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The numerical calculations results of torsional vibration of the multi-cylinder crankshaft  in the serial combustion 
engine (MC), including a viscous damper (VD), at complex forcing, were shown. In fact, in the MC case the  crankshaft 
rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st 
harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the 
amplitude of the 2nd harmonic of a forcing moment. The calculations results of MC vibration, depending on the amplitude 
of the 2nd harmonic of the forcing moment, for the first form of the torsional vibration, were shown. Higher forms of 
torsional vibrations have no practical significance. The calculations assume the optimum damping coefficient VD, when the 
simple harmonic forcing is equal to the base critical velocity of the MC crankshaft. 
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1. Introduction  

 
       In multi-cylinder combustion engines installed in buses, trucks, on ships, etc., to dampen the 
torsional vibration of the crankshaft (MC), the Holsett type viscous dampers (VD) [1] are installed.  
     The VD damper is simple in construction and during operation requires virtually no adjustment and 
maintenance. It effectively dampens the torsional vibrations in the whole operating velocity range, provided 
it is properly matched to the type of engine (MC crankshaft). The disadvantages include: the relatively large 
mass, especially governor weight and possibility of generating significant flexural vibrations in the case of 
incorrect MC crankshaft bearing. For the system: engine-damper (E-VD), the appropriate optimal damper 
(OVD) can be selected, for which a value damping coefficient α is equal to the optimum value OPT . This 
system is called an optimal system (OS). For the OS the maximum amplitude is less than all maximum 
amplitudes from the set, for which OPT    in the whole operating velocity range of MC crankshaft. The 
optimal coefficient for the E-VD system can be calculated by using the theoretical formulas given in the 
literature [2, 3, 4]. They have been developed on the basis of a simple dynamic E-VD model of harmonic 
forcing. Gas pressure force and internal force are those ones forcing the torsional vibrations of the MC 
crankshaft. 
      The influence of inertial forces, in comparison to the gas pressure forces, on the torsional vibrations 
is small and in the dynamic calculation of the MC crankshaft can be omitted. The dynamic calculation takes 
into account only the periodic force from the pressure in the engine cylinder wherein the “shape” is similar to 
time characteristic of pressure wave caused by the rapid combustion of air-fuel mixture [5]. Theoretically, 
the forcing torsional vibration moment M(t) can be represented as a Fourier series. Practically, it is possible 
to limit to the first few harmonics as higher harmonics with high frequencies and relatively small amplitudes 



1018  C.Jagiełowicz-Ryznar 

do not matter. The work is limited to the 2nd-harmonic, where the amplitude, in comparison to the 1st one, is 
approximately 50% reduced [1]. The aim of the study was to check what the impact is of the 2nd harmonic on 
the torsional vibrations of the crankshaft, and thus the VD crankshaft work, wherein the damping is assumed 
equal to OPT   and calculated for harmonic forcing. The present work is part of the general issues related to 
the calculation issues of torsional vibration dampers which the author work on [6, 7, 8]. 

 
2. The dynamic model of the E-VD system  

 
 A dynamic model of the E-VD system is shown in Fig.1. 
 

 
 

Fig.1. The dynamic E-VD model. 
 

 This is a one-frequency model with two degrees of freedom, and described by a dynamic 
equations system (2.1). 
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where   - reduced mass inertia moment of the damper housing connected to the MC crankshaft. 

  The reduction of the moment Io should be carried out taking into account the form of torsional 
vibrations of the MC crankshaft. Most often this is the 1st torsional self-form, which corresponds to the 1st 
critical torsional crankshaft velocity  1 krn  . Generally, this velocity is much higher than the maximum 

operating velocity of the crankshaft. This is due to the crankshaft torsional rigidity. The six-in-line and four-
stroke engine can be the example [9], in which the resonant velocities (in the operating range) for the 1st form 
might occur when h (min) = 4.5; and for the 2nd form embodiment when h (min) = 10.5; where h - is the 
order of a harmonic. For this engine: 1 krn  = 18470 [r/min]; II krn  = 41900 [r/min]; Higher harmonics of the 
forcing moment, due to the smaller amplitude, the impact of damping of VD damper and engine natural 
damping ( ), do not pose a threat to the work of MC. The specified moment oI - should be treated as the 

average value for the full rotation of the MC crankshaft. In fact, the moment oI - is a function of the 

crankshaft angle rotation ( )t , with the result that the system may cause additional parametric torsional 
vibrations. When the flywheel and damping are properly selected, the parametric vibration levels can be 
assessed on the noise level (as compared to the moment deriving from the gas forces). Similarly, in the case 
of moment coming from unbalance.  

oI
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pI   moment of inertia of VD damper ring; 

wk   equivalent crankshaft rigidity equals MC torsional rigidity, corresponding to the 1st form; 
  equivalent (linearised) damping factor of VD damper ; 
  – - Includes natural damping (without damper) of MC vibration coefficient;   damping is small and its 

impact on the crankshaft dynamics is preferred.In the paper, 0  .  
 M (t, T) - periodic moment forcing the torsional vibrations from  gas forces of all the cylinders;  
T - basic forcing period. 
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( )2T - for the two-stroke engine; 

( )4T - for the four-stroke engine; 

wkn  [rev / min] – MC rotational speed; 

ci  - the number of cylinders. 

 Solving the system of Eqs (2.1), for the harmonic   and β  = 0, the characteristics represented by the 

amplitude in the   damping coefficient function and  frequency can be determined [2, 3] 
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( )d  - the amplitude - frequency (A-F) dimensionless characteristics 

{  max ( ) for ;d MIN MAX DYN        - E-VD system dynamic factor; 
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 The A-F characteristics, developed on the basis of formula (2.4) for different values of the damping 
coefficient  were shown in the Fig.2. 
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Fig.2.  Characteristics ( )d  : special cases: 0   - the lack of damping; opt    - "less damping"; The 

resonance zone moves towards higher velocities; opt    - the optimal damper; opt    - "bigger 

damping"; The resonance zone moves in the lower velocities direction;    - the locked damper; 
The extreme cases are practically impossible. 

 
 The charts show that all the A-F characteristics intersect at the Q point, (the coordinates 
of the Q point do not depend on  )       
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OPT  can be determined from the condition of the function extremum (2.4) [2, 3] 
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3. Numerical calculations 
 
      The calculations are made assuming that OPT    determined according to formulas (2.7) (2.8). 
The forcing took the form of 
 

  ( ) sin( ) sin( )01 1 02 2M t M t M t           (3.1) 
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where 
;01 02M M  - the first and second complex harmonic forcing amplitude, respectively; 

;1 2  - the first and second complex harmonic forcing frequency, respectively; 
 For calculations, the following quantities  (in SI units) were assumed 
 

  .OI 0 035 ; 
 

  . ;pI 0 05  
 

  . 4
wk 2 5 10  ; 

 

  (2.5) . .Q ok 645 5  ; 
 

  (2.6) ( ) .d Q 2 4  ; 
 

  (2.7), (2.8)  OPT  20.7104205; 
 

  01

02

M
2

M
 ;    1   ;    2 2   . 

 

 Figure 3 shows an exemplary graph of crankshaft torsional vibrations. 
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for . ( . )Q0 5 322 75   ; other computing data as described above. 

 At this frequency the 2nd harmonic is clearly noticeable. 
In the relation to the value ( ) ,d Q 2 4   the vibration increased by approximately 4.21%. 

 

 
 

Fig.3. The crankshaft torsional vibrations chart when , Q0 5   . 
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 The A-F characteristics by applying biharmonic forcing and formula (2.4) are shown in Fig.4. In 
addition, calculations were made for: .02 01M M 0 25  and / .02 01M M 0 1 . 
 

 
 
Fig.4.  The calculation results in the frequency range <300; 950>: 1 - of formula (2.4); 2 – / .02 01M M 0 1 ; 

3 – / .02 01M M 0 25 ; 4 – / .02 01M M 0 5 . 
 

 Figure 5 shows the calculation results of DYN coefficient and   (the frequency when the vibrations 

are maximum) depending on the /02 01M M  ratio. The result that the resonance zone (with the 02M  
increase) decreases quasi-linearly (in the range of tested values) in the lower velocities direction is 
Noteworthy. 

 

 
 

Fig.5. λDYN factor (1) change and frequency ν * (2) depending on M02/M01 in the range of <0; 0.5>. 
 

4. Conclusion 
 
       The second forcing moment harmonic (at the level of 0.5), in comparison to the 1st harmonic, 
increases vibration by 8%, which is not a high fatigue risk. Of course, there are other higher harmonics but 
their impact should be appropriately small. This was partly confirmed by the calculation at the 2nd harmonic 



The impact complex forcing on the viscous torsional ... 1023 

at levels of 0.25 (the vibration increased by approx. 3%) and 0.1 (the vibration increased by approx. 1%). 
However, this must be checked in further work. The resonance zone clearly increased. The vibrations are 
close to maximum (level of approx. 2.5> 2.4) and remain in the frequency range from approx. 320 to approx. 
660. It can be a threat to the crankshaft fatigue strength. The second local maximum was observed at a 
frequency close to the 2nd harmonic.     
      The runs of all designated characteristics in the area of the Q  point change the relative position on 

the reverse ( .Q ok 700  ). The Q point (Fig.2) moved (on right) by approximately 55 which represents 

approximately 8.5%.  For frequency Q   , the second harmonic has practically no effect on the vibration 

level, and particularly with the increase of M02, the vibration slightly decreased. The optimal damping, 
determined with formulas (2.7), should be replaced by a "new" value, where at the Q  point (Fig.4) the 
characteristics of A-F (2.4) reach a maximum. This issue is currently the subject of the author’s work. 
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