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In this paper, the solution to a problem of pressure distribution in a curvilinear squeeze film spherical bearing 
is considered. The equations of motion of an Ellis pseudo-plastic fluid are presented. Using Christensen’s 
stochastic model of rough surfaces, different forms of Reynolds equation for various types of surface roughness 
pattern are obtained. The analytical solutions of these equations for the cases of externally pressurized bearing 
and squeeze film bearing are presented. Analytical solutions for the film pressure are found for the longitudinal 
and circumferential roughness patterns. As a result the formulae expressing pressure distribution in the clearance 
of bearing lubricated by an Ellis fluid was obtained. The numerical considerations for a spherical bearing are 
given in detail.  
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1. Introduction 
 
 The phenomenon of the squeeze film of a non-Newtonian fluid may be found in many applications 
such as: bioengineering, stamping, molding, lubrication technology, metal processing, pressure die casting, 
polymer processing [1-3].  
 In recent years the problem of the influence of the bearing surface roughness on the mechanical 
parameters of the bearing has received considerable attention, because the bearing surfaces are all rough. The 
roughness asperities are, generally speaking, of the same order as the bearing thickness. Under these 
conditions surface roughness has a considerable influence on the mechanical parameters of a bearing 
operating even in the hydrodynamic lubrication. 
 With the progress of modern machine elements the growing use of composite fluids as lubricants has 
become of large interest. The rheological properties of composite lubricants have been modelled by non-
Newtonian fluids, for example: the micropolar [3], couple-stress [4], viscoplastic [5,6], pseudo-plastic [7-10] 
and mixture [11]. A more complete list of the non-Newtonian models may be found in [12-14]. 

The flows of Newtonian and non-Newtonian fluids in the clearance with impermeable and smooth 
walls have been examined theoretically and experimentally. The clearance walls have been modelled as two 
disks, two conical or spherical surfaces [15-18]. A more general case is established by a flow in the clearance 
created by two surfaces of revolution [19]. 
 The basis of this paper is the stochastic theory of hydrodynamic lubrication of rough surfaces 
developed by Christensen [20]. This model has been applied to the study of the surface roughness of 
different geometrical configurations in many papers [21-29].  
 Based on the Christensen stochastic theory Gururajan and Prakash [30] have been obtained the 
modified Reynolds equation applicable to two types of directional roughness structure. Walicka and coworkers 
[26-29] used this equation to designate mechanical parameters of the rough bearing with squeeze film. 
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The aim of this paper is a general study of the pressure distribution in two types of bearings, namely: 
 externally pressurized bearings, 
 squeeze film bearings. 

 The pseudo-plastic lubricant behaviour is described by the model of the Ellis fluid [31] and the 
Christensen stochastic theory of hydrodynamic lubrication of rough surfaces is used [20]. The different 
forms of Reynolds equation for various cases of surface roughness pattern are obtained. Analytical solutions 
for the squeeze film pressure for various types of surface roughness are presented. 
 
2. Derivation of the modified Reynolds equation 
 
 The lubricating oils and some greases can be described by the model of a non-Newtonian fluid. 
Many lubricants have the same characteristics as pseudo-plastic fluids. Rotem and Shinnar [32] presented a 
method for expressing experimentally the relation linking the stress and the shear rate as 
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Keeping only the first and the last order terms the relation (2.1) we obtain the Ellis model [31] 
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 In this paper, the original notation given by Ellis [31] will be used: 
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where 1 2  is the characteristic shear stress at which N2    ( N - Newtonian viscosity), n is the model 

indicial parameter. 
 Taking into account the considerations of the works [10, 34] the three-dimensional notation of 
Eq.(2.3) may be presented as follows 
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where:  is the magnitude of the second-order shear stress tensor Λ , but 1A  is the first Rivlin-Ericksen 
kinematic tensor. 
 Let us consider a thrust curvilinear bearing shown in Fig.1. Both the working surfaces of this bearing 
are rough as shown in Fig.1. The lower surface of the bearing is described by the function  xR  which is the 

radius of this surface. The nominal bearing clearance thickness is described by the expression ( , )H x t  which 
is equal to the sum 
 
     , , ,sH h x t h x     (2.5) 
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where  ,h x t  is the nominal smooth part of the film geometry, while s r sh      denotes the random part 

resulting from the surface roughness asperities measured from the nominal level,   describes a random 
variable which characterizes the definite roughness arrangement. An intrinsic curvilinear orthogonal 
coordinate system , ,x y  linked with the lower bearing surface is also presented in Fig.1. 
 

 
 

Fig.1. Configuration of a curvilinear thrust bearing with rough surfaces. 
 
 Using the assumptions typical for the flows in a thin layer [10, 11, 34] the equations of motion for an 
Ellis fluid for axial symmetry can be presented in the following form 
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 The boundary conditions for the velocity components are stated as follows 
 
   , ,x x 0 t 0  ,       , ,x x H t 0  , (2.9) 



596  P.Jurczak and J.Falicki 

   , ,y x 0 t 0  ,       , ,y
H

x h t H
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
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
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 Solving the system of equations of motion (2.6), (2.7) and taking into account the constitutive 
equation (2.8) one obtains the following form of the modified Reynolds equation 
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for a pseudo-plastic lubricant of Ellis type. If n 1 , and taking into account that N2   , Eq.(2.11) reduces 
to the Reynolds equation for a Newtonian fluid [36]. 
 If the film thickness is regarded as a random quantity, a height distribution function must be 
associated. Many real bearing surfaces show a roughness height distribution which is closely Gaussian, at 
least up to three standard deviations. From a practical point of view, the Gaussian distribution is rather 
inconvenient and therefore a polynomial form of its approximation is chosen. Following Christensen [25, 35, 
36] such a probability density function is given by 
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where c  is the half total range of the random film thickness variable. The function terminates at c 3   , 
where   is the standard deviation. 
 Inserting expected values in Eq.(2.11) we obtain the general form of the stochastic Reynolds 
equation 
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where  E   is the expectancy operator defined by 
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The values of exponent n  for the Ellis fluid is included in the interval [37] 
 
  . .0 25 n 4 0  . 
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 The problem is now reduced to devising means of evaluating the left-hand side of Eq.(2.14) subject 
to the specific model of roughness. The calculation of the mean film pressure distribution would require the 
evaluation of the expected value of various film thickness functions. For the probability density function 
given by Eq.(2.12) we have – for an integer exponents – the following expected values of film thickness 
functions [26, 27] 
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 The expected values of film thickness functions   , , ,..., ,iE H i 1 2 6   are not suitable for numerical 

purposes for small Y  values, therefore Taylor expansions in powers of Y  are proposed 
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 The first three formulae  , ,i 1 2 3  were given by Gururajan and Prakash [30], the next formulae are 

given by Walicka [26, 27]. 
 For fractional exponents there are 
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3. Solutions to the stochastic Reynolds equation 
 
 Let us consider the Ellis fluid for which there is 
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taking into account Eq.(3.1) the solutions of the Reynolds equation (2.13) can be searched in a form of the 
sum [9, 38, 39] 
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 In the present study, two types of roughness are of interest: the longitudinal (radial) one-dimensional 
roughness pattern, having the form of long narrow ridges and valleys running in the x  direction, and the 
circumferential (transverse) one-dimensional roughness pattern, having the form of long narrow ridges and 
valleys running in the   direction [26, 28, 29]. 
 For the longitudinal one-dimensional roughness the film thickness is given by the expression 
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and the stochastic Reynolds equation (3.3) and (3.4) remain without change. 
 For the circumferential one-dimensional roughness the film thickness is given by the expression 
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Note that we can present Eqs (3.3), (3.4) and Eqs (3.7), (3.8) in one common form 
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the case j l  refers to the one-dimensional longitudinal roughness, but j c  refers to the one-dimensional 
circumferential roughness. 
The boundary conditions for pressure are: 

- for the squeeze film bearing 
h

0
t

   
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- for the externally pressurized bearing 
h

0
t
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i i o o i op x p p x p p x p x 0      (3.14) 

 
 The solutions of Eqs (3.9) and (3.10) are given, respectively, as follows 
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and 
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where 
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4. Spherical thrust squeeze film bearing 
 
 Let us consider the spherical thrust squeeze film bearing shown in Fig.2.  
 

 
 

Fig.2. Spherical squeeze film bearing. 
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 Introducing the following parameters 
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we can present the following formula for the pressure distribution: 
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Functions  ,I t  and    ,nJ t  are given in Appendix. 

To illustrate graphically the formula (4.2) let us take the values n 2  and n 4 ; introducing the notations 
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we will present in Figs 3-6 the graphs of the pressure distributions. 

 

 
 

Fig.3. Dimensionless pressure distribution in the spherical bearing between rough surfaces for longitudinal 
roughness for .0 01    and 0   and .0 5  . 

 

 

 
Fig.4. Dimensionless pressure distribution in the spherical bearing between rough surfaces for 

circumferential roughness for .0 01    and 0   and .0 5  . 
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Fig.5. Dimensionless pressure distribution in the spherical bearing between rough surfaces for longitudinal 
roughness for 0   and .0 01   and .0 5  . 

 

 
 

Fig.6. Dimensionless pressure distribution in the spherical bearing between rough surfaces for 
circumferential roughness for 0   and .0 01   and .0 5  . 

 
5. Conclusions 
 
 In this paper the Ellis type of pseudo-plastic lubricants flowing in a clearance of the thrust 
curvilinear bearing with rough surfaces was analysed. After general considerations the modified Reynolds 
equations are derived. The general solutions for these equations are searched in a form of the sum of two 
components; the first of them represents the Newtonian approximation, whereas the other represents the non-
Newtonian correction. As a result the general formula for pressure distribution in the spherical bearing 
between rough surfaces is obtained. The obtained results are relatively simple and may be used in practical 
applications. 
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 From calculations and their graphic presentations it that follows the pressure distributions are 
dependent on the rheological parameters 1 2  and n or   and n. For the squeeze film spherical bearing the 

pressures increase with a decrease of the   values with respect to the suitable values of Newtonian 
lubricants  0  . The pressure increases with an increase of n for negative values of   and decreases for 

positive values of  . The bearing surface roughness, expressed by c , results in some small increase of the 
pressure distribution values for circumferential roughness and in a small decrease for longitudinal roughness. 
  
Nomenclature 
 
 1A  – the first Rivlin-Ericksen kinematic tensor 

 c  – maximum asperity deviation 

 *c  – nondimensional roughness parameter 
  E   – expectancy operator 

  e t  – bearing eccentricity or bearing squeezing 

  sf h  – probability density distribution function 

 H  – film thickness 
  ,h x t  – nominal film thickness 

  , ,sh x    – random deviation of film thickness 

 p  – pressure 
  xRR,  – local radius of the lower bearing surface 

 r  – radius 
 ,x y   – velocity components 

 ,x y  – orthogonal coordinate 
   – squeezing ratio 
   – angular coordinate 
   – coefficient of viscosity 
   – random variable 
   – fluid density 

 
Appendix 
 
 The auxiliary formulae for Newtonian fluid and smooth surfaces 
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 The auxiliary coefficients for the roughness surfaces are given 
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The auxiliary formulae for the Ellis fluid  n 2 : 

 for longitudinal roughness 
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 for circumferential roughness 
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The auxiliary formulae for the Ellis fluid  n 4 : 
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 for longitudinal roughness 
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 for circumferential roughness 
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