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The longitudinal dispersion of a solute between two parallel plates filled with two immiscible electrically
conducting fluids is analyzed using Taylor’s model. The fluids in both the regions are incompressible and the
transport properties are assumed to be constant. The channel walls are assumed to be electrically insulating.
Separate solutions are matched at the interface using suitable matching conditions. The flow is accompanied by
an irreversible first-order chemical reaction. The effects of the viscosity ratio, pressure gradient and Hartman
number on the effective Taylor dispersion coefficient and volumetric flow rate for an open and short circuit are
drawn in the absence and in the presence of chemical reactions. As the Hartman number increases the effective
Taylor diffusion coefficient decreases for both open and short circuits. When the magnetic field remains constant,
the numerical results show that for homogeneous and heterogeneous reactions, the effective Taylor diffusion
coefficient decreases with an increase in the reaction rate constant for both open and short circuits.
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1. Introduction

A wide application of the dispersion model began fifty five years ago when numerous authors
noticed that longitudinal mixing can be treated the same as diffusion; see Levenspiel and Smith [1]. The
most notable is the work of Danckwerts [2] and Taylor [3-5] who in his pioneering papers introduced the
concept of longitudinal dispersion superimposed on plug flow to describe the fact that not all fluid elements
travel at equal speed through a system.

Taylor [3-5] investigated the way in which a liquid spreads out longitudinally as it moves down a
straight tube and demonstrated by a few careful experiments and a novel mathematical analysis of a rather
heuristic kind, that for downstream of the source the longitudinal spread is equivalent to a diffusion process;
he also provided estimates for the longitudinal dispersion coefficient. Since then the notion of a longitudinal
dispersion has been recognized as being relevant in a wide variety of contexts, like in flows in rivers and
estuaries, in oil pipelines, in water mains, in pneumatic and hydraulic industrial devices, in blood vessels, in
tubules, in paints. An enormous variety of extensions and generalizations of Taylor’s simple result for a
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steady flow in a straight circular tube has been developed; see Batchelor [6]. The most notable developments
of the classical asymptotic theory of Taylor, while still preserving the basic ideas of his original work, were
produced by Aris [7], Horn [8], and Brenner [9, 10]. Considerable attention has also been paid to the one-
dimensional dispersion of the solute during relatively short times, too short for the macro transport process to
be fully established; see Philip [11], Gill and Sankarasubramanian [12, 13], DeGance and Johns [14-15],
Hatton and Lightfoot [16-18], Yamanaka [19-21], and Smith [22, 23]. The importance for practice of the
diffusion analysis of Taylor and the subsequent investigations lies in the ability of the one-dimensional
transport equation to take into account complicated velocity and concentration profiles in the same manner,
as well as providing a theoretical framework for the dispersion coefficient.

But in the above papers, it was assumed that there is no chemical reaction of any kind between the
solute and the fluid during the course of dispersion. This was not always true. In many physical phenomena,
homogeneous and heterogeneous chemical reactions are always present. Such an analysis of a finite first-order
homogeneous reaction in a laminar pipe flow was first studied both theoretically and experimentally by Cleland
and Wilhem [24]. The effect of the heterogeneous reaction taking place at the wall was discussed by Katz [25],
whereas Walker [26], Soloman and Hudson [27], investigated the combined effect of first-order heterogeneous
and homogeneous chemical reactions on the dispersion of soluble matter in a parallel plate channel flow.

The flow aspects of immiscible fluids are of special importance. In modeling such problems, the
presence of a second immiscible fluid phase adds a number of complexities as to the nature of interacting
transport phenomena and interface conditions between the phases. In general, multi-phase flows are driven
by gravitational and viscous forces. There has been some theoretical and experimental work on a stratified
laminar flow of two immiscible fluids in a horizontal pipe (Packham and Shail [28], Alireza and Sahai [29],
Malashetty and Leela [30, 31]). Loharsbi and Sahai [32] studied two-phase MHD flow and heat transfer in a
parallel plate channel with one of the fluids being electrically conducting. A two-phase MHD flow and heat
transfer in an inclined channel was investigated by Malashetty and Umavathi [33]. Chamkha [34] reported
analytical solutions for the flow of two-immiscible fluids in porous and non-porous parallel-plate channels.
Later on, a magnetohydrodynamic two-fluid convective flow and heat transfer in a composite porous
medium was analyzed by Malashetty et al. [35-37]. Umavathi et al. [38] analyzed the Poiseuille-Couette
flow of two immiscible fluids between two inclined parallel plate. Recently, Umavathi and Shekar [39]
studied the fully developed laminar mixed convection flow in a vertical wavy channel filled with two
immiscible viscous fluids with traveling thermal waves using the perturbation method. Kumar et al. [40, 41]
studied the solute dispersion in a composite porous medium

Keeping in view the wide area of practical importance of multi-fluid flows as mentioned above, it is
the objective of the present study to investigate the dispersion of the solute in an electrically conducting
immiscible channel flow.

2. Mathematical formulation of the problem

The physical configuration considered in this study is shown in Fig.1. Consider the laminar flow of
two immiscible fluids between two parallel plates distant 2/ apart, taking the X -axis along the mid-section
of the channel and the Y -axis perpendicular to the walls. The magnetic field B, is applied normal to the

flow field and the electric field is applied along the flow field. Region-1 (—h <Y SO) is filled with the

electrically conducting fluid of conductivity o,;, density p;, viscosity p;, under a uniform pressure

gradient %, whereas region-2 (OSY Sh) is filled with another electrically conducting fluid of

. : . : . . dP. D
conductivity &,,, density p,, viscosity ,, under a uniform pressure gradient d_); The fluids in both the

regions are Newtonian fluids.
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Fig.1. Physical configuration.

It is assumed that the flow is steady, laminar, fully developed, and that fluid properties are constant.
The flow in both the regions is assumed to be driven by a common constant pressure gradient. Under these
assumptions, the governing equations of motion for incompressible fluids are

Region-1
d’U; dP,
“JdTgl_d_)(]_GelBOZUI_GeIB()EO =0. 2.1)
Region-2
d’U, dP
Mo dY22 _d_); - GezB(fUz —Go2ByEy =0 (2.2)

where U, is the X -component of fluid velocity and F, is the pressure. The subscripts 1 and 2 denote the

values for region-1 and region-2, respectively.

The boundary conditions on velocity are no-slip conditions requiring that the velocity must vanish at
the walls. In addition, continuity of velocity and shear stress at the interface is assumed. With these
assumptions, the boundary and interface conditions on velocity become

U/,=0 at Y=-h,

U,=0 at Y=h,

(2.3)
U] = U2 at Y =0 5
dU, dU,
—=u,—= at Y=0.
Ly Y ) Ay
Using the non-dimensional parameters
Y h h X * P
n=—, ”1=p;U1’ 2:&(]2’ X=—", DPI= : 2>
h Ky % h ps(v;/h)
2.4
. P E
= 2. M=Bh Gel oL 0
p,(vy/h) My 1By

in Eqs (2.1) to (2.3) become
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Region-1
2 *
d “Zf—dﬂ—MZu,—MzEz(), 2.5)
drl dx
Region-2
d2 * 2 2
u, dp, o.M y oM E:()
dn’  dx m o wn ,
(2.6)
u;=0 at n=-1,
u,=0 at n=1,
(2.7)
U; =mnu,, ﬁzmzndﬁ at n=0
dn dn
where m=p,/u; and  n=p;/p,, ©,=—2
Ges
Solutions of Egs (2.5) and (2.6) are
u; =a;cosh(Mn)+a, sinh(Mn)—iZ, (2.8)
M
u, =ascosh(Bn)+a, sinh(Bn)—%. (2.9)
B
From Eqs (2.8) and (2.9) the average velocities become
I
ulzgj.uldn, (2.10)
-1
T
uzzzguzdn. @.11)
Case 1: Diffusion of a tracer in the absence of a first-order chemical reaction.
The equation for the concentration C, of the solute for the region-1 satisfies
2 2
o u,gzD, 0G4 (2.12)
ot ox ox?  or?
Similarly, the equation for the concentration C, of the solute for the region-2 satisfies
2 2
0C, u26C2:D2 0 C2+8 C, ’ 2.13)
ot ox ox? oy’

in which D; and D, are the molecular diffusion coefficients (assumed constants) for the
region-2, respectively.

region-1 and
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If we now consider convection across a plane moving with the mean speed of the flow, then relative
to this plane the fluid velocities are given by
Region-1
u, =u; —u =a;cosh(Mn)+a,sinh(Mn)+1; . (2.14)
Region-2
Uy, =u, —it =azcosh(Bn)+ay,sinh(Bn)+1, (2.15)

where u is the sum of average velocities of region-1 and region-2.
Introducing the dimensionless quantities

t, — L x; —u;t t, - L X, — Uyt
0,==L, ==L, g, ="L—L  0,=2, =22, ¢,="2 -2 2.16
1 7 1 7, & I 2 3 2 7, & 7 (2.16)
2 2 2 2
and using Eqgs (2.14) and (2.15), Egs (2.12) and (2.13) (assuming that 0 C;l << 0 (;1 and 0 C22 << 0 C;Z become
oX oY oX oY
Region-1
2
196  ue 0G _D 076 (2.17)
100, L o0& W on’
Region-2
2
10G; 25 0C; Dy 0°C, (2.18)

where L is the typical length along the flow direction. Following Taylor [3], we now assume that partial
equilibrium is established in any cross-section of the channel so that the variations of C; and C, with n are
calculated from Eqs (2.17) and (2.18) as

Region-1
o’c, K aC
L= —u, —L. (2.19)
on D,L " 0g,;
Region-2
o’c, K oC
L=——u, —*. (2.20)
To solve these equations we use the following boundary conditions
E:O at m=-/ and 6&:0 at n=1. (2.21)
on o
Equations (2.19) and (2.20) are solved exactly for C; and C, which are given by
Region-1
a a /
C,=Z,| —L-cosh(Mn)+—2sinh(Mn)+-Ln’ |+bm+b,. 2.22
1 I(MZ ( n) IVE] ( ﬂ) 211 M+b (2.22)
Region-2
a a /
C, =Z,| —>-cosh(Bn)+—Lsinh(Bn)+-2n’ |+bm+b,. 2.23
2 2[32 (Bn) 2 (Bn) Pl 3N+ by (2.23)

where b, and b, are constants to be determined using the entry conditions.
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The volumetric flow rates at which the solute is transported across a section of the channel of unit
breadth Q; (region-1) and O, (region-2) using Eqs (2.16), (2.17) and (2.22), (2.23), respectively are, given

by

0 0
Q= h_[ Crup, dn= —Z1h_[ Crptty dn (2.24)
-1 -1
1 1
0, = h_[ Couy, dn= _Zzhj Coty, dn (2.25)
0 0
a;cosh(Mmn) a,sinh(Mn) Iy’

- 2
C,= _(a3 cosl;(Bn) L 4 s1nhZ(Bn) A
B B 2

+b32nj :

Following Taylor [3], we assume that the variations of C; and C, with n are small compared with
those in the longitudinal direction, and if C,,; and C,,, are the mean concentration over a section, 0C; /0,

and 0C,/0¢, are indistinguishable from 0C,,;/d; and 0C,,,/d5,, respectively, so that Eqs (2.24) and
(2.25) may be written as

Region-1
« 0C,
0,=-n; Ent | (2.26)
%;
Region-2
« 0C,
Q,=-D,—1Z (2.27)
%,

The fact that no material is lost in the process is expressed by the continuity equation for C,,; and

C,.>, namely:

Region-1
990 __,9%Cm (2.28)
0, ot
Region-2
00, _ _,9Cn2 (2.29)
08, ot
Equations (2.28) and (2.29) using Eqgs (2.24) and (2.25) become
Region-1
* 22
OCm1 _ Dy 07Chy (2.30)
o 2
Region-2
* a2
0Cny _D, 0°C,5 ’ (2.31)

o 2 ol

which are the equations governing the longitudinal dispersion, where
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I W’
D, =—|C,;u; dn=——F,(M,E,p,,p,,m,n),
1 2D, I 11U 4M 2D, 1( Pr-P; )

. S W
D Coru; d ——F M,E.p,,p,,mn
2= ZDZI 12U dM 2D, 2( sP1> P2 )

Equations (2.30) and (2.31) are the well known heat conduction equations which can be solved easily
for given initial conditions.

Case 1b: Diffusion of a tracer in the absence of a first order chemical reaction and for purely viscous
fluid (two fluid model)

To validate the results of the present model, the problem is solved in the absence of the magnetic
field and compared with the results of Gupta and Gupta [42].
The non-dimensional equations of motion for incompressible fluids are

Region-1
d’uy _dpj _, (2.32)
dy2 dx
Region-2
duy _dps (2.33)
dy2 dx

The boundary and interface conditions are defined as in Eq.(2.7). Using Eq.(2.7) in Egs (32) and
(33), the solutions become

2

2

The average velocities become

_ _1(p q

P S B B 2.36

1 2(6 5 2) (2.36)

=L P, (2.37)
2\ 6 2

The solutions of Eqgs (2.19) and (2.20) in the absence of the applied magnetic field B, and applied
electric field E, yields

3 2
c = h’ ac, pm /LI L) P PO (2.38)
D,L 0§, 6 2

2 4 3 2
C, :;L ZCZ LPZ“ MCEL L +193n}+co2 (2.39)
>L 38, 6 2
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where C,; and Cj, being constants to be determined using entry conditions.
The volumetric rates at which the solute is transported across a section of the channel of unit breadth
O, (region-1) and O, (region-2) and the effective dispersion coefficients F;, are evaluated as explained in

the case la. The values of F; ( Pr» pz,m,n) are computed for different values of the dimensionless parameters

p; and m and are shown in Tab.4.

Case 1c: Diffusion of a tracer in the absence of a first order chemical reaction and for purely viscous
fluid (one fluid model).
The non-dimensional equation of motion is
d’u _d
_”2‘ _a (2.40)
dn dx

along with boundary conditions
u=0 at n==I. (2.41)

The solution of Eq.(2.40) is

u:—p(l—nz)/Z.

The average velocity is given by
u=-p/3.

The concentration equation for one fluid model using Taylor [3] become

2 2
oe_mr o, (2.42)
on’ DLoE

2
where u, :%—g.

The solution of Eq.(2.42) using boundary conditions Z—C:O at n==x1/ is
gl

C_ia_c(ﬁ i P

2
= +C 2.43
pL e\ 24" 12" j 0 243)

where C, is a constant to be determined using entry conditions.

The volumetric flow rate in which the solute is transported across a section of the channel of unit
breadth is

1 2.2
h“poC( 2
=h| Cu.dn=— — | =, 2.44
9 :.; = D g (945 j (2.44)
. W2 p?
so that the value for D can be written as 2 945 by comparing with Fick’s law of diffusion which

agrees with the results of Wooding [43] where p is the non-dimensional pressure gradient. D" is also the
effective dispersion co-efficient obtained by Gupta and Gupta [42] in the absence of chemical reactions.
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Case 2a: Diffusion of a tracer in the presence of a homogeneous first-order chemical reaction

The physical model and the assumptions made in case 1 are true here, except that we have the
chemical reaction. In this case we assume that the chemical reaction is first order and it occurs under such
conditions that the gas film resistance is negligible. This means that the reaction term is —KC; (region-1)

and —KC, (region-2) mol em™ 57! , which represents the volume rate of disappearance of the solute due to
the chemical reaction. Here K represents the first-order reaction rate constant.

The velocity and average velocity are exactly the same as in Eqs (2.8)-(2.11). The equations for
concentration, instead of Eqs (2.12) and (2.13), are

Region-1
2 2
o uﬂzD 6C1+8C1 -K,C,. (2.45)
a ax  ax? ar?) M
Region-2
ac,  ac, o’c, é°C,
7+u28—X:D2[6)(—2+ aYZ —K2C2. (246)

Along with the boundary condition (2.21), the continuity of concentration and continuity of mass
flux at the interface is considered to evaluate the integrating constants. That is

ac, _ b, ac

om D, on

at n=0. (2.47)

Following the analysis of case 1, the non-dimensional form of Eqs (2.45) and (2.46) are
Region-1

o’c L. W ac

o =—u,, . (2.48)
o 1 b DL 1 o€,
Region-2
2 2
a’r‘] D2L a(gz
where a,=hJK;/D; and o,=h(K,/D, .
The solutions of Eqs (2.48) and (2.49) become
Region-1
h(M inh (M
C; =b;cosh(am)+b,sinh(am)+Z, a,cozs ( Zn)+a2s1r21 ( Zn)+l—12n2 . (2.50)
M* —a; M —a; o7
Region-2
, azcosh(Bn) aysinh(Bn) [,
C, =b;cosh(a,m)+b,sinh(a,n)+2Z + + = . (2.51)
2= (am) + by sinh (o;m) 2( B o B —ol ocﬁn

The expressions for C; and C, can also be written as

e n ac, e h aC,

=——C; +——=C),, = +
pLeg, "' pree, P o preg, DLk,

1 22
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The volumetric flow rates at which the solute is transported across a section of the channel of unit
breadth Q,(region-1) and Q, (region-2) using Eqs (2.14), (2.15) and (2.50), (2.51), respectively are given by
Region-1

0
O, ZhI Cupdn=—(0;; +0p,) . (2.52)
-1
Region-2
1
0, =hIC2“2xdn =—(05 +02) (2.53)
0
0 0
where O = _ZIhJ. Cppupdn, O = —Zzhj Cpottgedn,
.y -1

1 1
Oy = _ZlhICZIMZxdn ’ 052 = _Zzh.[c” Uz -
0 0

Following the procedure explained in case 1 and using the fact that no material is lost in the process
expressed by the continuity equation for C; and C,, given by Eqs (2.50) and (2.51), we obtain an effective

dispersion coefficient D" in the form

2

0
N h
D, =—\C,u;, dn=——"F,,(M,E,p,,p,,0.;,0,,mn),
11 2D,_J; 11U 4N 2D, 11( P> P20 1,0, )

. Kt n’
D,=—|C,ou, dn=——F,,(M,E,p,,p,,0;,0,,m,n),
12 2D2:.; 12U AN 2D, 12( P P2,0,0, )
(2.54)

T K
D,y =—|Cy;u, dn=—-—F,,(M,E,p,,p,,0;,0.,,m,n),
21 ZDI_J‘I 21Uz AN 2D, 21( Pp>-P2,07,0) )

M E
Dy, =—|Cou, dn=——F,,(M,E,p;,p,,0;,0,,m,n).
22 2D2J.] 22Uy am 2D, 22( P> Pr,0p,0) )

Values of F}, are computed for different values of dimensionless parameters such as the Hartman

number M, viscosity ratio m and pressure gradients p,;,p, for variations of o;anda, for both open and

short circuits. The volumetric flow rate is also computed for variations of the Hartman number, viscosity
ratio, pressure gradients and height of the channel.

Case 2b: Diffusion of a tracer with a combined homogeneous and heterogeneous first-order chemical
reaction

We now discuss the problem of diffusion in a channel with a first-order irreversible chemical
reaction taking place both in the bulk of the fluid as well as at the walls which are assumed to be catalytic. In
this case the diffusion equations remain the same as defined in Eqs (2.48) and (2.49) subject to the
dimensionless boundary and interface conditions as
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g_B]CIZO at n:_],
on

%HSZCZ:O at n=1,
on

(2.55)
C,=C, at n=0,

DlaﬁzDza& at T]:O
on on

where B; = ;4 and B, = f>h are the heterogeneous reaction rate parameters (or wall catalytic parameters)

corresponding to the catalytic reaction at the walls.

The solutions of Eqs (2.48) and (2.49) are the same as in Eqs (2.50) and (2.51). The integrating
constants b;, b,, b; and b, are obtained using boundary and interface conditions as defined in Eq.(2.55) and
are given as follows

by=Ziby+Z5b1;, by=Zibyy+Zsbyy, by=Zb3+Zsbs;, by=Ziby+Z5by,.

The procedure of evaluating the volumetric flow rate and effective dispersion coefficient is the same
as in Eqs (2.52) to (2.54).

Case 2c¢: Diffusion of a tracer in the presence of a homogeneous first-order chemical reaction in the
absence of the magnetic field for a purely viscous fluid (two fluid model).

We justify our results by comparing them with the results obtained by Gupta and Gupta [42] (one
fluid model) with a first order chemical reaction for a purely viscous fluid.

The solutions of velocities and average velocities are the same as in Eqs (2.34) to (2.37).
The solutions of Egs (2.19) and (2.20) for a purely viscous fluid yields

Cy = by cosh () + b, sinh (am)+Z; (Im’ +1n+13), (2.56)

C; = bs cosh () +b, sinh (om) + Z; (L0 +1m +1s ). (2.57)

The volumetric rates at which the solute is transported across a section of the channel of unit breadth
O, (region-1) and Q, (region-2) and the effective dispersion coefficients F;, are evaluated as explained in
casela. The values of Fj (0,0, p;,ps,m,n) are computed for different values of the dimensionless

reaction rate parameters o, p; and m and are shown in Tab.4.

Case 2d: The channel filled with only a viscous fluid (one fluid model) for a homogeneous chemical
reaction.

The solutions of velocities and average velocities are given in case 1c. The concentration equation
for one fluid model using Taylor [3] becomes
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2 2
8_5’ - = h_@_Cux (2.58)
o DL 0¢

2
where u, = PP
2 6
. . . oC .
The solution of Eq.(2.58) using boundary conditions 8_:0 at n==%/1s
n
2
C = Acosh(om) - ﬁl 6_C(£n2 —£+%J. (2.59)
a’DL 9\ 2 6 a

The volumetric flow rate in which the solute is transported across a section of the channel of unit
breadth is

1 2.2
hp”oC| 1 1 coth(a) i
=h|Cu.dn= — . 2.60
0 jl t,dn azDaé(aé, e B (2.60)

Comparing Eq.(2.60) with Fick’s law of diffusion, we find that the solute is dispersed relative to a
plane moving with the mean speed of the flow with an effective dispersion coefficient D" given by

2 2
D =P k)
th
where F(a):iz w—w—%—iﬁi . 2.61)
o a o 3o 45

Values of F (a) are computed for different values of the dimensionless reaction rate parameter o

and are shown in Tab.4. When o — 0, Eq.(2.61) gives

lim F (o) =~
a—0 945

b

. . W p?
so that the value for D can be written as P

% which agrees with the results of Wooding [43] where

p is the non-dimensional pressure gradient.

The solution for a heterogeneous chemical reaction is also found for two fluid and one fluid model
and the results are shown in Tab.4. The constants which appeared in all the above equations are given in the
Appendix.

4. Results and discussion

The longitudinal dispersion of a two-fluid MHD fluid flow between two parallel plates in the
presence of a transverse magnetic field and uniform electric field applied across the channel is
discussed. The dispersion of a solute is analyzed with or without a first order chemical reaction
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following the Taylor diffusion model. The average velocities in both the regions are evaluated using no-
slip conditions at the boundaries and continuity of velocity and shear stress at the interface. The
effective Taylor diffusion coefficient (ETDC) in each region is evaluated for the governing parameters
and is tabulated.

Case 1: Diffusion of a tracer in the absence of a homogeneous first-order chemical reaction.

The effect of Hartman number M on the velocity for open and short circuits is shown in Fig.1. We
observe that the effect of increasing the magnetic field is to decrease the velocity in both the regions. We
also observe the flattening of the velocity profile for large values of the Hartman number. This is due to the
overall retarding effect of the Lorentz force J x B. The Hartmann number represents the ratio of the Lorentz
force to the viscous force. The velocity near the walls increases in order to keep the mass flow rate constant.
This is the classical Hartmann result. Figure 1 also shows the effect of the electric field load parameter £ on
the flow. The two cases E =0 (short circuit) and E =%/ (open circuit) are considered in the graph. The
effect of increasing M is quite opposite in the case when E =-—/. In this case we observe that the
electromagnetic force tends to accelerate the fluid. Again a positive E accelerates the flow in opposite
direction. Since we are considering the fluids in both the regions to be electrically conducting, we observe
the symmetric profiles for both open and short circuits.

1.0
P=2
m=1
n=1
o=1.
0.5 |
M=4 M=2
y 0.0
-05 |
1.0 ] ] ] 1

-10 -08 -06 -04 -02 0.0

Fig.2. Velocity profiles for different values of the Hartman number M and electric load parameter E .

The effect of the Hartman number M, viscosity ratio m and pressure gradient on ETDC for open
and short circuits is shown in Tabs la, b, c. It is seen that the ETDC decreases with an increase in the
Hartman number M for both open and short circuits. The results are compatible with the physics of the
problem. In a Hartman flow, it is seen that the velocity profile becomes flatter with an increase of the
Hartman number M. However, the ETDC decreases more rapidly with increasing the Hartman number M in
a short circuited channel flow as compared with an open-circuited flow.
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As the viscosity ratio m(uz / pl) increases, the ETDC (F ) decreases for values of m </ and

increases in magnitude for m > I for both open and short circuits. This is due to the fact that viscosity ratio
m has a significant effect on velocity in region-2. The values of ETDC are symmetric for the pressure
gradient p>0 and p<0. This is due to the fact that as p increases for p >0, velocity increases which

causes an increase in F (it should be noted that p is defined as —dp/ox).

Table 1a. Values of the effective dispersion coefficient for variations of the Hartman number, viscosity ratio,
pressure gradients and electric load parameter in the absence of a first order chemical reaction.

E=-1

M | F;(M,o,,m,p) | F;(M,o,,m,p) | F(M,o,, mp)
4 0.002260 0.002260 0.004521
6 0.001823 0.001823 0.003646
8 0.001341 0.001341 0.002681
10 | 9.9643E-4 9.9643E-4 0.001993
12 | 7.6092E-4 7.6092E-4 0.001522
m

0.1 | 2.349260 2.130990 4.480250
0.5 | 0.025626 0.022898 0.048523
1 0.001133 0.001133 0.002266
2 0.008650 0.005368 0.014018
3 0.012810 0.013202 0.026011
4 0.009183 0.011565 0.020748
p

-15 | 0.045440 0.045440 0.090879
-10 | 0.024671 0.024671 0.049342
-5 10010196 0.010196 0.020391
0.1 10001915 0.001915 0.003829
5 1.2587E-4 1.2587E-4 2.5174E-4
10 | 0.004531 0.004531 0.009063
15 | 0.015230 0.015230 0.030461
1 0.001133 0.001133 0.002266
Gr

2 0.002939 0.001507 0.004446
3 0.005228 0.001579 0.006807
4 0.007163 0.001685 0.008847
5 0.008730 0.001821 0.010551
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Table 1b. Values of the effective dispersion coefficient for variations of the Hartman number, viscosity ratio,

0.000

-0.001

-0.002

-0.003

-0.004

-0.005

-0.006

-0.007

pressure gradients and electric load parameter in the absence of a first order chemical reaction.

E=0
M FI(M, Gr,m,p) FZ(M, Gr,m,p) F(M, Gr,m,p)
4 1.00464E-5 1.00464E-5 2.00927E-5
6 1.48823E-6 1.48823E-6 2.97647E-6
8 3.37759E-7 3.37759E-7 6.75518E-6
10 | 1.01667E-7 1.01667E-7 2.03333E-7
12 | 3.72109E-8 3.72109E-8 7.44218E-8
m
0.1 | 2.2388E-5 0.002 0.00202
0.5 | 1.9476E-4 7.16E-4 9.1076E-4
1 1.2587E-4 1.2587E-4 2.5174E-4
2 0.0019 8.4955E-4 0.00275
3 0.00108 -0.00333 -0.00224
4 -0.02861 -0.02518 -0.05378
p
-15 1 0.0283211 0.0283211 0.0566422
-10 | 0.0125871 0.0125871 0.0251743
-5 1 0.0031468 0.0031468 0.0062936
0.1 | 12587E-6 1.2587E-6 2.5174E-6
5 0.0031468 0.0031468 0.0062936
10 | 0.0125871 0.0125871 0.0251743
15 | 0.0283211 0.0283211 0.0566422
GV
1 5.0349E-4 5.0349E-4 0.001007
2 7.8688E-4 6.1199E-4 0.001399
3 0.001289 7.2795E-4 0.002017
4 0.001725 7.7905E-4 0.002504
5 0.002077 8.0366E-4 0.002880

SRR ]
Tl $ Il
— o

IS
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Fig.3. Volumetric flow rate Q) versus the Hartman number M , viscosity ratio m , pressure gradient p
height of the channel / and electric load parameter in the absence of a first order chemical reaction.

Table 1c. Values of the effective dispersion coefficient for variations of the Hartman number, viscosity ratio,

pressure gradients and electric load parameter in the absence of a first order chemical reaction.

E=1
M| F(M,o,.,mp) | F;(M,o,,mp) | F(M,o,, mp)
4 0.002903 0.002903 0.005807
6 0.002037 0.002037 0.004075
8 0.001427 0.001427 0.002854
10 | 0.001037 0.001037 0.002074
12 | 7.82359E-4 7.82359E-4 0.001565
m
0.1 | 2.444240 1.868800 4.313040
0.5 0022215 0.017162 0.039377
1 0.003147 0.003147 0.006294
2 0.007024 -0.011538 -0.004513
3 0.004653 -0.046234 -0.041582
4 -0.003975 -0.111673 -0.115648
p
-1510.015230 0.015230 0.030461
-10 | 0.004531 0.004531 0.009063
-5 | 1.2587E-4 1.2587E-4 2.5174E-4
0.1 |0.002116 0.002116 0.004232
5 0.010196 0.010196 0.020391
10 | 0.024671 0.024671 0.049342
15 | 0.045440 0.045440 0.090879
GV
7 | 0.003147 0.003147 0.006294
2 0.003528 0.002630 0.006158
3 0.003972 0.002093 0.006065
4 0.004334 0.001759 0.006093
5 0.004619 0.001550 0.006170
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The effects of the Hartman number M, viscosity ratio m , pressure gradient and height of the channel
h on the volumetric flow rate Q is shown in Fig.2. As the Hartman number M increases the volumetric
flow rate O decreases for M =3 for E=—1 and E =0 whereas it increases for £=1 and remains
invariant for M > 3 for both open and short circuits. The volumetric flow rate increases as the viscosity ratio
m increases up to m = 1.5 (approximately) and remains constant for both open and short circuits. However
the effect of m on Q is larger for an open circuit when compared to a short circuit. The Volumetric flow
rate is symmetric for negative and positive values of the pressure gradient p and the optimal flow rate is
attained in the absence of the pressure gradient for both open and short circuits. The flow rate for £ =0 lies
between E=+] for p <0 and p>0. As the height of the channel / increases, the volumetric flow rate

decreases in magnitude for both open and short circuits. However the magnitude of retardation is larger for
an open circuit when compared to a short circuit.

The results obtained (two-fluid model) in the absence of a chemical reactions agree with the results
obtained by Gupta and Chatterjee [45] for the effect of the Hartman number M on the ETDC for a short
circuit. That is, as M increases /' decreases. Letting M — 0 and fixing m=1, p=1 and h=1 (ie.,
considering the same fluid in both the regions) we obtain the results of Gupta and Gupta [37] for KC =0
which are also the results of Wooding [43] as shown in Tab.4.

Case 2: Diffusion of a tracer with a combined homogeneous and heterogeneous first-order chemical
reaction.

The ETDC F; (region-1) and F, (region-2) for various values of the viscosity ratiom , pressure
gradient p , and Hartman number M for a homogeneous chemical reaction for open and short circuit is
shown in Tabs 2a, b, ¢, respectively. As the reaction rate parameter o increases the total ETDC
(F =F,+F,) decreases for all values of m, p and M for both open and short circuits. This is due to the
fact that an increase in o signifies the increasing number of moles of the solute undergoing a chemical
reaction results in a drop in the dispersion coefficient. As the viscosity ratio m increases, the ETDC
decreases for values of m </ and increases for m >/ for both open and short circuits. ETDC decreases as
p increases for p </ and increases as p increases for p >/ for E=-1 and 0, whereas it increases in
magnitude for both p>1 and p<1 for E=1.

As the Hartman number increases the ETDC decreases for £ =—/ and 0. For the electric field
parameter £ =17, the ETDC decreases as M increases for M =0.1 and M =35 whereas the ETDC increases
in magnitude for values of M > 5 as seen in Tab.2b. That is, as the Hartman number M increases, the ETDC,
the reaction rate parameter oo and the wall catalytic parameter § decrease. Let M — 0, m=1, p=1 then
the present model agrees with the results of Gupta and Gupta [42] for both homogeneous and heterogeneous

chemical reactions as shown in Tab.4. For a short circuit the effect of the Hartman number, reaction rate
parameter a and wall catalytic parameter B, ETDC for the present model (two-fluid model) agree with the

results of Sundhanshu et al. [44] (one fluid model).
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Table 2a. Values of the effective dispersion coefficient for variations of the reaction rate parameter o,
Hartman number M, viscosity ratio m , pressure gradients p and electric load parameter £ in

the presence of a first order chemical reaction.

E=-1
m=0.1 m=1

o F](oc],ocz) Fz(a,,az) F(oc,,ocz) F,(a,,(xz) Fz(ocj,ocz) F(oc,,ocz)
0.4 |2.761310 2.548470 3.309780 | 0.002226 0.002226 0.004452
0.8 | 2.341920 2.173110 4.515030 | 0.002129 0.002129 0.004258
1.2 | 1.871380 1.750980 3.622370 | 0.001985 0.001985 0.003971
1.6 | 1.463460 1.383620 2.847080 | 0.001815 0.001815 0.003630
2.0 | 1.145730 1.095930 2.241660 | 0.001636 0.001636 0.003272
o m=2 py=py;=—5

0.4 | 0.005810 0.007913 0.013723 | 0.004363 0.004363 0.008726
0.8 | 0.005139 0.006757 0.011896 | 0.004173 0.004173 0.008346
1.2 | 0.004362 0.005451 0.009813 | 0.003891 0.003891 0.007783
1.6 | 0.003655 0.004308 0.007963 | 0.003557 0.003557 0.007115
2.0 0.003069 0.003407 0.006476 | 0.003206 0.003206 0.006413
o p1=p;=0.1 pi=py=5

0.4 | 0.002501 0.002501 0.005002 | 0.001197 0.001197 0.002394
0.8 | 0.002392 0.002392 0.004784 | 0.001145 0.001145 0.002290
1.2 |1 0.002231 0.002231 0.004462 | 0.001068 0.001068 0.002135
1.6 | 0.002039 0.002039 0.004079 | 9.76079E-4 | 9.76079E-4 | 0.001952
2.010.001838 0.001838 0.003676 | 8.79748E-4 | 8.79748E-4 | 0.001760
a M =0.1 M=5

0.4 | 0.001012 0.001012 0.002024 | 0.002055 0.002055 0.004110
0.8 | 9.66401E-4 | 9.66401E-4 | 0.001933 | 0.001967 0.001967 0.003934
1.2 | 8.98947E-4 | 8.98947E-4 | 0.001798 | 0.001837 0.001837 0.003673
1.6 | 8.19049E-4 | 8.19049E-4 | 0.001638 | 0.001682 0.001682 0.003364
2.0 | 7.35214E-4 | 7.35214E-4 | 0.001470 | 0.001519 0.001519 0.003038
o M =10 c,=0.1

0.4 | 9.82728E-4 | 9.82728E-4 | 0.001965 | 0.003985 0.007798 0.011783
0.8 | 9.44031E-4 | 9.44031E-4 | 0.001888 | 0.003582 0.006766 0.010349
1.2 | 8.86594E-4 | 8.86594E-4 | 0.001773 | 0.003104 0.005583 0.008687
1.6 | 8.18166E-4 | 8.18166E-4 | 0.001636 | 0.002654 0.004523 0.007177
2.0 | 7.45802E-4 | 7.45802E-4 | 0.001492 | 0.002267 0.003664 0.005931
o c,=1 G,=2

0.4 | 0.002226 0.002226 0.004452 | 0.003218 0.001694 0.004911
0.8 | 0.002129 0.002129 0.004258 | 0.002964 0.001652 0.004617
1.2] 0.001985 0.001985 0.003971 0.002646 0.001576 0.004222
1.6 | 0.001815 0.001815 0.003630 | 0.002324 0.001470 0.003794
2.010.001636 0.001636 0.003272 | 0.002028 0.001348 0.003376
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Table 2b. Values of the effective dispersion coefficient for variations of the reaction rate parameter o,
Hartman number M, viscosity ratio m , pressure gradients p and electric load parameter £ in
the presence of a first order chemical reaction.

E=0

m=0.1

m=1

FJ(“J:%)

F, (ah%)

F(oy,a,)

Fi(oy,0;)

Fz(ah%)

F(oy,a;)

0.4

8.00589E-6

1.49616E-4

1.57622E-4

9.8934E-6

9.8934E-6

1.97868E-5

0.8

8.35876E-6

1.36619E-4

1.44978E-4

9.46219E-6

9.46219E-6

1.89244E-5

1.2

8.50548E-6

1.20835E-4

1.29341E-4

8.82393E-6

8.82393E-6

1.76479E-5

1.6

8.30537E-6

1.05557E-4

1.13862E-4

8.06677E-6

8.06677E-6

1.61335E-5

2.0

7.82051E-6

9.20293E-5

9.98498E-4

7.27065E-6

7.27065E-6

1.45413E-5

m=2

pr=py=-5

0.4

6.297E-5

2.11697E-5

8.41398E-5

2.47335E-4

2.47335E-4

4.9467E-4

0.8

3.85902E-5

2.08786E-5

7.94688E-5

2.36555E-4

2.36555E-4

4.73109E-4

1.2

5.29001E-5

2.01194E-5

7.30195E-5

2.20598E-4

2.20598E-4

4.41196E-4

1.6

4.69458E-5

1.88913E-5

6.58371E-5

2.01669E-4

2.01669E-4

4.03338E-4

2.0

4.12782E-5

1.73595E-5

5.86377E-5

1.81766E-4

1.81766E-4

3.63532E-4

p=p;=01

pr=py=95

0.4

9.8934E-8

9.8934E-8

1.97868E-7

2.47335E-4

2.47335E-4

4.9467E-4

0.8

9.46219E-8

9.46219E-8

1.89244E-7

2.36555E-4

2.36555E-4

4.73109E-4

1.2

8.82393E-8

8.82393E-8

1.76479E-7

2.20598E-4

2.20598E-4

4.41196E-4

1.6

8.06677E-8

8.06677E-8

1.61335E-7

2.01669E-4

2.01669E-4

4.03338E-4

2.0

7.27065E-8

7.27065E-8

1.45413E-7

1.81766E-4

1.81766E-4

3.63532E-4

M =0.1

M=35

0.4

0.00103000

0.00103000

0.00206514

3.56801E-6

3.56801 E-6

7.13602 E-6

0.8

9.86023E-4

9.86023E-4

0.00197205

341511 E-6

341511 E-6

6.83022 E-6

1.2

9.17199E-4

9.17199E-4

0.00183440

3.18869 E-6

3.18869 E-6

6.37737 E-6

1.6

8.35679E-4

8.35679E-4

0.00167136

2.91988 E-6

2.91988 E-6

5.83976 E-6

2.0

7.50142E-4

7.50142E-4

0.00150028

2.63695 E-6

2.63695 E-6

5.27390 E-6

M =10

c,=0.1

0.4

1.00268 E-7

1.00268 E-7

2.00536 E-7

2.68126E-4

1.74734E-4

4.42859E-4

0.8

9.63199 E-§8

9.63199 E-8

1.92640 E-7

2.3091E-4

1.57484E-4

3.88394E-4

1.2

9.04596 E-8

9.04596 E-8

1.80919 E-7

1.88526E-4

1.37013E-4

3.25539E-4

1.6

8.34778 E-8

8.34778 E-8

1.66956 E-7

1.50963E-4

1.17758E-4

2.68721E-4

2.0

7.60945 E-8

7.60945 E-8

1.52189 E-7

1.20901E-4

1.01186E-4

2.22087E-4

c,=1

c,.=2

0.4

9.8934E-6

9.8934E-6

1.97868E-5

1.04941E-5

1.63515E-5

2.68456E-5

0.8

9.46219E-6

9.46219E-6

1.89244E-5

9.62562E-5

1.41923E-5

2.38179E-5

1.2

8.82393E-6

8.82393E-6

1.76479E-5

8.56359E-5

1.17153E-5

2.02789E-5

1.6

8.06677E-6

8.06677E-6

1.61335E-5

7.52492F-5

9.49710E-5

1.7022E-5

2.0

7.27065E-6

7.27065E-6

1.45413E-5

6.59314E-5

7.69917E-5

1.42923E-5
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Table 2c. Values of the effective dispersion coefficient for variations of the reaction rate parameter o,
Hartman number M, viscosity ratio m , pressure gradients p and electric load parameter £ in

the presence of a first order chemical reaction.

E=1

m=0.1 m=1
a | Fagay) | F(a,a,) | Fla,a,) | Fa,a,) | Fa,a,) | Flo,o,)
0.4 2.748030 2.500990 5.249030 0.002859 0.002859 0.005718
0.8 ] 2.330730 2.133620 4.464350 0.002735 0.002735 0.005469
1.2 | 1.862520 1.720360 3.582870 0.002550 0.002550 0.005100
1.6 | 1.456600 1.360530 2.817130 0.002331 0.002331 0.004663
2.0 | 1.140410 1.078570 2.218980 0.002101 0.002101 0.004202
o m=2 P =py=—3
0.4 0.005893 0.008481 0.014374 0.001197 0.001197 0.002394
0.8 ] 0.005353 0.007296 0.012649 0.001145 0.001145 0.002290
1.2 | 0.004703 0.005948 0.010651 0.001068 0.001068 0.002135
1.6 | 0.004080 0.004756 0.008836 9.76079E-4 | 9.76079E-4 | 0.001952
2.0 ] 0.003532 0.003805 0.007338 8.79748E-4 | 8.79748E-4 | 0.001760
o p1=p;=0.1 pPi=py=75
0.4 0.002564 0.002564 0.005129 0.004363 0.004363 0.008726
0.8 | 0.002453 0.002453 0.004905 0.004173 0.004173 0.008346
1.2 ] 0.002287 0.002287 0.004574 0.003891 0.003891 0.007783
1.6 | 0.002091 0.002091 0.004182 0.003557 0.003557 0.007115
2.0 ] 0.001885 0.001885 0.003769 0.003206 0.003206 0.006413
o M =0.1 M=5
0.410.001053 0.001053 0.002107 0.002412 0.002412 0.004824
0.8 | 0.001006 0.001006 0.002012 0.002309 0.002309 0.004617
1.2 | 9.35635E-4 | 9.35635E-4 | 0.001871 0.002156 0.002156 0.004311
1.6 | 8.52476E-4 | 8.52476E-4 | 0.001705 0.001974 0.001974 0.003948
2.0 | 7.6522E-4 | 7.6522E-4 | 0.001530 0.001783 0.001783 0.003565
o M =10 c,=0.1
04| 0.001023 0.001023 0.002046 0.002770 0.006362 0.009132
0.8 | 9.82559E-4 | 9.82559E-4 | 0.001965 0.002664 0.005725 0.008389
1.2 1 9.22778E-4 | 9.22778E-4 | 0.001846 0.002501 0.004959 0.007460
1.6 | 8.51557E-4 | 8.51557E-4 | 0.001703 0.002301 0.004229 0.006529
2.0 | 7.7624E-4 | 7.7624E-4 | 0.001552 0.002085 0.003592 0.005677
o c,=1 G, =2
0.4 0.002859 | 0.002859 | 0.005718 | 0.003355 | 0.001978 | 0.005333
0.8 | 0.002735 | 0.002735 | 0.005469 | 0.003135 | 0.001928 | 0.005063
1.2 0.002550 0.002550 0.005100 0.002847 0.001836 0.004683
1.6 1 0.002331 0.002331 0.004663 0.002543 0.001710 0.004253
2.010.002101 0.002101 0.004202 0.002250 0.001565 0.003815

Tables 3a, b, ¢ display the variations of the ETDC on the wall catalytic parameter [, viscosity ratio

m , pressure gradient p and Hartman number M for a fixed value of the homogeneous reaction rate

parameter o (= o, =0c2) for both open and short circuits, respectively. The effects of m, p and the
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Hartman number M on the ETDC show the same results as observed for a homogeneous chemical reaction
for both open and short circuits (Tables 2a, b, ¢).

Table 3a. Values of the effective dispersion coefficient for variations of wall catalytic parameter [3,

Hartman number M, viscosity ratio m , and pressure gradients p in the presence of a first order
chemical reaction.

E=-1
m=0.1 m=1

p Fz(aia i) Fz(aia i) F(aia i) F](ai, i) Fz(“ia i) F(aia i)
2 | 1.984610 1.898800 3.883410 | 0.002018 0.002018 0.004037
4 1.402270 1.566430 2.968710 | 0.001850 0.001850 0.003699
6 | 1.136290 1.399450 2.535740 | 0.001791 0.001791 0.003582
8 |0.995491 1.308140 2.303630 | 0.001764 0.001764 0.003528
10 | 0.908249 1.250680 2.158930 | 0.001748 0.001748 0.003496

B m=2 p1=py=—
2 | 0.004817 0.005622 0.010439 | 0.003956 0.003956 0.007912
4 0.004966 0.003443 0.008409 | 0.003625 0.003625 0.007251
6 | 0.004956 0.002509 0.007465 | 0.003511 0.003511 0.007022
8 | 0.004936 0.002027 0.006963 | 0.003457 0.003457 0.006914
10 | 0.004919 0.001731 0.006650 | 0.003426 0.003426 0.006852

p P =p;=0.1 pr=py=3
2 10.002268 0.002268 0.004536 | 0.001085 0.001085 0.002171
4 0.002078 0.002078 0.004157 | 9.94742E-4 | 9.94742E-4 | 0.001989
6 |0.002013 0.002013 0.004025 | 9.63291E-4 | 9.63291E-4 | 0.001927
8 | 0.001982 0.001982 0.003964 | 9.48563E-4 | 9.48563E-4 | 0.001897
10 | 0.001964 0.001964 0.003928 | 9.40021E-4 | 9.40021E-4 | 0.001880

p M =0.1 M=35
2 | 9.17127E-4 | 9.17127E-4 | 0.001834 | 0.001865 0.001865 0.003729
4 | 8.48274FE-4 | 8.48274E-4 | 0.001697 | 0.001704 0.001704 0.003407
6 8.24406E-4 | 8.24406E-4 | 0.001649 | 0.001648 0.001648 0.003296
8 | 8.13229E-4 | 8.13229E-4 | 0.001626 | 0.001622 0.001622 0.003243
10 | 8.06746E-4 | 8.06746E-4 | 0.001613 | 0.001607 0.001607 0.003213

p M =10 o, =0.1
0.4 | 8.95191E-4 | 8.95191E-4 | 0.001790 | 0.003447 0.005719 0.009166
0.8 | 8.09645E-4 | 8.09645E-4 | 0.001619 | 0.003797 0.003661 0.007458
1.2 | 7.7999E-4 7.7999E-4 | 0.001560 | 0.003892 0.002786 0.006679
1.6 | 7.66102E-4 | 7.66102E-4 | 0.001532 | 0.003930 0.002336 0.006266
2.0 7.58048E-4 | 7.58048E-4 | 0.001516 | 0.003950 0.002061 0.006011

B c,=1 c,=2
0.4 0.002018 0.002018 0.004037 | 0.002658 0.001657 0.004315
0.8 | 0.001850 0.001850 0.003699 | 0.002011 0.001835 0.003846
1.2 0.001791 0.001791 0.003582 | 0.001754 0.001911 0.003665
1.6 | 0.001764 0.001764 0.003528 | 0.001625 0.001951 0.003576
2.0 0.001748 0.001748 0.003496 | 0.001547 0.001975 0.003522
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Table 3b. Values of the effective dispersion coefficient for variations of the wall catalytic parameter 3,
Hartman number M, viscosity ratio m , and pressure gradients p in the presence of a first order

chemical reaction.

E=0
m=0.1 m=1
B | FiloB:) | FalonB;) | FlogB:) Fi(oiBi) | FolowBi) | F(oB;)
2 | 8.80015E-6 | 1.25461E-4 | 1.34261E-4 | 8.97079 E-6 | 8.97079 E-6 | 1.79416E-5
4 | 1.06137E-5 | 1.09507E-4 | 1.20121E-4 | 8.22100 E-6 | 8.22100 E-6 | 1.6442E-5
6 | 1.15313E-5 | 1.0242E-4 | 1.13951E-4 | 7.96109 E-6 | 7.96109E-6 | 1.59222E-5
8 | 1.20341E-5 | 9.8707E-5 | 1.10741E-4 | 7.83936 E-6 | 7.83936E-6 | 1.56787E-5
10 | 1.23509E-5 | 9.64181E-5 | 1.08769E-4 | 7.76877 E-6 | 7.76877E-6 | 1.55375E-5
p m=2 pr=py=-5
2 | 5.42686E-5 | 2.04981E-5 | 7.47668E-5 | 2.2427E-5 | 2.2427E-5 | 4.48539E-5
4 | 4.7363E-5 | 2.06885E-5 | 6.80515E-5 | 2.05525E-5 | 2.05525E-5 | 4.1105E-5
6 | 4.4527E-5 | 2.09914E-5 | 6.55185E-5 | 1.99027E-5 | 1.99027E-5 | 3.98054E-5
8 | 4.3087E-5 | 2.11933E-5 | 6.42803E-5 | 1.95984E-5 | 1.95984E-5 | 3.91968E-5
10 | 4.22133E-5 | 2.1331E-5 | 6.35443E-5 | 1.94219E-5 | 1.94219E-5 | 3.88438E-5
B p=p,=01 pi=p>=95
2 | 8.97079E-8 | 8.97079 E-8 | 1.79416E-7 | 2.2427E-5 | 2.2427E-5 | 4.48539E-5
4 | 822100 E-8 | 822100 E-8 | 1.64420 E-7 | 2.05525E-5 | 2.05525E-5 | 4.1105E-5
6 | 7.96109E-8 | 7.96109 E-8 | 1.59222 E-7 | 1.99027E-5 | 1.99027E-5 | 3.98054E-5
8 | 7.83936 E-8 | 7.83936 E-8 | 1.56787 E-7 | 1.95984E-5 | 1.95984E-5 | 3.91968E-5
10 | 7.76877 E-8 | 7.76877 E-8 | 1.55375 E-7 | 1.94219E-5 | 1.94219E-5 | 3.88438E-5
B M =0.1 M=5
2 | 9.35748E-4 | 9.35748E-4 | 0.00187150 | 3.23731E-6 | 3.23731 E-6 | 6.47463 E-6
4 | 8.65498E-4 | 8.65498E-4 | 0.00173100 | 2.95774 E-6 | 2.95774 E-6 | 5.91549 E-6
6 | 841145E-4 | 8.41145E-4 | 0.00168229 | 2.86083 E-6 | 2.86083 E-6 | 5.72166 E-6
8 | 8.2974E-4 | 8.2974E-4 | 0.00165948 | 2.81544 E-6 | 2.81544 E-6 | 5.63089 E-6
10 | 8.23126E-4 | 8.23126E-4 | 0.00164625 | 2.78912 E-6 | 2.78912 E-6 | 5.57824 E-6
p M =10 o, =0.1
0.4 913367 E-8 | 9.13367 E-8 | 1.82673 E-7 | 1.9335E-4 | 1.51182E-4 | 3.44532E-4
0.8 | 8.26084 E-8 | 8.26084 E-8 | 1.65217 E-7 | 1.19893E-4 | 1.64294E-4 | 2.84187E-4
1.2 | 7.95827 E-8 | 7.95827 E-8 | 1.59165 E-7 | 8.88153E-5 | 1.67752E-4 | 2.56567E-4
1.6 | 7.81657 E-8 | 7.81657 E-8 | 1.56331 E-7 | 7.28403E-5 | 1.69096E-4 | 2.41936E-4
2.0| 7.73439 E-8 | 7.73439 E-8 | 1.54688 E-7 | 6.30865E-5 | 1.6978E-4 | 2.32867E-4
B c, =1 c,=2
0.4 ] 897079 E-6 | 8.97079 E-6 | 1.79416E-5 | 9.42998 E-6 | 1.18866E-5 | 2.13166E-5
0.8 | 822100 E-6 | 8.22100 E-6 | 1.6442E-5 | 1.06612E-5 | 7.14330 E-6 | 1.78044E-5
1.2 7.96109 E-6 | 7.96109E-6 | 1.59222E-5 | 1.10628E-5 | 5.16619 E-6 | 1.6229E-5
1.6 | 7.83936 E-6 | 7.83936E-6 | 1.56787E-5 | 1.12445E-5 | 4.15603 E-6 | 1.54005E-5
2.0|7.76877 E-6 | 7.76877E-6 | 1.55375E-5 | 1.13477E-5 | 3.54119 E-6 | 1.48889E-5
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Table 3c. Values of the effective dispersion coefficient for variations of the wall catalytic parameter 3,

Hartman number M, viscosity ratio m , and pressure gradients p in the presence of a first order

chemical reaction.

E=1
m=0.1 m=1

p F](ai’ i) FZ(ai’ i) F(ai’ i) F](ai’ i) Fz(aia i) F(aia i)
2 1.973670 1.866970 3.840630 | 0.002593 0.002593 0.005185
4 1.388180 1.549230 2.937410 | 0.002376 0.002376 0.004752
6 | 1.121350 1.388600 2.509950 | 0.002301 0.002301 0.004602
8 |0.980221 1.300590 2.280810 | 0.002266 0.002266 0.004531
10 | 0.892810 1.245150 2.137960 | 0.002245 0.002245 0.004490

p m=2 pr=p;=-5
2 0.005195 0.006053 0.011248 | 0.001085 0.001085 0.002171
4 |0.005781 0.003521 0.009302 | 9.94742E-4 | 9.94742E-4 | 0.001989
6 | 0.005954 0.002460 0.008414 | 9.63291E-4 | 9.63291E-4 | 0.001927
8 | 0.006028 0.001917 0.007945 | 9.48563E-4 | 9.48563E-4 | 0.001897
10 | 0.006068 0.001586 0.007655 | 9.40021E-4 | 9.40021E-4 | 0.001880

B pr=p,=0.1 pi=p;=95
2 0.002325 0.002325 0.004651 | 0.003956 0.003956 0.007912
4 10.002131 0.002131 0.004262 | 0.003625 0.003625 0.007251
6 | 0.002064 0.002064 0.004127 | 0.003511 0.003511 0.007022
8 |0.002032 0.002032 0.004064 | 0.003457 0.003457 0.006914
10 | 0.002014 0.002014 0.004027 | 0.003426 0.003426 0.006852

p M =0.1 M=5
2 | 9.54557E-4 | 9.54557E-4 | 0.001909 | 0.002188 0.002188 0.004377
4 | 8.82894FE-4 | 8.82894E-4 | 0.001766 | 0.001999 0.001999 0.003999
6 8.58052E-4 | 8.58052E-4 | 0.001716 | 0.001934 0.001934 0.003868
8 | 8.46418E-4 | 8.46418E-4 | 0.001693 | 0.001903 0.001903 0.003806
10 | 8.39671E-4 | 8.39671E-4 | 0.001679 | 0.001885 0.001885 0.003771

p M =10 o, =0.1
0.4 | 9.31725E-4 | 9.31725E-4 | 0.001863 | 0.002702 0.005009 0.007710
0.8 | 8.42688E-4 | 8.42688E-4 | 0.001685 | 0.003180 | 0.003526 | 0.006706
1.2 | 8.11823E-4 | 8.11823E-4 | 0.001624 | 0.003366 0.002919 0.006285
1.6 | 7.97369E-4 | 7.97369E-4 | 0.001595 | 0.003459 0.002611 0.006070
2.0 7.88985E-4 | 7.88985E-4 | 0.001578 | 0.003514 0.002424 0.005938

B c,=1 c,=2
0.4 | 0.002593 0.002593 0.005185 | 0.002868 0.001900 0.004769
0.8 1 0.002376 0.002376 0.004752 | 0.002328 0.001979 0.004307
1.2 0.002301 0.002301 0.004602 | 0.002117 0.002020 0.004137
1.6 | 0.002266 0.002266 0.004531 | 0.002012 0.002043 0.004055
2.0 0.002245 0.002245 0.004490 | 0.001949 0.002057 0.004007
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Table 4. Values of the effective dispersion coefficient.

Two fluid model (present model) Gu(;;ea?llclll((l}lrlr[l)(::e[LZ]
In the absence of first-order chemical reaction

m=p | F(mp) | F(mp) | F(mp) F(m,p)
1 0.0010582 0.0010582 0.0021164 0.0021164

In the presence of first-order homogeneous chemical reaction

a Fi(o0,) | F(a,o,) F(oy,a,) F(a)

0.4 0.0010099 0.0010099 0.0020199 0.00201987
0.8 9.1846E-4 9.1846E-4 0.0018369 0.00183692
1.2 8.2952E-4 8.2952E-4 0.0016590 0.00165904
1.6 7.474E-4 7.474E-4 0.0014948 0.00149480
2 6.70579E-4 | 6.70579E-4 | 0.0013412 0.00134116

In the presence of first-order combined homogeneous and heterogeneous
chemical reaction

p F1(0°i» i) Fz(“i, i) F(ai’ i) F(O%B)
2 8.48463E-4 8.48463E-4 0.00169693 0.0016969
4 8.30289E-4 8.30289E-4 0.00166058 0.0016606
6 8.22866E-4 8.22866E-4 0.00164573 0.0016457
8 8.18832E-4 8.18832E-4 0.00163766 0.0016377
10 8.16298E-4 8.16298E-4 0.00163260 0.0016326

5. Conclusion

1. The ETDC decreases with an increase in the Hartman number for £ =—/ and E =0 whereas it decreases
for M <1 and increases for M > for E =1 with or without chemical reactions.
2. The ETDC decreases for m <1 and p </ whereas it increases for m >/ and p>17 as m and p

increases for both open and short circuits in the absence or in the presence of chemical reactions.
3. As the homogeneous reaction rate parameter and wall catalytic parameter increases, the ETDC decreases
for all values of the viscosity ratio, pressure gradient and Hartman number for both open and short

circuits.
4. The results for the two fluid model (present model) agree with the results for one fluid models of Gupta

and Chatterjee [45], Gupta and Gupta [42] and Wooding [43].
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Appendix

Case 1: Diffusion of a tracer in the absence of a first-order chemical reaction.

* 2 2 * 2
-M h(B
A=M2E+dp1 , strM , czc,]lg E+dp2’ a4:c 2a3cos ( )
dx m mn dx M sinh(B)

b



Effect of electric field on dispersion of a solute in an MHD ... 707

M ((A—";"Z")cosh(M)sinh(B) —Ajzsinh(B)j

MZ

a3: 2 N al__2+mna3_m_}zc,
M mncosh (M )sinh(B)+m”nBcosh(B)sinh(M)
M?a;cosh(M)-4 a;sinh(M)  a,cosh(M)
ay=——- o by = - s
M smh(M) M M
azsinh(B) a,cosh(B)

B B

Case 1b: Diffusion of a tracer in the absence of a first order chemical reaction and for a purely viscous
fluid (two fluid model)

dp; dp’ 2 )2 p;— pymn
= , = , Qy=mnay, a;=mnaz, a;=———-—az, A3=—- .
P dx P dx 2 4 ! 3 4 2 3 3 2(m+1)mn

Case 2a: Diffusion of a tracer in the presence of a homogeneous first-order chemical reaction.

—a;M sinh(M) a,M cosh(M) a3Bsinh(B) a,Bcosh(B)
&=, 77 7 2 &FT 5 5ttt o
—a; M* —a B” —a; B® —a;
a; 11 as 12 azM Da4B
g3: -, g = — —}-—’ g =, g =,
M?—al of ? B’ -03 o} ? M? —o3 } B’ -a]

Dr = Do cosh (o, )sinh(a, ) + o 0, sinh (et )cosh (),

by, =;—1(g3oc1a2 sinh (ot )sinh (o, ) - g5a, cosh(o, )sinh (o, ) + g0, sinh(a, ),
s

b, :1_)_](g4a1a2 sinh (o, )sinh(at, ) — gs0, cosh(a; )sinh (o, )+ g5, sinh(oc,)),
r
by, cosh(a,) —byy0.; cosh(o, )+ g5
byy=—————==, by= . » by=by—g5, bp=by-gy,
sinh (ot ) o, sinh (o)

b0 sinh(a;)—g; 5 _ by,sinh(a;)

© % cosh(ay)

b21 =

b

o, cosh(a; )

. . /
C,; =—b;;cosh(om)— b, sinh(a;n) —%cosh (Mn) —%smh(Mn) —31712,

C;; =—bj,cosh(am)—by,sinh(am),  C,; =—bs; cosh(a,m)—bysinh(a,m),
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C,, = bz, cosh(a,m)+b,, sinh(o,m)+ (%cosh(Bn) +%sinh(3n) + %nZJ .

Case 2b: Diffusion of a tracer with a combined homogeneous and heterogeneous first-order chemical
reaction.

g4 =—o,sinh(a;)—p;cosh(a;),  gs=o,cosh(a,)+p;sinh(a;),

a,Msinh(M)+a2Mcosh(M) (alcosh(M) a,sinh(M ) IIJ
86 =~ —b; - ——L

Mz—ocf Mz—af Mz—ocf Mz—af ocf
g7 =0, sinh(a;,)+B,cosh(a, ), gg =a,cosh(a,)+p,sinh(a, ),
azBsinh(B) a,Bcosh(B) azcosh(B) aysinh(B) I,
89="3 5 t= 5 5 thl— ot 5|
B —a5 B —a5 B” —a; B —a; 05
% 4 l; 8s8,Ma,
by = 8487\ 72 2 2|7 (.2 o\ 88& |
858sDa; — 8,850, M"—a; oy oc,(M —ocl)
o gsg,Dl a l
by = ! —g4g713—L+g4g9J—g4g6 — -4,
g58sDa, — 8,850, oy B®—a5; a5
b —gsby — [
b, __ 8804 ’ by, = 88Y42 — 89 , by, =bs, 2a1 . +_12’
g 87 M®—a; o
-g4b;, - b
by, =by +1ls, by = 84911~ 8¢ . by, __84%12
gs 85

Case 2c: Diffusion of a tracer in the presence of a homogeneous first-order chemical reaction in the
absence of the magnetic field for a purely viscous fluid (two fluid model).

lclz_ﬂ+ﬂ+a_2_&_a_3_a_4’ 102:_&+ﬂ_a_2_&_a_3+a_4’ []:;’
2 4 2 12 4 2 22 4 2 12 4 2 25
e N N T pe N N S P N )
ol ocf o) 20c§ ol ocg o

Dr=a,, , sinh (o, )cosh(a, ) + a3 Dsinh(at, )cosh (o ),
by, =]_)—](l3 a; oy sinh (ot )sinh (e, ) =1, & cosh (@, )sinh (o, ) +a, sinh (o, ) (1, - 27;)) .
r

by, =]_)—i(a] sinh (., )(Is + 21, )~ l5 & @y sinh (o, )sinh (o, ) + 15 Dayy cosh(a )sinh (a, ),
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—b,; cosh (o) —byy 0y cosh(ay)— 20, — 15
byy=—————~—, by= - o by =by =1y, by =bsy +lg,
sinh(a.,) o, sinh(a, )
b”OLISinh(OLI)—f-ZII—ZZ b]zsinh((x.l)
by = ’ 27T
o cosh(a;) cosh(o;)
Nomenclature
B —constant
By, — applied magnetic field
C; — concentration of the solute
D —ratio of molecular diffusion coefficient (D, / D;)
D, —molecular diffusion coefficient
dp, .
L — dient
X pressure gradien

E — electric load parameter
E, —applied electric field

h — distance between the plates, m
K; — first-order reaction rate constant

L —typical length along the flow direction, m
O, —volumetric flow rate
1

i

U.

; —velocity, ms

u; —non-dimensional average velocity

u<
1
M - Hartman number

m — viscosity ratio (u,/u;)

— non-dimensional velocity

n — density ratio (p;/p;)
p; —non-dimensional pressure gradient
a,; —dimensionless reaction rate parameters
B, — wall catalytic parameter

n —dimensionless length
p; — dynamic viscosity
p;, — density of the fluid

o,. — electrical conductivities

ei

o, —ratio of electrical conductivity

Subscripts

i=1,2 —where 1, 2 —quantities for region-1 and region-2, respectively
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