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The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under 
the action of an applied magnetic and electric fields, when the whole system is rotated about an axis 
perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by 
two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two 
regions are considered electrically conducting, and are assumed to be incompressible with variable properties, 
namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two 
fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The 
governing partial differential equations are then reduced to the ordinary linear differential equations by using a 
two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The 
results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on 
the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the 
viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become 
stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen 
that an increase in porous parameter diminishes the temperature distribution in both the regions. 
 
Key words:  MHD, two-layered fluids/immiscible fluids, unsteady flow, heat transfer, rigid rotation, porous 

boundaries. 

 
1. Introduction 

 
Many investigations on the problems of a magnetohydrodynamic (MHD) fluid system contain the 

single fluid motions through parallel plate / rectangular channels with or without considering the rigid 
rotation/suction-injection and under steady or unsteady motions have been reported in the literature by 
several investigators since long due to their importance in various engineering, technological and industrial 
applications. But most of the problems relating to astrophysics, geophysical fluid dynamics, aeronautics, in 
petroleum industry and in industrial applications etc; involve multi-layered-fluid flow situations. Often, in 
the petroleum industry as well as in engineering and technological fields, a stratified two-phase or two-
layered fluid flow occurs. Transportation and extraction of the products of oil are other obvious applications 
using a two-phase/two-layered fluid flow system to obtain the increased flow rates in an electromagnetic 
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pump with the possibility of reducing the power required to pump oil in a pipe line by a suitable addition of 
water (Shail [1]). Considerable progress has been made in the research studies of two-layered fluid flows by 
several authors, notable amongst them are Walin [2], Packham and Shail [3], Lielausis [4], Debnath and 
Basu [5], Michiyoshi et al. [6], Dunn [7], Gherson [8], Lohrasbi and Sahai [9], Alireza and Sahai [10], 
Serizawa et al. [11], Malashetty and Leela [12], Ramadan and Chamkha [13], Chamkha [14], Raju and 
Murty [15], Tsuyoshi and Shu-Ichiro [16] etc. The MHD heat transfer processes are of interest in power 
engineering, metallurgy, astrophysics, geophysics and in petroleum industry. Other applications include 
transport phenomena in power transform electronics, heating and cooling processes in semi-conductor 
electronics, absorption reactors and in aerodynamic heating. Moreover, the  magnetohydrodynamic (MHD) 
flows can also be treated as a viable option for transporting conducting fluids in microscale systems; for 
instance, the flow inside the micro-channel networks of a lab-on-a-chip device (Haim et al. [17], 
Hussameddine et al. [18]. Multiple fluids in micro-fluidic devices can be transported through a channel for 
different reasons. For example, an increase in mobility of a fluid may be achieved by stratification of a 
highly mobile fluid or mixing of two or more fluids in transit may be designed for emulsification or heat and 
mass transfer applications. In this regard, magnetic field-driven micro-pumps are an increasing demand due 
to their long-term reliability in generating flow, low power requirement and in mixing efficiency (as in Yi et 
al. [19]; Weston et al. [20]). The phenomenon of rotation is always encountered and is very often observed 
in cosmological and geophysical sciences (Hide and Roberts [21], Greenspan [22] and Diek [23]). The 
rotating flow of an electrically conducting fluid in the presence of a magnetic field is encountered in 
geophysical fluid dynamics. It is also important in the solar physics dealing with the sunspot development 
(Elco et al. [24], Katsurai [25], Kolesnikov and Khait [26], Yantovskry and Tolmach [27]). Also, rotating 
heat exchangers are extensively used by the chemical and automobile industries. Many authors have focused 
on the theoretical/experimental investigation of hydromagnetic flows in a rotating environment, because of 
their occurrence in several natural phenomena that are directly governed by the actions of the Coriolis forces 
and their application in various technological situations. An order of magnitude analysis shows that in basic 
flow field equations the effects of the Coriolis force is more significant as compared to that of inertia and 
viscous forces. It is worth noting that the Coriolis and magnetohydrodynamic forces are comparable in 
magnitude and these Coriolis forces induce a secondary flow in the fluid (Holton [28], Batchelor [29] and 
Gupta [30]). Considerable attention has been also given to the study of an unsteady magnetohydrodynamic 
flow, heat transfer and their response due to the imposed oscillations/impulsive motion of a boundary or 
boundary temperature under the presence of an external magnetic field (Tao [31], Gupta [32], Stanisic et al. 
[33], Katagiri [34], Nanda and Mahanty [35], Debnath [36], Jana et al. [37], Seth et al. [38], Ghosh [39], 
Chandran et al. [40], Ghosh and Bhatttacharee [41], Singh [42], Hayat et al. [43], Guria [44]). Despite these 
studies, the effects of unsteady two-layered fluid flows through horizontal channels received much less 
attention in the literature. The unsteady hydromagnetic flow of electrically conducting two-layered fluid flow 
in a rotating environment over the porous boundaries gained significant theoretical and practical importance 
owing to their applications in the petroleum industry, geophysical fluid dynamics, plasma physics, 
magnetohydrodynamics and in many such areas involving multi-layered-fluid flow situations. These flows 
seem to be important and play interesting roles in the flow pattern as most of the practical problems dealing 
with immiscible fluids are unsteady in nature. Also in many practical problems, obviously it is advantageous 
to consider both immiscible fluids as electrically conducting; where one of which is highly electrically 
conducting compared to the other. The fluid of low electrical conductivity compared to the other is 
functional to reduce the power required to pump the fluid in MHD pumps and flow meters. In view of these 
facts, Chamkha [45] studied an unsteady MHD convective heat and mass transfer past a semi-infinite vertical 
permeable moving plate with heat absorption. Umavathi et al. [46] investigated oscillatory Hartmann two-
fluid flow and heat transfer in a horizontal channel. Raju and Sreedhar [47] discussed usteady two-fluid flow 
and heat transfer of conducting fluids in channels under transverse magnetic field. Raju and Valli [48] 
discussed an unsteady two-layered fluid flow and heat transfer of conducting fluids in a channel between 
parallel porous plates under transverse magnetic field. Again in 2014, these authors have studied MHD two-
layered unsteady fluid flow and heat transfer through a horizontal channel between parallel plates in a 
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rotating system. Consequently, Raju and Rao [49] studied an unsteady two-layered fluid flow of conducting 
fluids in a channel between parallel porous plates under transverse magnetic field in a rotating system. 
         In the present paper, the magnetohydrodynamic (MHD) heat transfer in a two-layered flow of 
conducting fluids through a horizontal channel bounded by two parallel porous plates in a rotating system in 
presence of an applied magnetic and electric fields is investigated theoretically.  It is assumed that, the fluids 
and the plates are in a state of rigid rotation with an angular velocity about an axis normal to the flow. The 
flow is driven by a constant common pressure gradient in the channel bounded by two parallel porous 
insulating plates, one being stationary and the other an oscillatory nature. The fluids in the two regions are 
considered as electrically conducting and are assumed to be incompressible with variable properties, namely, 
different densities, viscosities, thermal and electrical conductivities. The transport properties of the two 
fluids are considered to be constant and the bounding plates are maintained at constant and equal 
temperature. The resulting governing partial differential equations are then reduced to linear ordinary 
differential equations by using a two-term series. Analytical solutions for temperature distributions are 
obtained in both fluid regions of the channel. Profiles of these solutions are plotted to discuss the effect on 
the temperature fields and their dependence on the governing parameters involved, such as the Hartmann 
number, Taylor number (rotation parameter), suction number (porous parameter), ratio of the viscosities, 
heights and electrical conductivities. Also an examination is made how the temperature distributions vary 
through hydromagnetic interaction in the case of steady and unsteady motions with rigid rotation over the 
porous boundaries. 

The results of this study are expected to be useful in understanding the effect of the presence of a 
slag layer on heat transfer characteristics of a coal fired rotating MHD generator, flow meters, in nuclear 
reactor and in space craft technology, etc. Also, such flows are encountered in many industrial applications, 
such as in liquid metals, metal working process, geothermal energy extracts and many other applications. It 
is also important to understand the dynamics of interfaces between the fluids and its effect on the transport 
characteristics of the system. 

The structure of the paper is as follows. An introduction to the problem is given in section 1. The 
formulation and mathematical analysis of the problem for equations of motion, the boundary and interface 
conditions are presented in section 2. In section 3, solutions of the problem are given. While section 4 gives 
the results and discussion based on the temperature profiles (which are displayed in Figs 2 to 8). And the 
conclusion is given in section 5, followed by nomenclature and references. 

 
2.  Formulation and mathematical analysis for the governing equations of motion, energy, 

boundary and interface conditions 
 

 
 

Fig.1. flow model and co-ordinate system. 
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 An unsteady magnetohydrodynamic (MHD) two layered-fluid flow in a horizontal channel 
consisting of two infinite parallel porous plates with constant suction v0 normal to these plates  extending 
along the x- and z- directions at y = h1  and y = -h2  is considered. The whole system is rotated with an 
angular velocity   in a counter clockwise direction about the y-axis perpendicular to the plates. The fluids 
in the upper and lower regions, that is 0  y  h1 and –h2  y  0, are designated as Region -I and Region-II 
respectively. In the usual rectangular Cartesian coordinate system, the x-axis is taken in the direction of 
hydrodynamic pressure gradient in the plane parallel to the channel plates, but not in the direction of flow 
and y-axis at right angles to it. The length of the plates is considered much larger than the distance between 
them. Figure 1 depicts the flow model and co-ordinate system choosing the origin midway between the two 

plates. The flow in both upper and lower regions is driven by a common constant pressure gradient 
p

x

   
 

in a channel bounded by two parallel porous plates, one being stationary and the other one oscillatory. The 

two bounding plates are maintained at constant temperature TW  T T
1W W2

  . A magnetic field of 

uniform strength B0 is assumed to be applied transversely to the direction of flow, that is, along the y-
direction. A constant electric field E0 is also applied in the z- direction. The induced magnetic field is being 
neglected by assuming that it is small when compared to an applied field. Both the regions are occupied by 
two immiscible electrically conducting, incompressible fluids with different densities ,1 2  , viscosities

,1 2  , electrical conductivities ,1 2   and thermal conductivities ,1 2K K . The plates are infinite in extent 
and hence all the physical variables except the pressure gradient are functions of y and t only. With these 
assumptions, the non-dimensional governing equations of motion, current, energy, the corresponding 
boundary and interface conditions as in Lohrasbi and Sahai [9] for an unsteady MHD flows in both fluid 
regions in a rotating frame of reference (Batchelor [29]) are expressed as 
Region-I: 
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 (2.6) 

 

in which, the subscripts 1 and 2 represent the quantities for Region-I and Region-II, respectively, where u1, 
u2 and w1, w2 are the x- and z-components of fluid velocities, which are known as the primary and secondary 

velocity distributions in the two fluid regions respectively.   is the angular velocity, where  =  0, , 0 ; 

T1, T2 are the fluid temperatures in the two regions, respectively and ‘t’ is the time. The boundary conditions 
on velocity are considered as the no-slip condition at the lower plate and an oscillatory type at the upper 
plate. The boundary conditions on temperature are assumed to be isothermal.  It is also assumed the 
continuity of velocity, shear stress, temperature and heat flux at the interface between the two fluid layers 
(that is, at y = 0).  
 The boundary and interface conditions on u1, 1w  and ,2 2u w  for the fluids in the two regions are 
given by  

 

 1 1u h       and       1 1w h 0       for      t 0 , 

    

   = Real  i te  ,       for        t 0 .               (2.7)                     

 

 2 2u h 0  ,          2 2w h 0  ,                    (2.8)  

 

   1 2u 0 u 0 ,           1 2w 0 w 0 ,              (2.9) 

 

1 2
1 2

du du

dy dy
           and        at1 2

1 2
dw dw

y 0
dy dy

                      (2.10) 

 
where   (amplitude) is a small constant quantity such that 1   and   is the frequency of oscillation at the 
plate and the perturbed fields initially are zero, as the system is at rest for .t 0  

 Since the two plates are maintained at the same temperature, the boundary and interface conditions 
on temperature for both the fluids are given by 

 

 1 1 wT h T ,              (2.11)  

 

 2 2 wT h T  ,              (2.12)                     

 

   1 2T 0 T 0 ,        (2.13)                     

 

at .1 2
1 2

dT dT
K K y 0

dy dy
                (2.14)                     

 
 Further, the following non-dimensional variables are introduced 
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 With the use of transformations (2.15) and for simplicity neglecting the asterisks, the non-
dimensional form of Eqs (2.1) to (2.6) for the fluids in two regions are expressed as:                       
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 The non-dimensional forms of boundary conditions on the velocity, temperature and interface 
conditions become 
 

 1u 1     and    1w 1 0         for      ,t 0     

 

      Re i te   ,       for       .t 0                                                                (2.22)  

 

 2u 1 0  ,        2w 1 0  ,                              (2.23) 

 

    1 2u 0 u 0 ,          1 2w 0 w 0 ,                                                            (2.24) 
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   ,                       (2.25) 

 

  1 1 0   ,                        (2.26) 

 

  2 1 0   ,                                                                                      (2.27) 

 

    1 20 0   ,                                                                               (2.28) 

 

  / at1 2d d
1 h y 0

dy dy

 
   .                                       (2.29) 

 
The above mentioned conditions (2.23) represent the no-slip conditions at the lower plate and the 

conditions (2.22) are due to oscillation of the upper plate for any time t. Conditions (2.24) and (2.25) 
represent the continuity of velocities and shear stress, respectively, at the interface y = 0. The conditions 
(2.26) and (2.27) represent the isothermal conditions, while the conditions (2.28) and (2.29) denote the 
continuity of temperatures and heat flux at the interface y = 0, respectively. 
 
3. Solutions of the problem 
 
 The effect of flow parameters on the fluid temperatures and the heat transferred between the fluids 
and the plates is considered. It is assumed that the thermal boundary conditions apply everywhere on the 
infinite channel plates and the thermal conduction in the flow direction is neglected. The governing 
momentum Eqs (2.16), (2.17) and (2.19), (2.20) along with the energy Eqs (2.18) and (2.21) are to be solved 
subject to the boundary and interface conditions (2.22) - (2.29) for the velocity and temperature distributions 
in both fluid regions. The resulting coupled partial differential equations are reduced to ordinary linear 
differential equations by assuming the following two term series 
 
  ( , ) ( ) cos ( )1 01 11u y t u y t u y    ,   (3.1) 
 

  ( , ) ( ) cos ( )1 01 11w y t w y t w y    ,   (3.2) 
 

( , ) ( ) cos ( )2 02 12u y t u y t u y    ,                                                      (3.3) 
 

  ( , ) ( ) cos ( )2 02 12w y t w y t w y    ,                                                     (3.4) 
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( , ) ( ) cos ( )1 01 11y t y t y       ,                                                            (3.5) 
 

  ( , ) ( ) cos ( )2 02 12y t y t y       ,                                                       (3.6) 
 

in which the terms        , , ( ), ( ) and ,01 02 01 02 01 02u y u y w y w y y y   are velocity and temperature 

distributions in the basic steady state case in the two regions, while    , ,11 12u y u y ( ), ( )11 12w y w y , 

   and ,11 12y y   are the corresponding time dependent components of the solutions, which are the factors 

of the real part  i te   to be determined with the help of Eqs (2.16) to (2.21). 

By using the expressions given in Eqs (3.1) - (3.6) in Eqs (2.16) - (2.21), and separating the steady 

state and transient time varying components, the following differential equations in    ,01 02u y u y , 

( ), ( )01 02w y w y  and    ,01 02y y  ; also,  11u y ,  12u y , ( ), ( )11 12w y w y    and ,11 12y y   are obtained 

in terms of the complex notations: , ,01 01 01 11 11 11q u iw q u iw    ,02 02 02q u iw   12 12 12q u iw 
for both the fluid regions as:   
 

Region-I 
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For the transient time dependent part 
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Region – II 
 

For the steady-state part 
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For the transient time dependent part 
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   ,                                                                            (3.13)       
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   (3.14) 

 

 The corresponding boundary and interface conditions on velocity and temperature become: 
 

For the steady-state part 
 

( )01q 1 0  ,    (3.15) 
 

( )02q 1 0  ,    (3.16) 
 

( ) ( )01 02q 0 q 0 ,    (3.17) 
 

01 02dq dq1

dy h dy



       at       y = 0,   (3.18) 

 

( )01 1 0   ,    (3.19) 
                        

   ( )02 1 0   ,    (3.20) 
 

( ) ( )01 020 0   ,    (3.21) 
                        

  01 02d d1

dy h dy

 



        at        y = 0.       (3.22) 

 

For the transient time dependent part 
 
  ( )11q 1 1  ,    (3.23)              
 

  ( )12q 1 0  ,                (3.24) 
 

  ( ) ( )11 12q 0 q 0 ,                (3.25) 
 

  11 12dq dq1

dy h dy



         at       y = 0.               (3.26) 

 

  ( )11 1 0  ,                (3.27)  

  ( )12 1 0   ,                (3.28) 
 

  ( ) ( )11 120 0    ,                (3.29) 
 

  11 12d d1

dy h dy

 



        at       y = 0.               (3.30) 
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 The differential equations given in Eqs (3.7) - (3.14) along with the boundary and interface 
conditions from Eqs (3.15) to (3.22) represent a system of ordinary linear differential equations and 
conditions. These equations are solved in a closed form for both the steady state and transient time dependent 
components separately in two parts. Hence, by making use of the solutions of velocity distributions, it is 
obtained the solutions for temperature distributions of the unsteady flow problem in both fluid regions as: 
 

Region-I 
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      (3.31)  

 

Region-II 
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                (3.32) 

 
  The solutions of the non-periodic terms represent the steady-state fluid flow solutions for both 
regions. The steady-state temperature profiles are shown in Figs 2 to 8 as dash-dot lines. The solution of the 
periodic terms gives the transient velocity and hence the temperature distribution for both fluid regions of the 
channel is obtained. The solutions given in Eqs (3.31) to (3.32) for temperature distribution of the unsteady 
problem are evaluated numerically for different non-dimensional governing flow parameters involved in the 
study. Also, these results are plotted and shown as solid lines in Figs 2 to 8. The value for   is fixed at 0.5, 
Re=-1 and rP =1 for all graphs. The constants appearing in the above solutions are given in the Appendix. 

 
4. Results and discussion 
 

The solutions for the temperature distributions in the two fluid regions, namely ,1 2  , are given 

analytically for small  , the coefficient of exponent of periodic frequency parameter. The corresponding profiles 
are plotted after obtaining the computational values for different sets of values of the governing parameters 
involved, such as the Hartmann number ‘M’, Taylor number (rotation parameter) ‘T’, suction number (porous 
parameter)  , ratios of the: viscosities , heights ‘h’, electrical conductivities  and the thermal conductivities . 
The results are depicted graphically in Figs 2– 8 for the temperature distributions in Region-I and Region-II to 
elucidate the important features of the magnetohydrodynamic thermal state of the flow. The solid lines show the 
profiles for an unsteady flow and the dash-dot lines for the steady motions respectively. We note that when the 
motion is in a steady state and T = 0, 0   (i.e., without rigid rotation and non-porous boundaries), these results 
coincide with those of Malashetty and Leela [12]. Also, when T = 0, (i.e., for porous plates and without rigid 
rotation) the analysis is in agreement with the solutions of Raju and Sreedhar [47].  
 Figure 2 provides the graphical illustration for the effect of different values of the Hartmann number M 
on the dimensionless temperature distributions ,1 2   in the two fluid regions (Region-I and Region-II) for fixed 
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values of the Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal 
conductivities. It is found that an increase in ‘M’ enhances the temperature distribution in the two regions and the 
maximum temperature in the channel tends to move above the channel centre line towards Region–I.  
 

 
 

Fig.2.  Temperature profiles ,1 2   (unsteady flow), ,1 2    (steady flow), for different M and ,1 
,1   .1 5  , k=0.8, .0 333  , .0 1  , Re=-1, h=0.75, .0 5  , 1 , t    . 

 
 The effect of the Taylor number (rotation parameter)’ T” on temperature distribution in the two-fluid 
regions is exhibited in Fig.3. It is seen that an increase in ‘T’ increases the temperature distribution in both 
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the regions. Also when ‘T’ increases, the maximum temperature in the channel tends to move above the 
channel centre line towards region–I. This may be due to the fact that, a strong Coriolis force is generated 
from a higher angular velocity of rotation which may transform the magnetic energy of the magnetic field 
into kinetic energy for pushing up of the fluid particles to acquire higher velocity components in turn 
resulting higher temperature distributions in the two fluid regions. 
 

 
 

Fig.3.  Temperature profiles ,1 2   (unsteady flow), ,1 2    (steady flow), for different   and M=2, 

,1   .1 5  , k=0.8, .0 333  , .0 1  , Re=-1, h=0.75, .0 5  , 1 , t    . 
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           Figure 4 demonstrates the effect of varying the porous parameter (suction number) λ on the 
temperature distribution in the two-fluid regions. It is observed that an increase in λ diminishes the 
temperature distribution in both fluid regions. And the maximum temperature in the channel tends to move 
above the channel centre line towards region–I as λ increases. This is due to the fact that, when the suction 
number increases, the velocity components become thin and hence a decrease in temperature distribution.  
 

 
 

Fig.4.  Temperature profiles ,1 2   (unsteady flow), ,1 2    (steady flow), for different k and M=2, ,1   

1  , .1 5  , .0 333  , .0 1  , Re=-1, h=0.75, .0 5  , 1  , t    . 
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           Figure 5 exhibits the effect of the different values of the electrical conductivity ratio  on 
temperature distributions. It is observed that an increase in  increases the temperature distribution in the two 
regions. The maximum temperature in the channel tends to move below the channel centre line towards 
Region–II as  increases. 
 

 
 

Fig.5.  Temperature profiles ,1 2   (unsteady flow), ,1 2    (steady flow), for different   and M=2, 

,1   1  , .1 5  , k=0.8, .0 333  , Re=-1, h=0.75, .0 5  , 1 , t    . 
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          Figure 6 shows the effect of viscosity ratio  on the temperature distribution. It is observed that an 
increase in  diminishes the temperature distribution in the two regions. And the maximum temperature 
distribution in the channel tends to move above the channel centre line towards Region-I. But for small 
values of , more heat is added to the fluid due to viscous heating and hence the temperature in the two 
regions increase with decreasing values of . 
 

 
 

Fig.6.  Temperature profiles ,1 2   (unsteady flow), ,1 2    (steady flow), for different   and M=2, 

,1   1  , k=0.8, .1 5  , .0 1  , Re=-1, h=0.75, .0 5  , 1 , t    . 
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The effect of varying the height ratio ‘h’ on temperature distribution is shown in the Fig.7. It is 
observed that an increase in ‘h’ increases the temperature distribution in the two regions. Also, the maximum 
temperature in the channel tends to move above the channel centre line towards Region-I as ‘h’ increases.  
 

 
 

Fig.7.  Temperature profiles ,1 2   (unsteady flow), ,1 2    (steady flow), for different h and M=2, ,1   

1  , .1 5  , k=0.8, .0 333  , Re=-1, .0 1  , .0 5  , 1 , t    . 
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 Figure 8 exhibits the effect of varying the thermal conductivity ratio  on the temperature 
distribution. It is observed that an increasing  increases the temperature distribution in the two fluid regions. 
Also, the maximum temperature in the channel tends to move slightly above the channel centre line towards 
Region-I as  increases.  
 

 
 

Fig.8.  Temperature profiles ,1 2   (unsteady flow), ,1 2    (steady flow), for different   and M=2, 

h=0.75, 1  , .1 5  , k=0.8, .0 333  , Re=-1, .0 1  , .0 5  , 1  , t    . 
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5. Conclusion 
 
 The problem of an unsteady magnetohydrodynamic (MHD) flow of two-layered fluids through 
horizontal channel bounded by two parallel porous plates in the presence of an applied magnetic and electric 
fields in a rotating frame of reference is analyzed theoretically. The transpiration velocity and temperature 
are assumed to vary periodically with time about a non-zero velocity and temperature. The analytical 
solutions of the governing equations are evaluated numerically to plot their graphs for the temperature 
distributions in both the fluid regions. The combined effect of the magnetic field and Coriolis force in porous 
channels on the temperature profiles in both the fluid regions is also discussed. Comparisons with previously 
published theoretical works are performed and an excellent agreement is obtained with the earlier studies for 
the fluid flows over porous boundaries in the absence of rigid rotation. It is found that an increase in the 
Hartmann number ‘M’ rises the temperature in the two regions for fixed values of the remaining governing 
parameters involved. Also, as’ M’ increases the maximum temperature in the channel tends to move above 
the channel centre line towards Region–I. It is observed that as the Coriolis forces become stronger, that is as 
the Taylor number T increases, the temperature increases in both the fluid regions. The maximum 
temperature in the channel tends to move above the channel centre line towards Region–I as ‘T’ increases. 
This shows that a strong Coriolis force can change the mode of action of the magnetic field in the presence 
of plate/wall porosity. It is also seen that, an increase in porous parameter diminishes the temperature 
distribution in both the regions. And it is noticed that the temperatures in the two regions can be enhanced 
with the suitable values of the ratios of heights, electrical and thermal conductivities. Further, a comparison 
shows that the temperature profiles in an unsteady state flow problem are pronounced less when compared to 
the steady state two-layered fluid motion.  
 
Nomenclature 
 

 ,, .., , ,...

, ,.. , ,...etc.

1 2 1 2

1 2 1 2

a a c c

d d m m
 – functions / real constants represented in the equations and solutions 

 B0 – applied uniform transverse magnetic field 
 E0 – constant electric field in the z-direction 
 h  – ratio of the heights of the two regions 
 h1 – height of the channel in the upper region 
 h2 – height of the channel in the lower region 
 ,1 2K K  – thermal conductivities of the two fluids 

 M – Hartmann number 
 P – pressure 
 Pr – Prandtl number 
 Re – electric load parameter 
 T – Taylor number (rotation parameter)  
 T1, T2  – temperatures of the fluids in the two regions respectively 
 ,

1 2w wT T  – constant temperatures at both the walls  

 t – time 
 1u , 

2u  – x- component of velocity distributions in the two fluid regions, which are known as the primary 

velocity distributions 
    ,01 02u y u y  – primary velocity distributions in the basic steady state case in two regions 

    ,11 12u y u y  – time dependent primary velocity components 

 pu  – =
2
1

1

p h

x

    
, the characteristic velocity 

 0v  – constant suction velocity  
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 1w , 
2w  – Z- component of velocity distributions in the two fluid regions, called the secondary velocity 

distributions 
    ,01 02w y w y  – secondary velocity distributions in the basic steady state case in two regions 

    ,11 12w y w y  – time dependent secondary velocity components 

 (x, y, z) – space co-ordinates 
   – ratio of viscosities 
   – ratio of thermal conductivities  
   – amplitude (a small constant quantity such that 1  ) 
 ,1 2   – non-dimensional forms of temperature distributions of the two fluids 

    ,01 02y y   – temperature distributions in the basic steady state case in the two regions 

    ,11 12y y   – time dependent components of the temperatures in the two regions 

   – porous parameter (suction number) 
 ,1 2   – viscosities of the two fluids 

 ,1 2   – densities of the two fluids 

   – ratio of electrical conductivities   
 ,1 2   – electrical conductivities of the two fluids 

   – angular velocity, where   =  , ,0 0   

   – frequency of oscillation 
 
Subscripts 
 
 1, 2 – refers to the quantities in the upper and lower fluid regions respectively                        
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