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An MHD fluid flow is examined over a vertical plate in the presence of Dufour and Soret effects. The 
resulting momentum, energy and concentration equations are then made similar by introducing the usual 
similarity transformations. These similar equations are then solved numerically using the Runge-Kutta fourth 
order method with shooting technique. The effects of various parameters on the dimensionless velocity, 
temperature and concentration profiles as well as the local values of the skin-friction coefficient, the Nusselt 
number and Sherwood number are displayed graphically and in a tabular form. A comparison with previously 
published work is obtained and an excellent agreement is found. 
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1. Introduction 
 

The effect of free convection on the accelerated flow of a viscous incompressible fluid past an 
infinite vertical plate with suction has many important technological applications in the astrophysical, 
geophysical and engineering problems. The heating of rooms and buildings by the use of radiators is a 
familiar example of heat transfer by free convection. Heat losses from the hot pipes, ovens, etc, heat and 
mass transfer play an important role in manufacturing industries for the design of fins, steel rolling, nuclear 
power plants, gas turbines and various propulsion devices for aircraft, combustion and furnace design, 
materials processing, energy utilization, temperature measurements. A comprehensive review of the studies 
of the convective heat transfer mechanism through porous media has been made by Nield and Bejan [1]. 
Hiremath and Patil [2] studied the effect of free convection currents on the oscillatory flow through a porous 
medium, which is bounded by a vertical plane surface of constant temperature. Fluctuating heat and mass 
transfer on a three-dimensional flow through a porous medium with variable permeability was discussed by 
Sharma et al. [3]. A comprehensive account of the available information in this field is provided in books by 
Pop and Ingham [4], Ingham and Pop [5], Vafai [6], Vadasz [7], etc. 

Magnetohydrodynamics is currently undergoing a period of great development and differentiation of 
the subject matter. In the light of these applications, the steady MHD free convective flow past a heated 
vertical flat plate has been studied by many researchers such as Gupta [8], Lykoudis [9] and Nanda and 
Mohanty [10]. Chaudhary and Sharma [11] studied the effect of heat and mass transfer for a laminar mixed 
convection flow from a vertical surface with an induced magnetic field. El-Amin [12] studied the MHD free 
convection and mass transfer flow in a micropolar fluid over a stationary vertical plate with constant suction. 
The interest in these new problems follows from their importance in liquid metals, electrolytes and ionized 
gases. Many researchers have studied an MHD free convective heat and mass transfer flow in a porous 
medium. Some of them are Raptis and Kafoussias [13] who investigated heat and mass transfer effects on a 
steady MHD over a porous medium bounded by an infinite vertical porous plate with constant heat flux. Kim 
[14] found the effects of heat and mass transfer on an MHD micropolar flow over a vertical moving porous 
plate in a porous medium. 
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At high operating temperatures, the radiation effect can be quite significant. Many processes in 
engineering areas occur at high temperatures and knowledge of the radiation heat transfer becomes very 
important for the design of the pertinent equipment. Nuclear power plants, gas turbines and various 
propulsion devices for aircrafts, missiles, satellites and space vehicles are examples of such engineering 
areas. The effect of radiation on an MHD flow and the heat transfer problem have become more important 
industrially. Singh and Agarwal [15] studied the heat transfer in a second grade fluid over an exponentially 
stretching sheet through a porous medium with thermal radiation and elastic deformation under the effect of 
a magnetic field. Makinde and Ogulu [16] studied the effect of thermal radiation on the heat and mass 
transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic 
field. Reddy and Reddy [17] analyzed the effects of an MHD oscillatory flow past a vertical porous plate 
embedded in a rotating porous medium. The study of heat generation in moving fluids is important as it 
changes the temperature distribution and the particle deposition rate, particularly in nuclear reactor cores, fire 
and combustion modeling, electronic chips and semiconductor wafers. Heat generation is also important in 
the context of exothermic or endothermic chemical reactions. Vajravelu and Hadjinicolaou [18] studied the 
heat transfer characteristics in the laminar boundary layer of a viscous fluid flow over a stretching sheet with 
viscous dissipation or frictional heating and internal heat generation. Hossain et al. [19] studied the problem 
of a natural convection flow along a vertical wavy surface with uniform surface temperature in the presence 
of heat generation/absorption. Kesavaiah et al. [20] reported on the effects of the chemical reaction and 
radiation absorption on an unsteady MHD convective heat and mass transfer flow past a semi-infinite 
vertical permeable moving plate embedded in a porous medium with heat source and suction. Reddy et al. 
[21] studied the unsteady MHD flow over a vertical moving porous plate with heat generation by considering 
double diffusive convection.  

But in the above mentioned studies, Dufour and Soret terms have been neglected from the energy 
and concentration equations, respectively. It has been found that energy flux can be generated not only by the 
temperature gradient but also by the concentration gradient. The energy flux caused by the concentration 
gradient is called the Dufour effect and the same by the temperature gradient is called the Soret effect. These 
effects are very significant when the temperature and concentration gradients are very high. Anghel et al. 
[22] studied the Dufour and Soret effects on free convection boundary layer over a vertical surface 
embedded in a porous medium. Postelnicu [23] analyzed the influence of the magnetic field on heat and mass 
transfer from vertical surfaces in a porous media considering the Soret and Dufour effects. Alam et al. [24] 
investigated the Dufour and Soret effects on a steady MHD mixed convective and mass transfer flow past a 
semi-infinite vertical plate. Chamkha and Ben-Nakhi [25] analyzed the MHD mixed convection-radiation 
interaction along a permeable surface immersed in a porous medium in the presence of the Soret and Dufour 
effects. Many researchers have studied the Dufour and Soret effects on a free convective heat and mass 
transfer flow in a porous medium; some of them are Alam and Rahman [26], Sreedhar Sarma et al. [27], 
Mansour et al. [28], El-Aziz [29], Afify [30], Alam and Ahammad [31].  

The aim of this paper is to discuss the Dufour and Soret effects on an MHD free convection flow 
past a vertical porous plate placed in a porous medium in the presence of chemical reaction, thermal 
radiation and heat source. The set of governing equations and boundary equation of the problem are 
transformed into a set of nonlinear ordinary differential equations with the help of similarity transformations 
are solved using the shooting method along with the fourth order Runge-Kutta integration scheme. The 
effects of different physical parameters on the velocity, temperature and concentration profiles as well as the 
local skin-friction coefficient, local Nusselt number and local Sherwood number are presented graphically 
and in a tabular form. To verify the obtained results, we have compared the present numerical results with 
previous work by Alam and Rahman [26]. The comparison results show a good agreement and we are 
confident that our present numerical results are accurate. 
 
2. Mathematical analysis 
 

A steady two-dimensional flow of an incompressible and electrical conducting viscous fluid, along 
an infinite vertical porous plate embedded in a porous medium is considered. The x- axis is taken on the 
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infinite plate, and parallel to the free-stream velocity which is vertical and the y- axis is taken normal to the 
plate. A magnetic field B0 of uniform strength is applied transversely to the direction of the flow. Initially the 

plate and the fluid are at the same temperature T  in a stationary condition with concentration level C  at 

all points. The plate starts moving impulsively in its own plane with velocity 0U , its temperature is raised to 

wT  and the concentration level at the plate is raised to wC . The fluid is assumed to be slightly conducting, 

and hence the magnetic field is negligible in comparison with the applied magnetic field. It is further 
assumed that there is no applied voltage, so that the electric field is absent. The fluid is considered to be a 
gray, absorbing emitting radiation but non-scattering medium and the Roseland approximation is used to 
describe the radiative heat flux in the energy equation. It is also assumed that all the fluid properties are 
constant except that of the influence of the density variation with temperature and concentration in the body 
force term (Boussineq’s approximation). Then, under the above assumptions, the governing boundary layer 
equations are  
 
Continuity equation 
 

u v
0

x y

 
 

 
.        (2.1) 

 
Momentum equation 
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Energy equation 
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Concentration equation 
 

2 2
m T

m 2 2
m

D kC C C T
u v D

x y Ty y

   
  

   
       (2.4) 

 
where u, v are the Darcian velocities components in the x and y directions, respectively,   is the kinematic 
viscosity, g is the acceleration due to gravity,   is the density,   is the coefficient of volume expansion with 

temperature, *  is the volumetric coefficient of expansion with concentration, b is the empirical constant, 

, wT T  and T are the temperature of the fluid inside the thermal boundary layer, the plate temperature and the 

fluid temperature in the free stream, respectively, , wC C  and C  are the corresponding concentrations, K is 

the Darcy permeability,   is the electric conductivity,   is the thermal diffusivity, pc  is the specific heat at 

constant pressure, Tk  is the thermal diffusion ratio, sc  is the concentration susceptibility, the term 

( )0Q T T  is assumed to be the amount of heat generated or absorbed per unit volume and 0Q  is a constant, 

which may take on either positive or negative values, rq  is the radiative heat flux in the y-direction, mD  is 

the coefficient of mass diffusivity. 
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 The boundary conditions for velocity, temperature and concentration fields are given by 
 

0u U ,      ( )0v v x ,      wT T ,      wC C       at      y 0 , 

 (2.5) 

u 0 ,         v 0 ,          T T ,       C C       as     y                    

 
where 0U  is the uniform velocity and ( )0v x  is the velocity of suction at the plate. 
 We use the Rosseland approximation for radiation, radiative heat flux as given by Sparrow and Cess 
[32] 

 
*

*
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r
4 T

q
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
            (2.6) 

 

where *  and *k  are the Stefan-Boltzman constant and the mean absorption coefficient, respectively. We 

assume that the temperature differences within the flow are such that the term 4T  may be expressed as a 

linear function of temperature. Hence, expending 4T  in a Taylor series about T  and neglecting higher order 

terms, we get 
 

4 3 4T 4T T 3T   .      (2.7) 
 
 Using Eqs (2.6) and (2.7) Eq.(2.3) becomes  
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 Equations (2.2), (2.4) and (2.8) are coupled, parabolic and nonlinear partial differential equations and 
hence an analytical solution is not possible. Therefore a numerical technique is employed to obtain the 
required solution. Numerical computations are greatly facilitated by non-dimensionalization of the equations. 
Proceeding with the analysis, we introduce the following similarity transformations and dimensionless 
variables which will convert the partial differential equations from two independent variables ( , )x y  to a 

system of coupled, non-linear ordinary differential equations in a single variable ( ), i.e., a coordinate 
normal to the plate. 

In order to write the governing equations and the boundary conditions in a dimensionless form, the 
following non-dimensional quantities are introduced. 

 

0U
y

2 x
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
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where ( )f   is the dimensionless stream function and   is the dimensional stream function defined in the 
usual way 
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 Clearly, the continuity Eq.(2.1) is identically satisfied. 
Then introducing relation (2.9) into Eq.(2.1) we obtain 
 

( )0u U f          and       0U
v

2x


   f f  .      (2.10) 

 
 Further, introducing Eqs (2.9) and (2.10) into the momentum Eq.(2.2), energy Eq.(2.8) and 
concentration Eq.(2.4), we obtain the following local similarity equations 
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 is the heat generation parameter, Sc
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  is the Schmidt number. 

 The corresponding boundary conditions are 
 

wf f ,      f 1  ,      1  ,      1        at      0  , 

 (2.14) 
f 0  ,        0  ,        0          as                     

 

where w 0
0

2x
f v

U
 


 is the dimensionless suction velocity and primes denote partial differentiation with 

respect to the variable  . 
 The parameters of engineering interest for the present problem are the skin-friction coefficient, the 
Nusselt number and the Sherwood number, which are given respectively by the following expressions. Knowing 
the velocity field, the skin-friction at the plate can be obtained, which in a non-dimensional form is given by 
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 Knowing the temperature field, the rate of heat transfer coefficient can be obtained, which in a non-
dimensional form, in terms of the Nusselt number, is given by 

 

Nu Re ( )
1

2 0


  .      (2.16) 
 
 Knowing the concentration field, the rate of mass transfer coefficient can be obtained, which in a 
non-dimensional form, in terms of the Sherwood number, is given by 

 

Sh Re ( )
1

2 0


       (2.17) 
 

where Re 0U x



is the Reynolds number. 

 
3. Mathematical solution 
 

The numerical solutions of the non-linear differential Eqs (2.11) – (2.13) under the boundary 
conditions (2.14) have been performed by applying a shooting method along with the fourth order Runge-
Kutta method. First of all, higher order non-linear differential Eqs (2.11) – (2.13) are converted into 
simultaneous linear differential equations of first order and they are further transformed into an initial value 
problem by applying the shooting technique. From this process of numerical computation, the skin-friction 
coefficient, the Nusselt number and Sherwood number which are respectively proportional to ( ), ( )f 0 0   

and ( )0 are also sorted out and their numerical values are presented in a tabular form. 

 
4. Results and discussion 
 

From the numerical computations, the dimensionless velocity, temperature and concentration 
profiles as well as the skin-friction coefficient, Nusselt number and Sherwood number are found for different 
values of the various physical parameters occurring in the problem. The value of the Prandtl number Pr is 
taken to be 0.71 which corresponds to air and the value of the Schmidt number Sc is chosen 0.22, which 
represents hydrogen at 250 C and 1 atm. Due to the free convection problem positive large values of Gr = 12 
and Gc = 6 are chosen. The value of Re is kept 100 and Fs equal to 1.0. The values of the Dufour number and 

Soret number are chosen in such a way that their product is constant provided that the mean temperature mT  is 

constant as well. However, the values of the Darcy number Da = 1.0, magnetic field parameter M = 1.0, suction 
parameter .wf 0 5 , radiation parameter R = 1.0, heat generation parameter Q = 1.0 are chosen arbitrarily. The 
numerical results for velocity, temperature and concentration profiles are displayed in Figs 2 to 13. 
 The effect of the Grashof number Gr on the velocity field is presented in Fig.1. The Grashof number 
Gr signifies the relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the 
boundary layer. As the Grashof number Gr increases the velocity of the fluid increases. Figure 2 presents 
velocity profiles in the boundary layer for various values of the modified Grashof number Gc. The modified 
Grashof number Gc defines the ratio of the species buoyancy force to the viscous hydrodynamic force. As 
the modified Grashof number Gc increases the fluid velocity increases. The effect of the Darcy number Da 
on the temperature field is shown in Fig.3. From this figure we observe that velocity increases with the 
increase of the Darcy number Da. For a large Darcy number the porosity of the medium increases, hence the 
fluid flows quickly. The effect of the Reynolds number Re on the velocity fields is shown in Fig.4. It is 
observed that the negligible effect of the Reynolds number on velocity profiles. 
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Fig.1. Velocity profiles for different values of Gr.               Fig.2. Velocity profiles for different values of Gc. 
 

 
 

Fig.3. Velocity profiles for different values of Da.               Fig.4. Velocity profiles for different values of Re. 
 
 Figures 5a – 5c depict the effect of the Forchheimer number Fs on the velocity, temperature and 
concentration profiles. It is observed from Fig.5a that the velocity of the fluid decreases with the increase of 
the Forchheimer number Fs. Since the Forchheimer number Fs represents the inertial drag, thus an increase 
in the Forchheimer number Fs increases the resistance to the flow and so a decrease in the fluid velocity 
ensues. The temperature of the fluid increases with an increase of the Forchheimer number Fs, since the fluid 
is decelerated the energy is dissipated as heat and serves to increase the temperature. From Fig.5c, it is 
observed that the concentration of the fluid increases with an increase of the Forchheimer number Fs. 
 Figures 6a, 6b and 6c display the velocity, temperature and concentration profiles for different values 
of the magnetic field parameter M when the other parameters are fixed. An application of a magnetic field 
within the boundary layer has produced resistive-type force which is known as the Lorentz force. This force 
acts to retard the fluid motion along the surface and simultaneously increases its temperature and 
concentration values. Therefore, one can see that the velocity boundary layer thickness decreases with the 
increase of the magnetic field parameter M as shown in Fig.6a. However, the temperature and concentration 
increase with the increasing of the magnetic field parameter M shown in Figs 6b and 6c.  
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Fig.5a. Velocity profiles for different values of Fs.      Fig.5b. Temperature profiles for different values of Fs. 
 

    
 

Fig.5c. Concentration profiles for different values of Fs.     Fig.6a. Velocity profiles for different values of M. 
 

      
Fig.6b. Temperature profiles for different values of M.           Fig.6c. Concentration profiles for different values of M. 
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 Figure 7a illustrates the velocity profiles for different values of the Prandtl number Pr. The numerical 
results show that the effect of increasing values of the Prandtl number results in a decreasing velocity. From 
Fig.7b, it is observed that an increase in the Prandtl number results in a decrease of the thermal boundary 
layer thickness and in general lower average temperature within the boundary layer. The reason is that 
smaller values of Pr are equivalent to increasing the thermal conductivities, and therefore heat is able to 
diffuse away from the heated plate more rapidly than for higher values of Pr. Hence in the case of smaller 
Prandtl numbers the boundary layer is thicker and the rate of heat transfer is reduced. 
 

        
 
Fig.7a. Velocity profiles for different values of Pr.       Fig.7b. Temperature profiles for different values of Pr. 
 
 The effect of the radiation parameter R on the velocity and temperature profiles is shown in Figs 8a and 
8b, respectively. Figure 8a shows that velocity profiles decrease with an increase in the radiation parameter R. 
From Fig.8b, it is seen that the temperature decreases as the radiation parameter R increases. This result 
qualitatively agrees with expectations, since the effect of radiation is to decrease the rate of energy transport to the 
fluid, thereby decreasing the temperature of the fluid. Figures 9a and 9b depict the velocity and temperature 
profiles for different values of the heat generation parameter Q. It is noticed that an increase in the heat generation 
parameter Q results in an increase in velocity and temperature within the boundary layer. 
 

      
 

Fig.8a. Velocity profiles for different values of R.         Fig.8b. Temperature profiles for different values of R. 
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Fig.9a. Velocity profiles for different values of Q.        Fig.9b. Temperature profiles for different values of Q. 
 
 Figures 10a, 10b and 10c show the combined effects of the Dufour and Soret numbers on the fluid 
velocity, temperature and concentration respectively. The Dufour number Du and Soret number Sr represent 
the thermal- diffusion and diffusion-thermal effects in this problem. Figure 10a shows the influence of the 
Dufour and Soret number on the variations of the fluid velocity. For the case of increasing the Dufour 
number and decreasing the Soret number, it is seen that the velocity profiles decreases. Figure 10b illustrates 
the effects of the Dufour and Soret number on the variations of the fluid temperature. We observe that for an 
increasing Dufour number and decreasing Soret number, the temperature profiles increase. The Dufour term 
describes the effect of concentration gradients as noted in Eq.(2.12), plays a vital role in assisting the flow 
and is able to increase thermal energy in the boundary layer. This is the evident for the increasing values in 
the fluid temperature as the Dufour number Du increases and the Soret number Sr decreases. In Fig.10c, the 
increasing Dufour number Du and simultaneously decreasing Soret number Sr have significant effects on the 
concentration profiles. The Soret term exemplifies the temperature gradient effects on the variation of 
concentration as noted in Eq.(2.13). It is observed that as the Dufour number increases and Soret number 
decreases, the concentration values are found to decrease. 
 

    
 

Fig.10a. Velocity profiles for different values of Sr 
and Du. 

Fig.10b. Temperature profiles for different values of 
Sr and Du.
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Fig.10c. Concentration profiles for different values of Sr and Du. 
 

 The influence of the Schmidt number Sc on the velocity and concentration profiles is plotted in Figs 
11a and 11b respectively. As the Schmidt number Sc increases the concentration decreases. This causes the 
concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. The reductions in the 
velocity and concentration profiles are accompanied by simultaneous reductions in the velocity and 
concentration boundary layers. These behaviors are clear from Figs 11a and 11b. 
 

    
 

Fig.11a. Velocity profiles for different values of Sc.             Fig.11b. Concentration profiles for different values of Sc. 
 

 The effects of the suction parameter wf  on the velocity profiles are shown in Fig.12a. It is found 

from Fig.12a that the velocity profiles decrease monotonically with the increase of the suction parameter 
indicating the usual fact that suction stabilizes the boundary layer growth. The effects of the suction 
parameter on the temperature and concentration field are displayed in Fig.12b and Fig.12c respectively. 

From Fig.12b, it is noticed that the temperature decreases with an increase of the suction parameter wf . 
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From Fig.12c, it is observed that the concentration decreases with an increase of the suction parameter wf . 

The variations of the skin-friction coefficient, heat and mass transfer coefficient with the radiation parameter 
R and the magnetic field parameter M are shown in Figs 13a, 13b and 13c respectively. We observe that the 
effect of increasing M is the decrease in the heat and mass transfer and skin friction coefficient. On the other 
hand, the magnitude of the heat and mass transfer increases while that of the skin friction coefficient 
decreases as the radiation parameter R increases.   
 

      
 

   Fig.12a.Velocity profiles for different values of wf . Fig.12b. Temperature profiles for different values of wf . 

 

         
 

Fig.12c. Concentration profiles for different values of wf .       Fig.13a. Variation of ( )f 0 with R and M. 
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Fig.13b. Variation of the heat flux ( )0  with R and M.   Fig.13c. Variation of the mass flux ( )0  with R and M. 
 
 Table 1 shows the comparison of ( )f 0  , ( )0  and '( )0  with those reported by Alam and 
Rahman [26], which shows a good agreement and we are confident that our present numerical results are 
correct. 
 Tables 2, and 3 show the effects of the  Grashof number Gr, the modified Grashof number Gc, the 
Darcy number Da, the magnetic parameter M, the suction parameter wf , the Prandtl number Pr, the radiation 

parameter R, the heat generation parameter Q, and the Schmidt number Sc on the physical parameters of the 
skin-friction coefficient ( )f 0 , the Nusselt number ( )0  and the Sherwood number '( )0  respectively. It 

can be seen that all of ( )f 0 , ( )0  and '( )0  increase as the Grashof number Gr, modified Grashof 

number Gc, Darcy number Da, and suction parameter wf  increase. ( )f 0 , ( )0  and ( )0  decrease as 

the magnetic field parameter M increases. ( )0  increases as the Prandtl number Pr or radiation parameter 

R increases, while it decreases with the heat generation parameter Q. ( )0  increase as the Schmidt number 
Sc increases. Finally, the effects of the Soret number Sr and Dufour number Du on the skin-friction 
coefficient, Nusselt number and Sherwood number are shown in Tab.4. The behavior of these parameters is 
self-evident from Tab.4 and hence they will not be discussed any further due to brevity.  
 
Table 1.  Comparison values of ( ), ( )f 0 0   and ( )0  with different values of the Soret and Dufour 

numbers. 
 

 
Sr 

 
Du 

( )f 0  ( )0  ( )0  

Alam and 
Rahman [26] 

Present 
Alam and 

Rahman [26] 
Present 

Alam and 
Rahman [26] 

Present 

2.0 0.03 3.4231141 3.42938 1.0283189 1.02699 0.1296854 0.12749 
1.0 0.06 3.3457474 3.35237 1.0155338 1.01386 0.2992750 0.297643 
0.5 0.12 3.3162482 3.32295 1.0019868 1.00022 0.3844602 0.382995 
0.4 0.15 3.3141130 3.32085 0.9965224 0.994735 0.4017999 0.400363 
0.2 0.30 3.3287043 3.33558 0.9718535 0.969957 0.4381199 0.436742 
0.1 0.60 3.3828661 3.38997 0.9248360 0.922756 0.4602605 0.458919 
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Table 2.  Numerical values of the skin-friction coefficient ( Cf ), Nusselt number (Nu)  and Sherwood 

number (Sh) for, Pr = 0.71, Fs = 1.0, Re = 100, R = 1.0, Du = 0.12, Sr = 0.5, Sc = 0.22, Q = 1.0.  
 

Gr Gc Da M 
wf  Cf  Nu Sh 

12 6.0 1.0 1.0 0.5 6.34454 0.277773 0.921803 
5 6.0 1.0 1.0 0.5 3.42049 0.287881 0.879048 
10 6.0 1.0 1.0 0.5 5.54205 0.297256 0.910304 
12 2.0 1.0 1.0 0.5 5.05881 0.288464 0.907465 
12 4.0 1.0 1.0 0.5 5.70716 0.297754 0.914683 
12 6.0 2.0 1.0 0.5 7.43037 0.246511 0.941017 
12 6.0 3.0 1.0 0.5 7.90166 0.289481 0.949453 
12 6.0 1.0 2.0 0.5 5.50345 0.295472 0.907287 
12 6.0 1.0 3.0 0.5 4.76842 0.229296 0.894938 
12 6.0 1.0 1.0 1.0 6.65476 0.307874 0.981984 
12 6.0 1.0 1.0 2.0 7.12034 0.375616 1.10796 

 
Table 3.  Numerical values of the skin-friction coefficient ( Cf ), Nusselt number (Nu) and Sherwood 

number (Sh) for Gr = 12.0, Gc = 6.0, Da = 1.0, M = 1.0, wf  = 0.5, Du = 0.12, Sr = 0.5. 

 
Pr R Q Sc Cf Nu Sh 

0.71 1.0 1.0 0.22 6.34454 0.277773 0.921803 
1.0 1.0 1.0 0.22 6.1504 0.355013 0.910383 
1.5 1.0 1.0 0.22 5.8776 0.470762 0.893565 

0.71 2.0 1.0 0.22 6.06827 0.34458 0.909912 
0.71 3.0 1.0 0.22 5.90103 0.389547 0.902282 
0.71 1.0 0.1 0.22 6.27499 0.366377 0.911571 
0.71 1.0 0.5 0.22 6.3056 0.327556 0.916059 
0.71 1.0 1.0 0.6 6.09895 0.277768 1.26436 
0.71 1.0 1.0 0.78 6.01588 0.277751 1.41114 

 
Table 4.  Numerical values of the skin-friction coefficient ( Cf ), Nusselt number (Nu) and Sherwood 

number (Sh) for, Gr = 12.0, Gc = 6.0, Da = 1.0, M = 1.0, wf  = 0.5, Du = 0.12, Sr = 0.5, Pr = 

0.71, Fs = 1.0, Re = 100, R = 1.0, Sc = 0.22, Q = 1.0.  
 

Sr Du Cf Nu Sh 
0.5 0.12 6.34454 0.277773 0.921803
1.0 0.12 6.35474 0.278037 0.920257
2.0 0.12 6.37527 0.278545 0.917239
0.5 0.03 6.3325 0.284933 0.920915
0.5 0.06 6.33651 0.282548 0.921211

 
Conclusions 
 
 In this paper, a mathematical model has been presented for studying the influence of radiation and 
heat generation on an MHD free convective flow past a vertical porous plate in a porous medium under the 
influence of Dufour and Soret effects. Using the similarity transformation a set of ordinary differential 
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equations was derived for the conservation of mass, momentum and species diffusion in the boundary layer. 
These nonlinear, coupled differential equations were solved under valid boundary conditions using the fourth 
order Runge-Kutta method with the shooting technique. The conclusions of the study are as follows: 

 The velocity increases with an increase of the Grashof number and modified Grashof number. 
 The velocity decreases with an increase in the magnetic field parameter and permeability parameter. 
 The temperature and velocity of the fluid increase with an increase of the radiation parameter. 
 The temperature and velocity of the fluid increase with an increase of the heat source parameter. 
 As the radiation parameter, the skin-friction coefficient and Nusselt number decrease. 
 As the Dufour and Soret number increases, it is seen that the temperature profiles increase. 
 As the Schmidt number Sc increases, the concentration decreases. 

 
Nomenclature 

 
 b – empirical constant 

, wC C  and C  – corresponding concentrations 

 pc  – specific heat at constant pressure 

 sc  – concentration susceptibility 

 mD  – coefficient of mass diffusivity 

 K – the Darcy permeability 
 Tk  – thermal diffusion ratio 

 ( )0Q T T  – assumed to be the amount of heat generated or absorbed per unit volume  

 rq  – radiative heat flux in the y-direction 

 , wT T  and T  – temperature of the fluid inside the thermal boundary layer, the plate temperature and the fluid 

temperature in the free stream, respectively 
 u, v – the Darcian velocities components in the x and y directions respectively 
   – thermal diffusivity 
   – coefficient of volume expansion with temperature 

 *  – volumetric coefficient of expansion with concentration 
   – density 
   – electric conductivity 
   – kinematic viscosity, g is the acceleration due to gravity 
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