode (see Baumel and Seegler 
[39], Coffin [36], Costa and Silva [37], Killer [35], Marcisz et al. [40], Okrajni et al. [38]) for example.  

 Let us introduce another thermodynamic potential – the enthalpy (Callen [26], Dillon [27], Guminski 
[28], Kaleta [41], Śloderbach [1], [2], [34], Śloderbach and Rechul [7], Śloderbach and Pająk [8]) 

  

       T T T
K K KY G Y Ts Y     . (4.8) 

 
 The enthalpy potential was efficiently applied in the papers (Kaleta [41], Śloderbach [34], 

Śloderbach and Rechul [7], Śloderbach and Pająk [25]) for determination of the stored energy of plastic 
deformations (SEPD) (Bever and Holt [4], Kaleta [41], Oliferuk [6]) in both quasi-static and cyclic loading 
processes.  

 Then, making use of Eqs (4.8) and (2.1)1, the equation for the temperature can be expressed in terms 
of plastic strain power and the variation in enthalpy due to a variation in the internal parameters as follows  
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 In this form, Eq.(4.9) can be useful for the analysis of the energy stored in the body as a result of 

plastic deformation in a closed cycle of stress (Raniecki [12], [13], Śloderbach [34], Śloderbach and Rechul 
[7], Śloderbach and Pająk [8]). 
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5. Rate equations  
 
5.1. General form of the rate equations 

 
 The thermal equations of state appearing in any column of Tab.1, represent the first group of the 

constitutive equations of thermoplasticity. The other group are the rate equations (Nguyen [24], Raniecki 
[12], [13], Raniecki and Thermann [16], Śloderbach [1], [2], [34]) relating thermodynamic impulses 

, ,
1

T
T

   
 
  to the thermodynamic flow rate  , ,p K q .  

 The rate equations will be assumed in the following general form  
 

   T
K

q Y,T q       and        ,0T
K

q Y,  (5.1) 
 

where T = gradT and  ,T
KY T K . 

 Equations of plastic flow are the following 
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if  F1 = 0        and         0, 
 

  ,p 0 0         if:       F1 0,      or      F1 = 0      and       (5.3
 

where b – function describing evolution for internal parameters  . 
 Here, F1 = F1  , , ,T   - is a generalized function of plastic flow determined in the space of 

thermodynamic forces Xd = {, -such that (F1 = 0) determines the flow area in this space. The 

expression for an equation of evolution for the vector of pairs   in the form of Eq.(5.2)2 is a result of 
application of the idea of the preparation space (Perzyna [9]). Using additional experimental data, in that 
space we can determine the equations of evolution for internal parameters K or dissipation forces  and 
determine their initial value (Perzyna [9], Śloderbach [34], Śloderbach and Rechul [7], Śloderbach and Pająk 
[8]). 

 Since q  does not depend on dissipation forces{, -two independent inequalities must be 
fulfilled if the second law of thermodynamics (dissipation rule) must be satisfied (Petryk [30], Raniecki [12], 
[13], Raniecki and Thermann [16], Śloderbach [1], [2], [34]) 
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 If  or  are replaced by a suitable equation of state [columns of Eqs (3.5) or (3.7) from Tab.1], then 

we will obtain the plastic flow function and suitable flow conditions F in the stress space, written as  
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 The factor in Eq.(5.2) can be eliminated by making use of the „association condition” (Prager [11], 
Raniecki [12], [13], Raniecki and Thermann [16], Śloderbach [1], [2], [34], Śloderbach and Rechul [7])  

 
  1F F 0          if       F1 = F = 0       as: 
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is what is termed the strain hardening function. 

 By assuming the classical condition for plastic loading  p 0  , if and only if 
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we find, by virtue of Eq.(5.6)2, that h  0. Equations (5.2)1, can be expressed in the form  
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where, by virtue of Eq.(5.5)1  
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 For the analysis of SEPD during cyclic loadings and for the initial stage of plastic deformations (see 

Oliferuk [6], Śloderbach [34], Śloderbach and Rechul [7], Śloderbach and Pająk [8]) we can assume the 
following form of the flow condition (Raniecki [13], Śloderbach [34], Śloderbach and Rechul [7]) 
 

  F1 = 
1

2
(S - c:S - c 2

1Y ( 5.10

 

where S =  dev  =  -  (ii) 1, c = c(is a material parameter, 

Y1 – is the yield point under simple tension, and the internal thermodynamic force  can be identified with 
the force resulting in the translatory motion of the flow surface in the space S, causing kinematic hardening 
and the Bauschinger effect (see Pęcherski [33], Raniecki [13], Śloderbach [34], Śloderbach and Rechul [7]), 
for example. 

 In the case of quasi-static (non-cyclic) loadings and big strains, isothropic hardening is dominating 
(Pęcherski [33], Śloderbach [34], Śloderbach and Rechul [7], Śloderbach and Pająk [8]). For such processes 
of plastic deformations, the following simplified flow condition with isotrophic hardening is assumed 
(Raniecki [13]) 

 

  F1 = 
1

2
S:S - 

3

1
 2

1Y ( (5.11

1

3

1

3
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 In Eq.(5.11) compared with Eq.(5.10) it was assumed that Then, it appears that vectors of pairs 
(K and ), are  =  and  =  respectively. The flow conditions (5.10) and (5.11) are (H-M-H) 
conditions.Condition (5.11) describes a special class of materials with isothropic hardening, the internal 
state of which is described by only one scalar parameter and irreversible plastic flow is described by the 
following function of flow 

 
  F1 = (i) – Y1(whereY1(T) = Y(T), 
 
or   (5.12) 
 
  F1 = (i) - Y1(where    Y1(T) = Y (T), 
 
and  
 

  Y1(T) = Y1(T)       or      Y(T) = Y (T) 
 

where (i) = 
2

1

2

3








SS :  - effective deviator of stress.  

 In this case, the associated laws of plastic flow Eq.(5.2), for (F1 = 0) take the following form 
(Raniecki [13], Śloderbach [34], Śloderbach and Rechul [7])  

 

  p

(i)

3
e

2





S ,         p

ii 0,          1Y
  


  (5.13) 

 

where  devp p p e    . 

 
 The power of plastic deformation has the form  
 

  pW S: pe  (i) ( )
p
ie  (5.14) 

 

where  ( )
p
ie =

1

2p p2

3
 
 
 

e e :  - means the intensity of the plastic strain rate, and 
t

0

p
)i(

p
)i( dτee   - is the intensity 

of the plastic strain deviator.  
 

5.2. The particular form of rate equations resulting from the Gyarmati postulate 
 
 A more special form of rate equations can be obtained by making use of the Gyarmati postulate 

(Gyarmati [32], Raniecki [12], [13], Raniecki and Thermann [16], Śloderbach [1], [2], [34], Śloderbach and 
Rechul [7]). Let us assume that the dissipative thermodynamic forces Xd see Eq.(2.8), have a potential d = 

 d  ,d T
Kx Y , (see Gyarmati [32], Raniecki [12], [13], Raniecki and Thermann [16], Śloderbach [34]) 

 

   , ,
d

d d p
d

X x
x


 





 , (5.15) 

 

which is differentiable everywhere except at the point dx 0 . 
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Since the relations Eq.(5.15) are to describe a plastic material insensitivity to thermodynamic flow 

rate, they must be invariant under a change of time scale. It can be easily seen that this is the case, provided 

that d is a homogeneous function of the first order in dx . 

 The homogeneity of the function d implies in turn the dependence of the function  T
K

dd Y,xX   
(see e.g., Raniecki [12], [13], Raniecki and Thermann [16], Śloderbach [34]). 

 This means that there exists a function  ,d T
1F X Y  termed the generalized flow function such that 

 

   , ifd T d
1F X Y 0 x 0  . (5.16) 

 
 Then the inverse relations to Eq.(5.15) can be represented in the form  
 

  
 ,d T

1d
d

F X Y
x

X


 


 

       if       andd
1x 0 F 0  . (5.17) 

 
 Assuming that the states of F1  0 cannot be attained and taking the usual loading and unloading 

criterion (5.8)1,2 we shall obtain generalized W. Prager’s non-isothermal laws of plastic flow (see Raniecki 
[12], [13], Raniecki and Thermann [16], Śloderbach [1], [2], [34]) in a form which is identical with (5.8) 
except that the function b involved in Eqs (5.2)2,3 and (5.7) has now the form 

 

  
 ,d T

1F X Y
b


 




. (5.18) 

 
 Making use of Eqs (5.18), (5.9) and expressions (3.11) and (3.19), we find 
 

  
e

pF 
   
 

 






 (5.19) 

 
where  is defined by the formula (5.6)2. 

 Substituting (4.5)2 into (5.19), we find 
 

  p eIIF
  


  


. (5.20) 

 

 In the general formulation, the tensor p  is normal to the surface F1 = 0, but is not normal to the 

surface F = 0. As regards the sum of tensors 
eIIp     it is normal to the surface F = 0, but is not normal to 

the surface F1 = 0, where .eII 1F 
 
 




 As a consequence of the Gyarmati postulate, the sum of tensors 

eIIp     is also normal to the surface F = 0, but now 


 




e

eII 
 . It seems that this interpretation of 

this effect has not been observed yet in the literature. It is ilustrated in Fig.4. 
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Fig.4. Graphically-vectorial interpretation of expression (3.20). 
 
In Fig.4: 

F – denotes the hyperplane tangent to the instantaneous yield surface F = 0 at the point P determined 

by the unit normal vector nf, where 

 
f 1

2



 




F
n

F F

, 

1F  - denotes the hyperplane tangent to the instantaneous yield surface F1 = 0 having the character of 

plastic potential and determined by the normal unit vector ng  f 1n , where 

 
,

, ,

1
g 1

21 1



 





F
n

F F

 where 

F






F


 and ,
1

1
F







F


, 

 and 0 – is the angular measure of deviation due to the variation in internal foces  depending on the 
the state of stress (the effect denoted by a symbol 12, cf. Sect. 3), which is equivalent to a change in moduli 

of elasticity as a result of plastic deformation, see Eq.(5.19)2 and coupling effect denoted by a symbol 9
 , cf. 

Sect. 3. 
 In the outline of the theory of material intensitive to thermodynamic flow rate, all the equations take 

a definite form, even the thermodynamic function G (or any other thermodynamic potential), d and q or G, 
F1 and q. In the most general formulation given in Sect. 3.1 it is also necessary to know the function 

 T
K

d YXbb ,  for the equations of evolution of the internal parameters K. 

 
4. Final remarks 

 
1.  In the paper, the authors derive the field equations of coupled generalized thermo-elasto-plasticity using 

postulates of classical thermodynamics of irreversible processes. The idea of macroscopic internal 
parameters is used for the description of thermodynamic state of the elastic-plastic body. Derivation of 
basic relationships is based on some previous papers concerning that area (Dillon [27], Kestin [29], 
Perzyna and Sawczuk [42], Raniecki [12], [13], Raniecki and Sawczuk [14], [15], Raniecki and 
Thermann [16], Śloderbach [1], [2], [34], Ziegler [17]). 

2.  In the paper, the authors use a general form of thermodynamic potentials. An additive form – for 
example for the free energy potential – is not applied in order to specify a closed system of couplings 
in thermo-elasto-plasticity. The additive form presents two terms: one of them describes thermo-
elastic properties, and the other one – thermo-plastic properties. In the case of such separation of the 
potential into two terms, effects of the elastic-plastic coupling do not occur. The additive form of free 



478  Z.Śloderbach 

energy has the form (see e.g., Raniecki [12], [13], Raniecki and Sawczuk [14], [15], Raniecki and 
Thermann [16])  

 
  A = A(T, e, Ae(T, e) + Ap(T, ). (3.28) 

 
3.  The generalization consists in formal derivation, with the use of Legendre transformations, of a new 

thermodynamic potential dependent on internal thermodynamic forces. Owing to that, full closure of the 
system of physical thermo-elasto-plastic couplings (thermomechanical and elastic-plastic couplings) was 
possible. Suitable couplings were presented as a closed diagram of couplings. Derivation of the new 
thermodynamic potential allowed a precise description of quantities of the stored energy of plastic 
deformation (SEPD) obtained during experiments, and specification of equations of evolution for internal 
thermodynamic forces.  

4. In the paper it is assumed that gradients of displacements and strain velocities are low, and for 
simplification it is assumed that all the mathematical operations and all the descriptions are realized in the 
Cartesian coordinate system.   

5.  Many papers describing some chosen kinds of thermomechanic couplings including large deformations 
has been published (Benall and Bigoni [20], Candija and Brnic [21], Casey [22], Epstein and Maugin 
[43], Lehmann [23], Markin and Sokolova [44], Xiao et al. [45], Nguyen [29], Śloderbach and Pająk 
[25]). They do not present, however, a full description of a closed set of equations and thermomechanic 
couplings, and they do not form a closed diagram of couplings.  

6.  The diagram shown in Fig.1 has got the following recognized properties resulting from a set of 
thermodynamic identities (3.9)-(3.21) and principles of reciprocity of physical phenomena.  

a.  Suitable pairs of couplings (5, 6), (8, 13) and (9, 12) (mutually parallel lines) and pairs of couplings 
(4, 7), (19, 11) and (14, 15) (mutually crossing lines) have the same coupling parameter which 
sometimes has a different sign (+) or () depending on equations in Tab.1.  

b.  Coupling triangles, for example lines (2, 9, 10), (2, 11, 12) have such a property that one coupling 
is obtained by a composition of two other ones, for example (coupling 9 = coupling 2 „+” 
coupling10) and 11 = coupling 2 „+” coupling 12, see identities (3.10)-(3.13) and (3.18)-(3.19). 
The sign „+” concerns composition („sum”) of couplings. This property concerns also other 
suitable triangles of couplings. 

c.  Couplings (1, 2 and 3) are heat capacity, elasticity and plasticity, respectively. 
d.  It seems that the diagram in Fig.1 can have other properties resulting from mutual couplings of 

thermo-elasto-plasticity, not recognized so far.  
7.  Equations of evolution were derived for internal parameters according to a general approach (with no use 

of potentials for flows – thermodynamic streams) and an idea resulting from the assumption of the 
Gyarmati postulate. 

8.  During derivation of general rate equations of thermo-plasticity, the widely used postulate on the 
existence of thermodynamic potential (Gyarmati postulate) was not applied. Thus, like in the papers 
(Hueckel [31], Śloderbach [1], [2], [34]), constitutive equations of plastic flow are non-associated laws 
even in a special case when the Gyarmati postulate is assumed.  

9.  The application of the Gyarmati postulate does not have to lead to associated laws of plastic flow. It 
appears that its application causes that the direction of the sum of tensors of the plastic strain rate and the 
rate of irreversible strains caused by plastic deformations (the effect of elastic-plastic coupling) is 
perpendicular to the instantaneous area of plasticity. The existence of the elastic-plastic coupling effect 
allows the use of the derived equations for describing the behaviour of not only metallic materials, but 
porous materials, sinters, rocks and soils as well.  

10. In the paper, it is assumed that the gradients of displacements and strain rates are low, and for simplicity 
it is assumed that all the mathematical operations and all the descriptions are realized in the Cartesian 
coordinate system. In last years, many papers describing some chosen kinds of thermomechanic couplings 
including large deformations have been published (Candija and Brnic [21], Casey [22], Lehmann [23], 
Nguyen [24], Pęcherski [33], Śloderbach and Pajak [25], Markin and Sokolova [44], Xiao et al. [45]). 
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Nomenclature 
 
 A – free energy (Helmholtz function) 
 A0 – free energy value corresponding to the TRS (see later in the list) 
 Ae and Ap – elastic and plastic part of the free energy A, respectively 
 C – material constant present in constitutive equations 
 andc c   – specific heat capacity measured at constant elastic strain and stresses in [1/(kgK)] 

 D – quantity of mechanical energy dissipated within a unit volume and unit time 
 E – Young’s modulus 
 F – law function of plastic flow determined in the variables state space {T, , K} 
  F1 – generalized law function of plastic flow determined in the thermodynamic force space {T, , -, K} 
  G – free enthalpy (Gibbs function) 
  h – hardening function, K – pair of internal parameters K  { ; } 
  and L – tensor of isothermal elastic moduli and tensor of elastic compliance, respectively 
  P – thermodynamic potential dependent in state TY 

 ={T, e, } 

  q – vector of density of the heat flow rate, [J/(m2s)] 
 S – thermodynamic potential dependent in state TY 

 ={T, , } 

 (SEPD) – abbreviation for: “stored energy of plastic deformations” 
 s – specific entropy (referred to unit mass) 
 s0 – entropy value corresponding to the TRS 
 T – thermodynamic temperature in [K] 
  T0 – reference temperature corresponding to the TRS – it may be, for example, the ambient temperature 
 T – gradient T (gradT) 
 (TRS) – abbreviation for “thermodynamic reference state”, where T = T0, K = 0 and e = 0 
  U – internal energy 
 u – displacement of material particles in [m] 
 Xd – set of dissipative (mechanical) thermodynamic forces,  X

d =  , , T  σ  

 dx  – set of dissipative (mechanical) thermodynamic flows, dx =  , ,p q    

  Y – yield stress in uniaxial tension 
 Y0 – initial yield stress, for p = 0 
 Y1 – yield stress in uniaxial tension dependent on (, , T)  
  – symmetric tensors of thermal expansion coefficients, such that ij = const 
  s – amount of entropy generated within a unit volume over a unit time and referred to a given material 

particle 
 e and p  – tensor of small elastic and plastic deformations 
 e p  – deviatoric part of plastic deformation tensors p, e p  devp  
   – thermodynamic function - enthalpy 
 K – pair of internal parameters K  { ; } 
  and  – symmetric second rank tensor and scalar internal parameter, respectively 
  – plasticity multiplier 
  and  – Lamé elastic constants,  - Poisson ratio 
   – pair of internal thermodynamic forces,  { , }, associated with a pair of internal parameters  
 0 – initial value of an internal thermodynamic force for  p = 0 
 q – denotes the heat flux exchange with the neighbourhood per unit time across unit area in [J/(m2s)] 
 0 and  – body density in a thermodynamic reference state and in an actual one, respectively 
  – Cauchy stress tensor, (i) - effective deviator of stress 
 0 – yield stress value obtained in the uniaxial tension test for p = 0 
 d – thermodynamic potential for dissipative (mechanical) thermodynamic forces Xd  
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Symbols and abbreviations 
 

 Tensors will be printed in a bold type-face. The summation convention is assumed along with the 
following detailed notation 

 
  AB  AijBj        or      AijklBkl(i, j, k, l, m, n,... = 1, 2, 3), 
 

  trA  Akk ,tr(AB)  AijBji, 
 

  A:B  AiBi           or        AijBij         and         



A

B
dB  kl

kl

ij
dB

B

A




, 

 
1 - identity tensor, ij - Kronecker delta, 0 - null tensor, 

symA   ij ji
1

A A
2

 , devA = A  
1

3
(trA)1 – deviatoric part of tensor A,  

  Ai,j = 
j

i

x

A




, where: xj – coordinates of a material particle, 
t

A
A




 ,where: (t – time). 

 If Z denotes pairs of tensors of the fourth and the second order, then Z  {Zmnkl ; Zmn}, and M is the 
tensor of the fourth order, then the operation MZ is a pair of tensors of the fourth and the second order 
defined as follows  


  ijmn Zmnkl ; Mijmn Zmn}. 
 
 If  and K denote pairs of tensors of the second and the zeroth order, then the operation K 

produces a scalar, sec (Śloderbach [1], [2], [3], Śloderbach and Pająk [25])  
 
  K = : = ijij + 

 If the function F is relative to  and K, then F(F( , ) and F(K) = F( , ). 
 The derivatives of function F with respect to a pair  and K are defined as follows 
 

  ,
F F F    
   

       and       ,
F F F

K

    
   

. 

 

 The differentials of function F with respect to the pairs  and  of tensors of the second and the 
zeroth order produce the following form 

 

   = and      d
K

F



  . 

 
 The differential of function F with respect to the pair  of tensors of the second and the zeroth order, 

produces a sum, (cf. Śloderbach [1], [2], [3], [34], Śloderbach and Pajak [25]), such that 
 

  ;ij ij
kl kl

kl kl

d d d d d
           

     



. 

 

F
d


 


,ij

ij

F F
d d

        
,ij

ij

F F
d d

        
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 If  is a second order tensor, then the operation   MZ  produces a pair of tensors of the second 

and the zeroth order 
 

     ;ij ijmn mnkl ij ijmn mnM Z M Z   MZ . 

 
 If Z denotes pairs of tensors of the fourth and the second order and K is a pair of tensors of the 

second and the zeroth order, then the operation KZ  produces a pair of tensors of the second order s 
 

   ;ijmn mn ijZ Z   Z  . 
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