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In this paper, a model of a pump impeller with annular seals and a balancing device, used as a combined 
support-seal assembly, is considered. The forced coupled radial, angular and axial vibrations of the rotor are 
determined with consideration of linearized inertial, damping, gyroscopic, positional and circulating forces and 
moments acting on the impeller from the side of the fluid flow in annular seals. The theoretical analysis is 
supplemented with a numerical example, the amplitude frequency characteristics are shown. 
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1. Introduction  

 
 In the rotary machines the rotor is the main assembly, which determines the reliability features. The 

common feature of centrifugal pump impellers is that they rotate in annular seals, which cause large pressure 
drops to occur. The resulting radial hydrodynamic forces and moments acting on the impeller have a decisive 
influence on its dynamics and, accordingly, on the dynamics of the whole machine. 

 The hydrostatic forces as well as inertial, damping, gyroscopic and circulation forces and moments 
generated in the clearances of the balancing device are known to contribute to changes in the natural and 
critical frequencies of the rotor and a loss in its dynamic stability, as described, for example, by Childs [1], 
San Andres [2] and Gosiewski [3]. 

 In recent theoretical approaches (Cheng et al. [4]; Li et al. [5]; Faria and Miranda [6]), the transverse 
vibrations of the rotor are analyzed by applying a non-linear model of dynamic fluid forces generated in the 
annular seals proposed by Muszynska and Bently [7]. The results of the numerical calculations based on this 
complex non-linear model were represented in the form of dynamic trajectories of the impeller centre, 
Poincare maps, and bifurcation diagrams. A dynamic analysis of the impeller-clearance seals system based 
on linearized models is also essential as it provides us with analytical relationships to be used in engineering 
practice. 

 In their earlier works (Kundera and Martsynkovsky [8]; Martsynkovsky et al. [9]), the authors 
describe a single-stage pump with an impeller directly connected to a balancing device, in which the annular 
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and face clearance seals act as a self-regulating coupled journal-and-thrust bearing. The papers present a 
design of the balancing device and analyze the effect of coupled radial and axial vibration of the impeller.  

 This paper is a follow-up theoretical dynamic analysis of an impeller-balancing device system, 
where the impeller is subjected to coupled forced radial, angular and axial vibrations. The dynamic 
analysis is based on linearized hydrodynamic forces and moments generated in the clearances of the 
seals of the impeller, described in the works by Martsynkovsky [10], Marcinkowski and Kundera [11], 
Korczak [12] and Jędral [13]. The results are analytical relationships that can be easily used as the first 
approximation at the design stage of new impeller-based systems. 
 
2. Problem statement 
 

 The first impellers integrated with a balancing device were patented in the 1990s, for example, by 
Martsinkovsky et al. [14], Kubota [15] and Chiba et al. [16]. In the patent of Martsinkovsky et al. [14], the 
design of the single-stage pump impeller is characterized by the lack of a classic drive shaft connected to the 
rolling element bearings. The bearing node is replaced by longitudinal and lateral seal clearances of the 
impeller and the balancing device. The hydrodynamic forces and moments generated in these clearances 
position the impeller relative to the pump casing. 

 The diagram in Fig.1 shows a single-stage centrifugal pump with an impeller, 2, driven by a flexible 
shaft, 3, via a ball joint, 4. The longitudinal clearances 5 and 6, the sealing wear-ring clearances, and the 
lateral clearance, 10, with the annular chamber, 9, act as the lateral and longitudinal self-adjusting 
hydrostatic bearings of the impeller. In the pump casing, 1, behind the rear shroud of the impeller, there are 
radial vanes, 7, which suppress the rotation of the fluid (generated by the impeller) and prevent a loss of 
pressure in the centripetal direction. 
 

 
 

Fig.1.  Geometry of the impeller with a balancing device: 1- pump casing, 2- impeller,  
3- shaft; 4 – ball joint; 5, 6 – longitudinal seals of the impeller; 7 – radial vanes; 8- liner disks of 
balance device; 9- annular chamber; 10 – lateral (face) clearance. 

 
 The annular clearance (throttle) 6, the chamber 9 with variable pressure p2, and the lateral clearance 
(throttle) 10, coupled with automatic axial force balancing systems control the axial position of the impeller. 
As small misalignments of the shaft relative to the axis of the annular seal have little effect on the flow rate, 
correlations between angular and axial vibrations can be neglected. However, angular and axial vibrations 
are dependent on radial vibrations. 

 The impeller is connected to a flexible drive shaft (torsion bar). The shaft diameter is chosen 
according to the strength under the influence of the engine torsional moment. Based on this, the design was 
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called as shaftless pump. Since the shaft is flexible, the impeller is free to radial, angular and axial 
movements. Under the action of hydrodynamic forces and moments that occur in annular seals and the 
gyroscopic moment of the impeller during the operation process of the pump, the impeller self-centers and 
takes the most stable position against external disturbances. 
 
3. Derivation of equations of system dynamics 
 

 The dynamics of the studied single-disc rotor model is described by five generalized coordinates 
, , , ,x yx y z    (Fig.1). The balancing device adds a half of degree of freedom due to the condition of balance 

flow through its throttling channels. Since the hydrodynamic forces in annular seals depend on all 
generalized coordinates, the forced spatial vibrations of a single disc rotor (impeller) with a balancing device 
are described by the coupled system of nonhomogeneous differential equations of 11th order.  

 The derivation of equations of coupled radial, angular and axial vibrations of the impeller with a 
balancing device is based on the expression of the pressure p2 in the annular chamber (9) (Fig.1), that 
depends both on the face seal clearance H3, and on the radial rotor offsets 2e H  .   
 The pressure in the annular chamber affects the value of the axial force, which is defined as a 
balancing device control action. This pressure is determined from the equation of continuity of flow through 
the system of seal clearances: longitudinal (6) and lateral (10) (Fig.1). 
 The dimensionless pressure 2 can be written in the following operational form, by substitution 

 p d dt (Martsynkovsky et al. [9] 
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 The values that correspond to the steady state of the rotor are marked by the zero superscript. 
 The equation of forced axial vibrations is linearized with respect to to the pressure 2 in operator 
form and is expressed as? 
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     zz z zr r 1 1 1 e e eD p u d u N p N p      .  (3.7) 

 
 In this equation the proper operator and deviation action operator are expressed by the equalities 
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 The equations of forced radial and angular vibrations of the impeller in the annular seals were solved 
using expressions for the forces and moments are described in the above mentioned works. Using the 
linearized hydrodynamic forces and moments generated in the clearances of the impeller seals, we can 
write the equations of coupled forced radial and angular vibrations of the impeller as Martsynkovsky [10] 
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 The aggregate coefficients for the front and rear annular seals are as follows 
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 The coefficients of stiffness for the shaftless pump (Fig.1) model are 11 22 12k k k 0   . The 

products 0 0j I I   describe the gyroscopic moment of the disc.  
 The coefficients for the front (i=1) and rear (i=2) seals are 
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 The formulas for the hydrostatic stiffness coefficient, damping and inertia coefficients in the annular 
seals have the following forms (Marcinkowski and Kundera [11]) 
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The connection of axial, radial and angular vibrations is caused by the majority of the coefficients of 

hydrodynamic forces and the moments that depend on the throttling pressure fall on the rear annular seal; 
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4. Equations of coupled radial, angular and axial vibrations 
 

 We obtain the equations of coupled radial and angular vibrations having the expression for the 
pressure in the annular chamber (3.1) and the linearized coefficients of hydrodynamic forces and the 
moments in equations (3.14). Arranging the terms according to the order of the differential operator, we 
obtain the equations of the system in the following form 
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 The system of forced radial, angular and axial vibrations consist of Eqs (3.7) and (4.1) 
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   (4.14) 
     z s 2 b2p M p C   ,    

 
     pDpZ z zz ,         r zrZ d , (4.15) 

 

    
2

ra 2
1

M p D p
H


 ,            

2

r 1 a1 2 2 1 a22
n

M p C D p D p k C


   


, (4.16) 

 

      r e a1 2 2 a2M p C D p k C   ,              0 12
2

1

1 j l
M p D p

2H


  , (4.17) 
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        
2

1 b1 2 2 1 b22
n

M p C D p D p k C


   


, (4.18) 

 
      e b1 2 2 b2M p C D p k C   ,       z 1 1 1M p N p   ,       z e e eM p N p   . (4.19) 

 
 The differential partial equations systems that perform independent radial, angular and axial 
vibrations can be obtained from the Eqs (4.13)-(4.15) 
 

       zФ , Ф , Фr r r z zR p u p Z p u      . (4.20) 

 
 The system of Eqs (4.13)-(4.15) leads to an equation of joint radial and angular or radial and axial 
vibration, if we take zu 0  or 0    
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R u R
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

 

  

   
                   

Ф ,

Ф .

r r z z r

r r z z z

R u R u

Z u Z u

 

 
  (4.21) 

 
 Three components of the oscillations can be determined from Eqs (4.13)-(4.15) by Cramer`s rule. 
We considered at some length the radial vibration 
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 (4.22) 

 
where the proper system operator is 
 

 
r z

0 r z

r z

R R R

D

Z 0 Z



    . (4.23) 

 
 Expanding the determinant (4.22), grouping the terms with the same external influences and making 
the substitution, p i   we obtain 
 

  ( ) ( ) ( ) ( ) ( )
1 er ra r r ru i u i u i u i u i           , (4.24) 

 

  , rγzi t i t i t i tra θ z ra
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PM R ZM Z P
u ae ae u e e

D D D D
    




     , 

 

      1
1 1 1 1

ri t i t
r r z z θ z z θ 1па 1па

0 0

P1
u M M R Z M R R e e

D D
 

     
            , (4.25) 
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      e
e e e e

r i t
r r z z θ z z e ea

0 0

P1
u M M R Z M R R e

D D
 

      
            .  

 
 In the expressions described above, for example, r 1

P  is the operator of forced radial vibrations 

actuating pressure pump pulsations. Components of the angular and axial vibrations are calculated similarly. 
 External influences vary harmonically with the rotation frequency of the rotor   , therefore the 
reactions of the linear system under consideration are harmonic functions with the same frequency 
 

   ri t
r raи и е   ,        i t

aе
    ,        zi t

z zаи и е   . (4.26) 
 
 The frequency transfer functions are equal to the ratio of reactions to harmonic influences. Substitute 
in differential operators p i  . Then in view of Eqs (4.13)-(4.15), the frequency transfer functions of the 
radial vibrations under the influence of static unbalance 
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,  (4.27)  

 

      raa aa
ra

3

u r
A W i

a aH
     ,           =arctg ra

ra
ra

V

U
   . (4.28) 

 
  raA  ,  ra   are the amplitude and phase frequency properties. Similarly, the transfer functions 

are calculated by other external influences. The amplitude and phase frequency properties can be obtained as 
the modulus and argument of the transfer function. 
 Bearing in mind that ra a 2и r H ,  a a 2 2l 2H   , za a 3и z H  is accepted as a dimensionless 

displacement and for the absolute values of the amplitudes we obtain the formulas 
 

 aa 3 rar H aA ,      a 3 rr H A   ,      
1 1

2
a 3 1пa r пr H A    ,      

е еa 3 ea rr H A   , 

 
 aa 1 a 12H aA l  ,         a 1 12H A l    , 

(4.29) 

 
1 1

2
a 1 1пa 1 п2H A l     ,       

е еa 1 ea 12H A l    , 

 

 aa 3 zaz H aA ,    a 3 zz H A   ,     
1 1

2
a 3 1пa z пz H A    ,     

е еa 3 ea zz H A   . 

 
5. Numerical example 
 

 To analyze the coupled radial, angular and axial vibrations of the rotor it is necessary to use 
numerical methods. 
 Basic data and nominal parameters of the pump are as follows: . , ,п eр 3 5MPa р 0 MPa   

1
п 1500 s  , m=5 kg, 3 310 kg m  , 3 310 N s m   , 9Е 2 10 Pa  , 1R 56 , R2=75, R3=65, R4=58, 

R5=51, R6=15, l1=l2=15, l3=7, ,1 2 3H H H 0 2   , b 9 , lc=12 (all linear sizes are indicated in 
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millimeters); .0 05  , .c 0 15  . The parameter of the annular channel tapering is 0 0  . The steady 

values of the face clearance and the flow rate are: 0u 1 , 0u 1 , . 3
oQ 0 01m s .  

 The absolute value of the amplitudes of coupled radial, angular and axial vibrations of the rotor are 
defined by formulas (4.29), in the case when the amplitudes of the corresponding perturbation are set: 

, , ,1а eaа    . Their approximate estimation can be obtained from the following: the pump is high-speed 

 11500 s  , that is why according to the global standards 1940-73 for the balancing of the 4-th class of 

accuracy .а 6 3 mm s , where the eccentricity of the disc mass center is .а 4 2 m  . To calculate the value 

of the perturbation of dynamic unbalance, take up .1a 0 05  .   
 For coupled radial, angular and axial vibrations the amplitude frequency characteristics of vibrations, 
which are given rise by static and dynamic unbalances and pump pressure pulsations, are made. The rotor 
reactions to the inlet pressure pulsation differ little from reactions to ψ1, therefore not shown. 
 In Figs 2 - 4 the dimensional amplitudes for three parameters of tapering of annular seals are 
presented ( .1 0 3   , 2 0  , .3 0 3  ). The resonances in the characteristics are absent due to 
large damping. The exceptions are radial and angular vibrations in diffuser seals at a low rotation frequency 
(about 4s-1). The amplitudes of the radial and axial vibrations in the frequency range are below 10 microns, 
that is not dangerous. 
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Fig.2. Amplitude-frequency response of radial vibrations, caused by the static unbalance а . 
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Fig.3. Amplitude-frequency response of radial vibrations, caused by the dynamic unbalance  . 
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Fig.4. Amplitude-frequency response of vibrations, caused by pump pressure 1a . 
 

 The slight increase of the amplitude observed on most figures at   3 120 30 10 s   , indicate that 

radial, angular and axial vibrations are connected. The constitutive impact is done by the annular seals 
tapering. The negative tapering (diffusion airfoil) .0 3    increases the amplitudes of vibrations on the 

resonant modes, their convergence .0 3   reduces significantly. 

 
Conclusions 
 

 The proposed method of dynamic calculation, based on a simple model of the rotor balancing system 
allows evaluation of the critical rotor speed and amplitudes of its forced vibrations. However, for more 
grounded conclusions a more comprehensive and deeper numerical analysis of the simplified model and the 
development and research of improved models is required in order to describe the dynamic properties of the 
rotor-balancing system. Useful analytical information can be obtained by considering the partial system. 

 Equations derived of the forced coupled radial, angular and axial vibrations include inertial, 
positional, damping, gyroscopic and circulation forces. The coefficients in the equations consider the forces 
and moments that occur in two annular seals. By matching the geometric parameters of annular and face 
seals the required dynamic characteristics of the system can be provided. 

 The numerical evaluation of the influence of annular seals conicity showed that the diffuser 
deteriorates vibration state of the rotor, unlike the confusor.  

 An analysis of amplitude properties shows the interrelation of radial, angular and axial oscillations. 
The taper of slot channel significantly affects the amplitude of vibrations. This imposes additional 
requirements to the stiffness of structural elements, because possible force deformations can occur in diffuser 
throttle channels. 

 The numerical analysis of dynamic properties of the shaftless pump shows that the annular seals 
have good damping properties. Therefore, the amplitude characteristics do not have clearly defined 
resonances and amplitudes in the working range are not more than 10 microns. Thus, the calculation 
confirms the working ability of the shaftless pump. 

 Prototypes of centrifugal pumps modernized in this way have been tested both under laboratory and 
factory conditions. The findings confirm their numerous advantages over conventional pumps, and these include: 

- better vibroacoustic characteristics; 
- higher reliability and a longer service life between overhauls; 
- easier operation, assembly and transport. 
 It is possible to reduce the weight and size of this type of centrifugal pumps by eliminating the 

external bearing of the drive shaft. 



Analysis of forced spatial vibrations of a centrifugal … 749 

Nomenclature 
 
  A – dimensionless static impeller unbalances Eq.(3.20) 
  AA , BA  – outer surface areas of the impeller shrouds [m2] 

 , ,e c 3A A A  – surface areas of the impeller [m2] 

 , ,1 2 eA A A  – dimensionless surface areas Eq.(3.12) 

  a – eccentricity of the impeller mass center [m] 
  ai1, ai2 – radial forces coefficients, i=(15) Eqs (3.15) 
  bi1, bi2 – gyroscopic moment coefficients, i=(15) Eqs (3.16) 
  aC , bC  – constants (Eqs (4.6) - (4.9)) obtained by substituting equations of linearized forces  

 co, c1, c2, c3 – parameters in Eq.(3.9) 
   rrD p  – proper operator of independent radial vibrations Eq.(4.2) 

 Dzz(p)– proper operator of independent axial vibrations Eq.(3.8)  
   D p  – proper operator of independent angular vibrations Eq.(4.3)  

  rd p ,  rd p  – operators characterizing the combination of radial and angular vibrations Eqs (4.4) and (4.5) 

 E – compression modulus [N/m2] 
 e – radial displacement of the impeller axis 
  H1, H2 – widths of the longitudinal clearances [m] 
  H3 – width of the lateral clearance [m] 
  I, I0 – mass moments of inertia [kgm2] 
  iK   – coefficient characterizing the local acceleration impact on the damping radial force [s-1] 

  k11,  k12 – coefficients of radial and angular stiffness of the shaft 
 , ,p d gk k k   – coefficients of hydrodynamic forces in annular seals, hydrostatic stiffness, damping and inertial 

forces, respectively, Eqs (3.28) and (3.29)  
k1, k2, k3, T2, 2, s  – parameters of Eqs (3.3), (3.4) 
  lc – distance from the impeller centre to the central seal 
  l1, l2 – lengths of longitudinal clearances [m] 
  m – reduced mass of the impeller [kg] 
 N1(p), Ne(p) – perturbation operators, Eqs (3.10) 
  pe, p1 – inlet pressure and outlet pressure of the impeller [N/m2] 
  2p  – pressure in the annular chamber of the balancing device [N/m2] 

  np  – nominal pumping pressure [N/m2] 

 * *,
A B

p p  – pressures at the inlet to longitudinal clearances 

  Q – fluid flow rate at the static equilibrium [m3/s] 
  0q  –flow through the channel unit width [m2/s] 

  R1, R2 – radii of the impeller [m] 
 R3, R4, R5 – radii of the balancing device [m] 
  Rr – operator, Eq.(4.13) 
  T1 – parameter, Eq.(3.11) 
  r0u   – initial dimensionless radial and angular displacement 

  uz – dimensionless axial displacement of the impeller 
  V – volume of the annular chamber [m3] 
  z, zn – axial displacement of the impeller and its nominal value [m] 
  i1, i2 – cross coefficients of radial and angular vibrations, i=(15) Eqs (3.18) 
   – relative radial displacement of the impeller axis 
 , , ,11 12 2     – coefficients of hydraulic losses 

  θ – relative angular coordinate 
     – parameter of conicity of the annular clearance 

  ,x y   – angular coordinate [rad] 

  κ – coefficients of swirl flow in the annular clearance 
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  ,1 2   – coefficients of the geometry of the impeller in Eq.(3.24) 

  0   – modified frictional specific resistance 

  λ – frictional specific resistance 
  μ – coefficient of dynamic viscosity [Pa s] 
  ρ – fluid density [kg/m3] 
  m   – relative coefficient of local resistance 

 , ,1 e 2    – dimensionless pressures of Eq.(3.5) 

  ω – angular velocity of the impeller [1/s] 
  n  – nominal angular velocity[1/s] 
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