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This paper investigates the role of induced magnetic field on a transient natural convection flow of an 

electrically conducting, incompressible and viscous fluid in a vertical channel formed by two infinite vertical 
parallel plates. The transient flow formation inside the channel is due to sudden asymmetric heating of channel 
walls. The time dependent momentum, energy and magnetic induction equations are solved semi-analytically 
using the Laplace transform technique along with the Riemann-sum approximation method. The solutions 
obtained are validated by comparisons with the closed form solutions obtained for the steady states which have 
been derived separately and also by the implicit finite difference method. Graphical results for the temperature, 
velocity, induced magnetic field, current density, and skin-friction based on the semi-analytical solutions are 
presented and discussed.  
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1. Introduction 
 
 Natural convection flows in vertical channels have been studied extensively because of their 
importance in many engineering applications, such as in accelerators, aerodynamic heating, electrostatic 
precipitation, polymer technology, petroleum industry, purification of crude oil and fluid droplet sprays to 
mention but a few. The works of Ostrach (1952) and Aung (1972) are among the early major contributions to 
the study of the convective flow and heat transfer in a vertical channel. Realizing the importance of transient 
convection in designing cooling systems using parallel plates, Joshi (1988) studied the transient effects in 
natural convection cooling of vertical parallel plates while Jha et al. (2003), Paul et al. (1996) and, Singh and 
Paul (2006) also carried out an extensive study on the free convective flow.   
 Literature survey also reveals that natural convection in an electrically conducting viscous fluid 
subject to an externally applied magnetic field has also received significant attention. Hartmann (1937) 
analyzed the effect of a transverse uniform magnetic field on the flow of a viscous incompressible 
electrically conducting fluid exiting through parallel stationary plates that are insulated. Romig (1964) 
studied the influence of an electric and magnetic field on heat transfer to electrical conducting fluids. 
Soundalgekar (1965) discussed the hydromagnetic flow near an accelerated plate in the presence of magnetic 
field. Mishra and Mohapatra (1975) also studied the unsteady free convective flow from a vertical plate in 
the presence of a uniform transverse and induced magnetic field. Ghosh and Bhattacharjee (2000) 
investigated a steady Hartmann flow of a viscous incompressible electrically conducting fluid in a rotating 
channel in the presence of an inclined magnetic field taking into account the induced magnetic field. Krishna 
(2009) studied the analytical solution to the problem of a free convective flow of an electrically conducting 
fluid between two heated parallel plates in the presence of an induced magnetic field. Attia (1998; 2004) also 
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studied the influence of the magnetic field on the velocity and temperature fields of an unsteady Hartmann 
flow of a conducting Newtonian fluid between two infinite non-conducting horizontal parallel fixed and 
porous plates. Other works under different physical situations on the free convective flow in the presence of 
a magnetic field includes that of Poots (1961), Osterle and Young (1961), Raptis, et al. (2003), Ram et al. 
(2010), Oreper and Szekely (1983) amongst others. Jha and Apere (2011) considered the unsteady 
magnetohydrodynamic free convective Couette flow of a viscous incompressible electrically-conducting 
fluid between two parallel vertical porous plates. Recently, Jha and Apere (2012) carried out a theoretical 
analysis of an unsteady magnetohydrodynamic free-convective flow of a viscous incompressible and 
electrically conducting fluid between two concentric vertical cylinders considering the thermal boundary 
condition of the second kind at the outer surface of the inner cylinder. 
 Moreover, the role of the induce magnetic field is of importance in many important problems in 
geophysics, astrophysics, cosmical and geophysical fluid dynamics as well as in many engineering 
processes. Nadeem and Akbar (2010) studied the influence of heat transfer and the induced magnetic field on 
a peristaltic flow of a Johnson-Segalman fluid in a vertical channel. An analytical solution to the problem of 
an MHD free convective flow of an electrically conducting fluid between two heated parallel plates in the 
presence of an induced magnetic field is analyzed by Singha (2009). An exact solution for a hydromagnetic 
free convective flow with an induced magnetic field is presented by Gosh et al. (2010). Singh et al. (2010) 
analyzed the hydromagnetic free convection in the presence of an induced magnetic field. Singh and Singh 
(2012) considered the steady fully developed laminar natural convective flow in open-ended vertical 
concentric annuli in the presence of a radial magnetic field taking into account the induced magnetic field 
produced by the motion of an electrically conducting fluid. Takhar et al. (1999) considered induced magnetic 
field effects in transient laminar hydromagnetic boundary layer convection along an impulsively started 
semi-infinite at plate with an aligned magnetic field, indicating that a reduction in the magnetic Prandtl 
number will enhance the surface shear stress, surface component of the induced magnetic field and also the 
surface heat transfer. Koshiba et al. (2002) presented a detailed study of the large-scale pulsed MHD 
generator system flow including induced magnetic field effects. Gupta et al. (2005) analyzed the 
hydromagnetic steady shear flow along an electrically insulating porous at plate. They concluded that the 
velocity at a given point increases with an increase in either the magnetic field or suction velocity and the 
induced magnetic field at a given location is reduced with increasing the magnetic field. A nonsimilar, 
laminar, steady, electrically-conducting forced convection liquid metal boundary layer flow with induced 
magnetic field effects was presented by Beg (2009). Despite the contributions made so far in this area, little 
or no mention of the role of the induced magnetic field on the transient natural convection flow in a vertical 
channel is made. 
 The objective of the present work is to present a semi-analytical solution for a transient natural 
convection flow due to asymmetric heating of a vertical channel in the presence of induced magnetic field 
effects. The solutions of the governing equations are obtained using a combination of the Laplace transform 
technique and the Riemann-sum approximation method of Laplace inversion reported in Jha and Apere 
(2010). 
 
2. Mathematical analysis 
 
 We consider a transient natural convection flow of an incompressible viscous fluid along the walls of 
a vertical channel. At time t 0   both the fluid and the channel walls are assumed to be at the same 
temperature T0. At time t 0   the temperature of the wall at y 0   is raised to T1 while that at the wall 

y d   is maintained at T0. The x  - axis is taken along the channel walls in the direction of the flow and y  
-axis taken normal to it. A uniform magnetic field of strength 0H  is applied perpendicular to flow direction. 
Using the Boussinesq’s approximation, the mathematical model representing the present physical situation 
by taking into consideration the induced magnetic field is 
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where u  is the velocity, h  is the induced magnetic field, 0H  is the applied magnetic field, T   is the 

temperature of the fluid,   is the kinematic viscosity, g is the acceleration due to gravity,   is the coefficient 

of thermal expansion, e  is the magnetic permeability,   the density,    is thermal diffusivity of fluid. By 
introducing the following non-dimensional quantities 
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where u is the dimensionless velocity, h is the dimensionless induced magnetic field, t the dimensionless 
time, y is the dimensionless coordinate normal to the channel plates,   is the dimensionless temperature, 
others are the magnetic parameter M, magnetic Prandtl number Pm and the Prandtl number Pr, the governing 
dimensionless equations are 
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 The corresponding initial and boundary conditions for the velocity, temperature and the induced  
magnetic field in a dimensionless form are; 
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 The solution of Eq.(2.6) using initial and boundary conditions (2.9) for Pm=1 can be obtained using 
the Laplace transform technique. By defining the following transform variables 
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where s>0 is the Laplace parameter, we obtain the following ordinary differential equations 
 

   sPr
2

2

d
0

dy
  


, (2.13) 

 

   
2

2

d dh
M su 0

dydy

u
   , (2.14) 

 

   + -
2

2

d du
M s h 0

dy

h

dy
 . (2.15) 

 
 The boundary conditions now become 
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 Therefore, the solutions of Eqs (2.13)-(2.15) are, respectively 
 



Role of induced magnetic field on transient natural convection … 69 

  
  

 
sinh Pr 

( , )
sinh Pr 

s 1 y
y s

s s


  , (2.17) 

 

  

   

 
   

( , ) cosh( ) sinh( ) ( cosh( ) sinh( )

sinh Pr ( Pr )
,

sinh Pr Pr Pr

M M
y y

2 2
1 2 3 4

2 2

1
u y s c y c y e c y c y e

2

s 1 y s s

s s s s M s

 
         
  

 


  
 

  (2.18) 

 

  

   

  
   

( , ) cosh( ) sinh( ) ( cosh( ) sinh( )

Pr cosh Pr 
.

sinh Pr Pr Pr

M M
y y

2 2
1 2 3 4

2 2

1
h y s c y c y e c y c y e

2

M s s 1 y

s s s s M s

 
         
  




  
 

 (2.19) 

 
 Equations (2.17)-(2.19) are to be inverted in order to obtain the temperature, the velocity and the 
induced magnetic field in the time domain. To achieve this, the method used in Jha and Apere (2010) which 
is based on the Riemann-sum approximation is employed, since the inverse of the Laplace transform is very 
difficult here. In this method, functions in the Laplace domain (s) can be inverted to the time domain as 
follows 
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where Re refers to the ‘real part, i 1   is an imaginary number, N is the number of terms used in the 
Riemann-sum approximation and   is the real part of the Bromwich contour that is used in inverting Laplace 
transforms. The Riemann-sum approximation for the Laplace inversion involves a single summation for the 
numerical process. Its accuracy depends on the value of   and the truncation error dictated by N. According 
to Tzou (1997), the value of   must be selected so that the Bromwich contour encloses all the branch points. 
For faster convergence the quantity  t=4.7 gives the most satisfactory results. 
 
2.1. Skin friction and current density 
 
 The skin-friction and the current density are obtained by differentiating Eqs (2.21) and (2.22) with 
respect to y. Therefore, the following 
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 Therefore, the skin friction at y=0, and at y=1, are as follows 
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2.2. Validation of the method 
 
 In order to validate the accuracy of the Riemann-sum approximation method, we set out in this 
section to find the solution of the steady state and the implicit finite difference method, which should 
coincide with the transient solution at large time. 
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2.2.1. Steady-state solution 
 

 The steady state solutions are obtained by setting ( )
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 The steady-state skin-friction and the steady state current density are obtained as follows; 
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2.2.2. Numerical solutions 
 
 Here, the implicit finite difference method is used to ascertain the correctness of the Riemann-sum 
approximation method. The procedure adopted involves approximation of differential equations by the finite 
difference equations and then solving the difference equations subject to the prescribed initial and boundary 
conditions. Thus, Eqs (2.6)-(2.8) become 
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 Here the indices i and j in this case refer to y and t respectively. The time derivative is replaced by 
the backward difference expression and the spatial derivative by the central difference expression. 
Equations (2.30)-(2.32) are solved using a system of linear algebraic equations by Thomas algorithm. The 
numerical process continues until a solution is approached by satisfying the following convergence 
criterion 
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with respect to the fluid velocity field and the induced magnetic field. Here  ,i jA  is the fluid velocity field, 

the induced magnetic field or the temperature field. M   is the number of interior grid points and 
max

A  is 

the maximum absolute value of  ,i jA . In the course of numerical computations care must be taken in 

specifying the value of t  in obtaining the steady state solution small enough to avoid instabilities, therefore 
for the present situation we set it as; 
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 The parameter Stabr is determined by numerical experimentation in order to achieve convergence 
and stability of the solution procedure. Numerical experiments show that the value 2 is suitable for the 
present numerical computation. The numerical values obtained using the implicit finite difference method 
are in excellent agreement with numerical values obtained semi-analytically for the transient state using 
the Riemann-sum for the velocity field, induced magnetic field, current density and the skin friction for 
Pm 1 . 
 
3. Results and discussion 

 
 In order to get a physical insight into the problem, a MATLAB programme is written to compute and 
generate the graphs for the temperature, velocity, induced magnetic field, current density, and the skin-
friction for various values of the parameter embedded in the problem. The results are presented graphically 
in Figs 1 to 17. The values of Pr=0.71 and Pr=7.0 are considered in the computation which correspond to air 
and water as a working fluid, respectively. 
 Figures 1-2 show the temperature for varying values of time (t) and Prandtl number (Pr) respectively. 
It is observed from Figs 1a and 1b that the temperature increases as time increases and ultimately attains a 
steady state in both cases of air and water. During the numerical computation, it is observed that the time 
required to reach a steady state is directly proportional to the Prandtl number. Also, it is observed that the 
temperature is higher near the left plate at y=0 than at the right plate at y=1. This is as a result of a rise in the 
temperature at the left plate. A decrease in the temperature as the Prandtl number Pr increases is observed in 
Fig.2. The temperature decreases as Pr increases which is an expected phenomena, since an increase in Pr 
decreases thermal diffusivity of the fluid and this causes low heat penetration and a reduction of the thermal 
boundary layer.  
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Fig.1. Temperature profiles at different values of time t for Pr=0.71 (a) and 7.0 (b). 
 

 

Fig.2. Temperature profiles at different values of Pr for t=0.2. 
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observed that the velocity increases as time (t) increases and attains its steady state. These figures show that 
the time required to reach a steady state is higher in the case of water (Pr=7.0) than air (Pr=0.71). The 
velocity at varying values of the magnetic parameter (M) is illustrated in Fig.4. From Figs 4a and 4b it is 
clear that as M increases, velocity decreases in the central region and a reverse trend is observed near the 
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channel wall (y=1). This phenomenon is more visible in the case of water than air. This finding is very 
different from the general perception deduced from the Hartman flow which states that the external magnetic 
field produces the Lorentz force that inhibits the fluid motion. This result suggests that it is inappropriate to 
imagine the Lorentz force purely as a braking force, instead it would be more precise to think of the Lorentz 
force as a force that actually resists a change in motion due to external factors. It suggests that in the 
presence of the induced magnetic field, the magnetic parameter to accelerates the fluid motion. It is 
remarkable that for all magnetic parameters considered here, there exists a location inside the flow domain 
where the velocity field is independent of the magnetic parameter. The velocity variation with Pr is shown in 
Fig.5. It reveals that velocity decreases with an increase of Pr. This is attributed to the fact that as the Prandtl 
number (Pr) increases, thermal conductivity of the fluid decreases, causing a weak convection current. 
 

 

 
Fig.3. Velocity profiles at different values of time t for M=0.5, Pr=0.71 (a) and 7.0 (b). 

 

 
 

Fig.4. Velocity profiles at different values of M for t=0.2, Pr=0.71 (a) and 7.0 (b). 
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Fig.5. Velocity profiles at different values of Pr for t=0.2, M=0.5. 
 

 Figures 6-8 exhibit the behaviour of the induced magnetic field at different values of dimensionless 
time (Pr), the magnetic parameter (M) and the Prandtl number (Pr). The induced magnetic field is of a 
parabolic type in upward and downward direction in all cases assuming both positive and negative values. 
Figure 6a reveals that as time increases the induced magnetic field increases in the range .0 y 0 4   while it 

decreases in the range  .0 4 y 1  . A similar behaviour is observed in Fig.6b with a shift in the location of 
inflection point (approximately y=0.25). This indicates an existence of a location where the induced 
magnetic field is independent of time. Also, this particular location is strongly dependent on the nature of the 
working fluid. Furthermore, it is seen from Fig.7a that the strength of the induced magnetic field is directly 
proportional to the strength of the magnetic parameter in the region .0 y 0 3   while it is inversely 

proportional in the region  .0 3 y 1  . Also, in Fig.7b, a similar behaviour is noticed with a shift in the 
location of inflection point (approximately y=0.15). Hence, we conclude that there exists a point in the flow 
domain where the induced magnetic field is independent of the magnetic field applied. Also, the point of 
inflection where the induced magnetic field changes its character is strongly dependent on the nature of the 
working fluid. Variations of the induced magnetic field with Prandtl number are shown in Fig.8. From this 
figure, it is evident that the induced magnetic field increases as well as decreases with an increase of Pr.  
 

 

Fig.6. Induced magnetic field profiles at different values of time (t) for M=0.5, Pr=0.71 (a) and 7.0 (b). 
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Fig.7. Induced magnetic field profiles at different values of M for t=0.2, Pr=0.71 (a) and 7.0 (b). 
 

 
 

Fig.8. Induced magnetic field profiles at different values of Pr for t=0.2, M=0.5. 
 
 Figures 9-11 depict the current density distribution. From Figs 9a and 9b it is seen that an increase in 
the dimensionless time (t) increases the current density in the range . .0 2 y 0 8   and . .0 15 y 0 7   in the 
case of air and water, respectively, while it decreases with an increase of time near the walls y=0 and y=1. In 
Figs 10a and 10b a similar trend as in Fig.9 for the effect of the magnetic parameter (M) on the current 
density is observed with a little shift in point of inflection. The current density decreases with an increase in 
Pr in the central region of the channel while it increases near the channel walls as shown in Fig.11. It is 
interesting to note that the current density changes its behaviour at two different locations inside the flow 
domain for all considered values of Pr.  
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 Skin-friction values at both plates y=0 and y=1 are plotted against M in Figs 12, 13, 15 and 16. 
Figures 12a and 12b show the skin-friction  0  behavior corresponding to air and water, respectively. It is 

observed that the skin-friction at y=0 increases with time, while it decreases as M increases. An opposite 
behavior to this is noticed at the wall y=1 (Fig.15). Figure 13 shows that the skin-friction at y=0 decreases 
with an increase of M and Pr for fixed time (t=0.2) while a reverse trend is observed in the case of skin-
friction at y=1 (Fig.16). In Fig.14, the skin-friction  0  is plotted against Pr at different values of time (t) 

for the fixed magnetic parameter (M=0.5). From this figure, it is observed that the skin-friction  0  

increases as time increases while it decreases as Pr increases. A similar behavior is observed in the case of 

 1  as seen in Fig.17. 

 

 
 

Fig.9. Current density profiles at different values of time t for M=0.5, Pr=0.71 (a) and 7.0 (b) respectively. 
 

 
 

Fig.10. Current density profiles at different values of M for t=0.2, Pr=0.71 (a) and 7.0 (b). 
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Fig.11. Current density profiles at different values of Pr for t=0.2, M=0.5. 

 
 

 
 

Fig.12. Skin-friction  0  against M at different values of time  t  for Pr=0.71 (a) and 7.0 (b). 
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Fig.13. Skin-friction  0  against M at different values of Pr for t=0.2. 

 

 
 

Fig.14. Skin-friction  0  against Pr at different values of t for M=0.5. 
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Fig.15. Skin-friction  1  against M at different values of time t for Pr=0.71 (a) and 7.0 (b). 

 
 

Fig.16. Skin-friction  1  against M at different values of Pr for t=0.2. 
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Fig.17. Skin-friction  1  against Pr at different values of t for M=0.5. 

 
 Tables 1 and 2 show a comparison of the transient state and steady state numerical values of velocity 
and the induced magnetic field obtained by using the Riemann-sum approximation method (RSM), finite 
difference method (FDM) and exact solution for the steady state (SS) at varying values of time (t) for Pr = 
0.71, Pm = 1.0 and M = 0.5. This shows an excellent agreement between the three methods at large values of 
time. Table 3 shows the numerical values of the velocity and the induced magnetic field obtained by the 
implicit finite difference method at varying values of the magnetic Prandtl number Pm and fixed values of Pr 
= 0.71, M = 0.5, and t = 0.2. It is found that as Pm increases the velocity increases while the induced 
magnetic field decreases. 
 
Table 1.  Numerical values of the flow velocity  u  obtained using the Riemann-Sum approximation 

method (RSM) compared to those obtained by the finite difference method (FDM) and the steady 
state (SS) for Pr=0.71, Pm=1.0 and M=0.5 at varying values of t. 

 
t=0.2 t=0.4 t=0.6 SS 

y RSM FDM RSM FDM RSM FDM  
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1 0.0219 0.0219 0.0273 0.0273 0.0283 0.0283 0.0284 
0.2 0.0355 0.0355 0.0457 0.0457 0.0475 0.0475 0.0478 
0.3 0.0422 0.0423 0.0563 0.0563 0.0588 0.0588 0.0592 
0.4 0.0437 0.0438 0.0602 0.0602 0.0631 0.0632 0.0637 
0.5 0.0412 0.0413 0.0585 0.0586 0.0616 0.0616 0.0622 
0.6 0.0358 0.0359 0.0523 0.0523 0.0552 0.0552 0.0557 
0.7 0.0283 0.0284 0.0424 0.0424 0.0449 0.0449 0.0453 
0.8 0.0195 0.0196 0.0298 0.0298 0.0316 0.0316 0.0319 
0.9 0.0997 0.0100 0.0154 0.0154 0.0163 0.0163 0.0165 
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 2.  Numerical values of the induced magnetic field  h  obtained using the Riemann-Sum 

approximation method (RSM) compared to those obtained by the finite difference method (FDM) 
and the steady state (SS) for Pr=0.71, Pm=1.0 and M=0.5 at varying values of t. 

 

 
Table 3.  Numerical values for velocity  u  and that of the induced magnetic field  h  obtained by the finite 

difference method for Pr=0.71, Pm=1.0, t=0.2 at varying values of M. 
 

 

 

 

 
  
 
 
 
 
 
 
 

4. Conclusions 
 
1.  Velocity of the fluid increases with an increase in time (t) while decreases with an increase in the value of 

the Prandtl number (Pr). 
2.  The skin-friction attains a steady state faster in the case of air (Pr = 0.71) than water (Pr = 7.0). 
3.  The impact of the magnetic Prandtl number on the induced magnetic field is pronounced while it is not 

significant on the velocity field for the considered values of Pm. 
4.  As M increases, velocity decreases near the hot plate y = 0, while it increases near the cold plate y = 1. 
5.  As time increases, the current density increases in the central region of the channel while it decreases near 

both boundaries. 
 
 

t=0.2 t=0.4 t=0.6 SS 

y RSM FDM RSM FDM RSM FDM  
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1 0.0008 0.0008 0.0012 0.0012 0.0013 0.0013 0.0013 
0.2 0.0008 0.0008 0.0013 0.0013 0.0015 0.0014 0.0015 
0.3 0.0002 0.0002 0.0007 0.0007 0.0008 0.0008 0.0008 
0.4 -0.0004 -0.0004 -0.0003 -0.0002 -0.0002 -0.0002 -0.0002 
0.5 -0.0010 -0.0010 -0.0013 -0.0012 -0.0012 -0.0012 -0.0013 
0.6 -0.0015 -0.0015 -0.0020 -0.0020 -0.0022 -0.0022 -0.0022 
0.7 -0.0017 -0.0017 -0.0025 -0.0025 -0.0026 -0.0026 -0.0027 
0.8 -0.0015 -0.0015 -0.0023 -0.0023 -0.0025 -0.0025 -0.0025 
0.9 -0.0010 -0.0010 -0.0015 -0.0015 -0.0017 -0.0016 -0.0017 
1.0 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 

 M=0.5 M=1.0 M=1.5 
y u h u h u h 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.1 0.0219 0.0008 0.0218 0.0016 0.0217 0.0023 
0.2 0.0355 0.0008 0.0353 0.0015 0.0350 0.0022 
0.3 0.0422 0.0002 0.0419 0.0005 0.0415 0.0007 
0.4 0.0437 -0.0004 0.0434 -0.0008 0.0429 -0.0012 
0.5 0.0412 -0.0010 0.0409 -0.0021 0.0404 -0.0030 
0.6 0.0358 -0.0015 0.0356 -0.0029 0.0353 -0.0043 
0.7 0.0283 -0.0017 0.0282 -0.0033 0.0281 -0.0049 
0.8 0.0195 -0.0015 0.0196 -0.0030 0.0196 -0.0044 
0.9 0.0997 -0.0010 0.0100 -0.0019 0.0102 -0.0029 
1.0 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 
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Nomenclature 
 
 g – acceleration due to gravity 
 H0 – applied magnetic field 
 h – dimensionless induced magnetic field 
 h   – induced magnetic field 
 J   – current density  
 M – magnetic parameter 
 Pm – magnetic Prandtl number  
 Pr – Prandtl number 
 T   – temperature of the fluid  
 t – dimensionless time 
 t   – dimensional time 
 u – dimensionless velocity 
 u   – dimensional velocity 
 y – dimensionless coordinate normal to the channel plates  
 y   – dimensional coordinate normal to the channel plates 
    – thermal diffusivity of fluid 
    – coefficient of thermal expansion 
    – density  
    – electric conductivity 
    – kinematic viscosity  
 e   – magnetic permeability 

    – dimensionless temperature 
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