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In the present article, we construct the fundamental solution to a system of differential equations in
micropolar viscothermoelastic solids with voids in case of steady oscillations in terms of elementary functions.
Some basic properties of the fundamental solution are also established.
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1. Introduction

The theory of elasticity concerning elastic materials consisting of vacous pores (voids) distributed
throughout the body has become very important due to its theoretical and practical relevance. Problems
concerning voids play a vital role in the practical problems of geological and synthetic porous media where
the classical theory is inadequate. Mackenzie (1950) was perhaps the first to estimate the effective elastic
moduli of a linearly elastic isotropic materials with voids. Cowin and Nunziato (1983) established the linear
theory of elasticity with voids, while Nunziato and Cowin (1979) derived the non-linear theory of elastic
materials with voids. Puri and Cowin (1985) studied the behavior of plane harmonic waves in linear elastic
materials with voids. Chandrasekharaiah (1987a; b) investigated the effect of voids on Rayleigh-Lamb waves
in a homogeneous elastic plate with voids. Results on linear and non-linear problems in thermoelastic with
voids have been obtained by many researchers such as Dhaliwal and Wang (1994); Scarpetta (1995), Iesan
and Quintanilla (1995); Quintanilla (2001). Wright (1998) studied the relationship between theories of
effective moduli and dynamical theory of materials with voids. Singh and Tomar (2007) studied the
propagation of plane waves in an infinite thermoelastic medium with voids using the theory developed by
Iesan (1986).
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The basic assumption in classical continuum mechanics is that the effect of microstructure of a
material is not essential for describing the mechanical behavior. Such an approximation has been shown in
many well known cases. However, discrepancies between the classical theory and experimental are often
observed indicating that microstructure might be important. A theory in which some considerations are given
to microstructure is the theory of micropolar continuum mechanics. The difference between the micropolar
and classical theory of elasticity is related to the fact that the deformation and microrotation have six degrees
of fredom. Eringen (1968; 1986) gave a complete description of the linear theory of micropolar elasticity .
for application ,it can be modeled composites with rigid choped fibers, elastic solids with granular inclusion
and industrial materials such as liquid crystals. The linear theory of micropolar thermoelasticity was
developed by extending the theory of micropolar continua to include the thermal effect. A comprehensive
review of the subject was given by Eringen (1970; 1999) and Nowacki (1986).

Ciarletta and Straughan (2007) presented a model for coupled elasto-acoustic waves, thermal waves
and waves associated with voids, in a porous medium. Miglani and Kaushal (2011) investigated two
dimensional problems in a micropolar elastic medium with voids. Kumar and Panchal (2011) studied circular
crested waves in a micropolar porous medium possessing cubic symmetry. Kumar ef al. (2012) investigated
deformations due to various sources in a micropolar elastic solid with voids under inviscid liquid half space.
Aouadi (2012a) studied the uniqueness and existence theorems in thermoelaticity with voids without energy
dissipation. Aouadi ef al. (2012b) studied the problem of exponential decay in thermoelastic materials with
voids with dissipative boundary without thermal dissipation.

The inelastic behavior of the earth’s material plays an important role in changing the characteristics
of seismic waves. The general theory of viscoelasticity describes the linear behavior of both elastic and
inelastic materials and provides the basis for describing the attenuation of seismic waves due to inelasticity.

Eringen (1967) extended the theory of micropolar elasticity to obtain the linear constitutive theory
for a micropolar material possessing internal friction. The problem of micropolar viscoelastic waves was
discussed by McCarthy and Eringen (1969). They discussed the propagation conditions and growth
equations governing the propagation of waves in a micropolar viscoelastic medium. Manole (1988)
established the uniqueness theorem in the theory of linear viscoelasticity and in the theory of micropolar
linear visoelasticity by using the Laplace transform technique. Manole (1992) presented variational theorems
in the linear micropolar viscoelastic solid.

Gale (2000) studied Saint-Venant’s problem of micropolar viscoelasticity. Kumar (2000)
investigated wave propagation in a micropolar viscoelastic generalized thermoelastic solid. Dynamical
problems of micropolar visoelasticity was discussed by Kumar and Chaudhary (2001). Kumar and
Chaudhary (2005a; b) studied the deformation and disturbance due to a time harmonic source in an
orthotropic micropolar viscoelastic medium. Kumar and Partap (2010) investigated Rayliegh-Lamb waves in
microstrech viscoelastic media. Ezzat and Atef (2011) investigated the problem of a magnetothermo-
viscoelastic material with a spherical cavity. Svanadze (2012) studied the problem of a potential method in
the linear theories of viscoelasticity and thermoviscoelasticity for Kelvin-Voigt materials. Luppe et al.
(2012) investigated the problem of effective wave numbers for thermoviscoelastic media containing a
random configuration of spherical scatters.

To investigate the boundary value problems of the theory of elasticity and thermoelasticity by the
potential method, it is necessary to construct the fundamental solution to a system of partial differential
equations and to establish their basic properties respectively. Hetnarski (1964a; b) was the first to study the
fundamental solutions in the classical theory of coupled thermoelasticity. The fundamental solutions in the
microcontinuum field theories were constructed by Svanadze (1988; 1996; 2004a; b; 2007). The information
related to fundamental solutions of differential equations is contained in the books of Hérmander (1963;
1983). Kumar and Kansal (2012a) discussed the plane wave and the fundamental solution in the generalized
theories of thermoelastic diffusion.

In this paper, the fundamental solution to a system of differential equations in the case of steady
oscillation in terms of elementary functions has been considered.
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2. Basic equations

Following Eringen (1967), lesan (2011) and Lord-Shulman (1967), the basic equations in a
homogeneous isotropic micropolar viscothermoelastic solid in the absence of body force, body couple,
equilibrated force and heat sources are

2
(o+Kp)Au+(py +x0)vv-u+K0(vX<p)+b0vq>—B,VT:pZT;’, (2.1
82(p
(voA—2K,) o+ (o +B0)V(V-¢)+K0(qu)=pj?, (2.2)
aOAqn—yov-u—qu>+(r A+m)T=px87, (2.3)

0 " 0 \oT 0\ |o0D
KAT BT, 141, SV i—pC [ 141, L1 | cA—mT,| 14,2 ]| 2 =0 2.4
i B, o( Ty atj u—p [ Ty aJ 5 {Q m o( Ty atﬂ (2.4)

ot
where
Ao =A+A —, Mo—H'*'H* , Ky,=K+K i, a0=a+a*i,
ot ot
(2.5)
Bo=B+B' . vgmrr o g =grE o

In these relations p is the density, # is the displacement vector, @ is the microrotation vector, @ is
the volume fraction field, j is microinertia, C is the specific heat at constant strain, 7’ =0 -7, is a small

temperature increment, ® is the absolute temperature of the medium, 7;, is the reference temperature of the
body choosen such that ‘;0‘ <<1, B;=(3hy+2py+Ky)(a,), where o, is the coefficient of linear thermal
: o0 o & A R : o ,
expension, A=—2+—2+—, V=|i—+j—+k—|, 1y is the relaxation time, % is the
5x1 5x2 8x3 ax] 8)62 8)63
equilibrated inertia, K, is thermal conductivity and A,u, K ,a,B,y,&,g,k*,u*,K *,a*,B*,y*,i*,t* are material
constants of the theory, 1, =0 for the theory of coupled viscothermoelasticity model.
Let X =(x;,x;,x3) be the point of the Euclidean three-dimensional space E,
I
2 2 2\2 0 0 0
= (e otond) o[ 2 22
X; OX, OX;3
We define the following dimensionless quantities as

* * 2
x'zm—]x, u =P clu, (p,:pc] 0,
9 BTy B, 1)
(2.6)
%2
T'=—, f'=o,t, o =22 % g

I BiTh
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where

*
*_pC 6’12
Tk 9T
1 P

and o ,* is the characteristic frequency.

Making use of these dimensionless quantities defined by Eq.(2.6) in Egs (2.1)-(2.4), after
suppressing the primes yields

2
81Au+62VV-u+83(V><(p)+84VCD—VT=paat—;l, (2.7)
o)
(85A—263)(p+86V(V-¢)+83(qu)=87?, (2.8)

o’
oT o
(A—r?)g—r?gzv'u—(g3A—g4t?)E=0. (2.10)

We assume the displacement vector, microrotation vector, volume fraction field and temperature
change as

[u(x,1), @(x,t), @(x,t), T(x,t)]=Re[ut,$, D, T]e ™ (2.11)

where ® is the frequency.
Making use of Eq.(2.11) in Egs (2.7)-(2.10) and after ommiting the bars, we obtain the system of
equations for steady oscillation as

(8,8 +07 Ju+8,9(V-u)+5;(Vxg)+8,V0-VT =0, (2.12)
(85A+u*)(p+66V(V-(p)+83(V><u)=0, (2.13)
(88A+p]*)<b—ESIOV(V-u)+(8”A+812)T=0, (2.14)
(A—rt IO)T—gzrtm(V-u)+[g3(—ioa)A—g4rt ”’]cb -0 (2.15)

where

n =870)2 - 203, ul* =’ -8y, T, 10:—1'0)(1—1:01'@),
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_ (up+Ky) _ (M +2y) _ LY) __b
1~ 5 62 - D 83 - 5 84 = w2’
(g + 2y +Kp) (R + 21y +Kp) (Ao +2uy +K)p) Y
* *2 . %2 * *
5 _ Yoy 5 _((104‘[30)(,01 5 _JO; S0 = Oy 5, = E->0 S _’Y_()
5~ 4 0 6 — 4 > 77 2 > 8§~ 2 9~ %2 > 10— 5>
pc; pPe; ¢ xpey APW; pei
* *2
TO m
0 = L, 01y =o—
[31012 B
Introducing the matrix differential operator
F(Dx):Hth(Dx) xS (2.16)
where
5 &2 3 P
an(Dx):|:61A+(0 :|6mn +62a > Fm,n+3(Dx):Fm+3,n(Dx)=83zgmrn_’
XX =1 or
0 0
Fm7(Dx):64_’ Fm8(Dx):__’
ox,, 0x,,
. o’
Fisn3 (D)) = [85A TH :|8mx +8 a s Fus (D)= 3= F 38 =Fg,,5=0,
X, 0X,,
' o’
F, (D.)=|04A+u,), F,,=-05 , Fe=(86,,A+3;,),
7n(Dx) ( 8 H1) 77 Upwrey 7s = (81,A+8),)
0 .
Fy, Z(A—Tfo): F87(Dx):—92ft10—a Fig =[(—zm)g3A—g4r50].
Oox,,
Here ¢,,, is the alternating tensor and §,,, is the Kronecker delta function.
The system of Eqgs (2.11)-(2.14) can be written as
F(D,)U(x)=0 (2.18)

where U = (u, ¢, O, T ) is an eight-component vector function on E.
Assuming that

8,8585 #0. (2.19)
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If condition (2.19) is satisfied, then F is an elliptic differential operator given by Hormader (1963).
The fundamental solution to the system of Eqgs (2.12)-(2.15), (The fundamental matrix of operator F) is the

matrix G(x) = HGgh (x)“8 s satisfying conditions
X
F(D,)G(x) = 8(x)I(x)
where § is the Dirac delta function, / = “8 th8 s is the unit matrix and x € E°.

2.1. Fundamental solution to the system of equations of steady oscillations

We consider the system of equations
8,Au+3,V(V-u)+8;(Vx@)+8,)V®d-c,t, VI +o’u=H',
(BsA+1 )P +35V(V-0)+8;(Vxu)=H",

(8s8+1," )0 =8,V/(V- 1)+ (iwogs8;,8 +647, ") T = L,
(A—rt Io)T—(V-u)+[811A+612]CD=M

where H' and H" are three component vector functions on E°.
The system of Eqgs (2.21)-(2.24) may be written in the form

F" (DX)U(x) =Q0(x)

where F'" is the transpose of the matrix F,Q = (H',H”,L,M) and xe E°.
Applying the operator div. to Eqs (2.21) and (2.22), we obtain

(A+0”)V-u+8,A0 -yt AT =V -1,
(8"A+u")V-@=V-H",
(858 +1," )0 =5, (V-u)~(iog88+¢,m )T =L,
(A= ") T =(V-u)+[5,,A+8,,]0 =M

where

8 =85+ .

Equations (2.26), (2.28), (2.29) may be written in the form

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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where
(A+m2) d;0A —gztth
_ * . 10
I';(A)=| -8, (88A+M1 ) —(1®€3A+€4Tt ) :
~1 (8,,A+35,,) (a-7")
¥, =[(68A+pl*)(A—ﬂ:t )+ (fogA+ ey, 10)(611A+612)JV-H’+
" " " 10 . (2.31)
_AL[SIO (A_Tt )+€27z (811A+512)J_AM[810 (i03€3A+€4Tz )—szz (58A+H1 )}
_ AN 10 ' 2 10 10
‘I’Z—[84(A—tt )+zmg3 +¢4T, ]V-H +[(A+m )(A—Tl )_‘3217: A}L+
(2.32)
+[(A+m2)(z’mg3A+g4rt 10)+g21t 1064}M,
¥, :[—84(8,1A+812)+(88A+u1*)}v-H’—[(A+m2)(6”A+812)+810A}L+
(2.33)
+[(A+mz)(68A+pI*)+646mAJM.
It is noticed that
o 2
T,(A)= HJ(A+Xm) (2.34)
where
ki ,m=1, 2, 3 are the roots of the equation I'(—x) =0 (with respect to «)
From Eq.(2.27), it follows that
2 1 "
(A+k6)V-(p=§V-H (2.35)
where AL :H—*
)
Applying the operator (8 sA+ u*) and d;curl on Eqs (2.21) and (2.22), we obtain
(65A+u*)[SIAu+82VV-u+w2u]+63(85A+u*)Vx(p=
(2.36)

=(65A+u*)[H’—610Vq>+gztt ”’VT],
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63(65A+u*)V><(p=—8§V><V><u+63V><H”, (2.37)
85(85A+1"|Vx@=—83[VV-u—Au+5;VxH". (2.38)

Making use of Eq.(2.40) in Eq.(2.38), yields
(858+1")| 8,80 +8,VV -u+’u |85 [VV u—Au] =
* (2.39)
= (8s5A+ 0" ) H'=8,,V®+ 6,1, VT | -8,V H".
Equation (2.39) can be written as
[{(85A+u*)61 +8§}A+(65A+u*)oo2}u=
(2.40)
- —[82 (85a+ u*)—sﬂvv w858+ ) H =8,V ® +,7, VT | -8,V x H".
Applying the operator I';(A) to Eq.(2.40) and using Eq.(2.30), we obtain
FJ(A)[{S@A + (u*es | +82 48,07 )A + u*coz}:lu -
- _[52 850+ u*)—éﬂv% (858 + 17 ) 1AV H =8,V + 5, "V |+ (2.41)
=8;I,(A)VxH".
The above equation may be written in the form
;A A=Y (2.42)
where
oA+’ 85A .
r@=7" o -,
=8;  SsA+u|,, 5,05
(2.43)

) [—82 (858+p")+83A]
W= -

V¥, +

(850 u*)[FI(A)H' ~8,,VY¥, +C,1, ”’Wj] ~8;T,(A)\VVxH"|

It is noticed that

To(8)=(A+27)(a+23)

(2.44)
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where 12,17 are the roots of the T',(—k) w.r.t .

1.e.,

Applying the operator d;curl to Eq.(2.21) and §,A + o’ to Eq.(2.22) respectively , we obtain

85(8,A+0” )V xu+83VxVxg=5,VxH,

85(8,A+0” )V xu=58;Vx H'-8VxV xg,

(2.45)

(8,8+07)(858+1" o+ (8,A+07)8,VV - +(8,A+ 07 )55 (Vxu)=(8,A+0” | H" (2.46)

we know the identity

where

VxVx@=VV.0-Ag.

Making use of Eqgs (2.45) and (2.47) in Eq.(2.46), yields

8,A+0” 850+ Jo+(8,A+0” |8,VV -0 +5A-8IVV - =
(8:8+0?)(8:8 1 Jo+ (318 +07)

= (8,A+0” ) H" =8,V x H.
Equation (2.48) can be written as

[{81(55A+H*)+6§}A+(85A+p*)m2}p:

=—[(6,A+m2)86 —aﬂvv-¢+(81A+m2)H"—53vXH'.
Applying the operator (A + ké) to Eq.(2.49) and using Eq.(2.35), we obtain

(a422)| 8,887 + A(83 + 0785 + 8, )+ 1’0 o -

:—a—ﬂ[(sjAmz)aé —8§JVV-H”+(81A+ooz)(A+l§)H”—83(A+k§)V><H'.

The above equation can be written as

Fz(A)(A+X§)(p =y

‘I’":f*[—83(A+k§)VxH’+(8,A+m2)(A+k§)H"+

—6—]*[(81A+c02)86 —aﬂvv-H".

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)
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From Egs (2.30), (2.42) and (2.51) results
(AU (x)=P¥(x) (2.53)

where ‘i’:(‘P’,‘I’”,‘P3,‘I’4) and

0=[ou @],

5
0, () =T, (M) =] (a+27),
q=1

®m+3,n+3(A) = FZ (A +7“§) :f[(A + Ké) 5
q=4

O =0, 077(8)=04(A) =T (A).

gh

The above Egs (2.32), (2.33), (2.43) and (2.52) can be rewritten in the matrix form

V=] £ (8584 1T )T AW+ (AVY [H + 3y (AW X H" + 3, (A)VL + 4,1 (A)VM (2.54)

V=V H | £ (842388407 )+ )V |, (2.55)
W,y =q;3V-H +q335(0)L+q,(0)M, (2.56)
W3 =91,V-H +q3,(A)L+q,(M)M (2.57)

where

*

912 (8) ==1"85(8+25), cm(A)=—g—*[66(81A+w2)—6§}

q13 =84(A—rt]0)+(iwg3A+g4rtm), qs3 =(A+w2)(A—rt]0)—gtrt10A,
443 =(A+032)(i03G3A+€4Tz10)+€2Tt1054, 914 =9 (611A+6]2)+(88A+ Hj) )
ey =—(A+oo2)(6”A+612)+610A, 944 :—(A+m2)(88A+uj)+64810A,

a0 =f" (55A +u )[—62 (RsRg + RsR; ) +8,9 (R R + Ry ) + ¢,y (=R,R; +Rs )] +

+85A(RsRy + R4R;),
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g31(8) = £ (858+ 1" )[ 8, (RoRy + R Ry )+ 81 (RyRs = RsV) =%, (RyRy + R,V) |+

—f"83A(R,Rs + R3R;),

quN)=f (55A + H*)[_Sz (=RyRs + R3Rg)— 8,y (R;Rs + R;R,V ) + e’ (R;Rs + R2R4V)]

+f 83A(=R,Rs + R3Ry),

VV-H'=f" [—82 (858 u*)+6§AJ(R5R8 +RGR; )= £ (858 +1" )81 (R, R + Ry +

+f (85A +u )szzm (=RsR; +Rs),

VL:f*[—62(65A+u*)+6§A}(R2R8 FRR; )+ £ (850 +17)8 ) (R iRy RV ) +

-f (55A +p )GthIO (R;R; +R,V),

M= /" [—52 (85A+p*)+8§A}(—R2R6 +RyRg)~ £ (858+1°)8, (RiRy + RR,V) +

+f (858417 )ort/” (RRs + RyR,V).
From Eqgs (2.54)-(2.57), we have
¥(x)=R"(D,)0(x) (2.58)

where

2 3
0
. ox Rm,n+3 (Dx ) =412 (A)zgmm g’

m-n r=1 r

Rmn (Dx)zf* |:85A+“*:|FI(A)6mn +q11(A)

d d 3 d
Rm7 (Dx):q13(A)a_’ Rm8 (Dx)ZQM(A) o s Rm+3,n (Dx)ZQZI(A)ZSmrn gﬂ

m m r=1 r

2

Ox, Ox

m n

b

Rm+3,n+3 (Dx) = f* (A + 7\‘2 )(81A + (DZ )Smn + q22(A)

Rm+3,7 (Dx) = R7,n+3 (Dx) = an+3,8 (Dx) = R8,n+3 (Dx ) = 0’

0
R;,(D,) =43 o R;; (D, )=4q33(8),  Ryg(D,)=q3,(A),

n

0
Ry, (Dx):%ugs Rg; (Dx) =q43(D), Rgs (Dx):q44(A)’ mn=123. (2.59)

n
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From Egs (2.25), (2.55) and (2.58) we obtain

@U — RtVFtV U = RtVFtV — ®’

(2.60)
=R(D,)F(D,)=06(A),
we assume that
A2 =02 =0, m,n=1,2,3,4,5,6, m#n.
Let
5
Y@ =Y @ggr Y ()= 27,6,
n=1I
6 3 3
Yoams (=2 1600, Yrr(0=3 756,00, Y1) =D 16, (x) .
n=4 n=1 n=1
Y, (x)=0, m=1,2,3, vww=1,2,...... 8, VEW,
] 5
Cp(x)=— exp(i?»n|x), n=1,... 0, 1, = H (ki—kf) , 1=12,.... 5,
4n|x| m=1,m=1
2l -1
=] (an—ki) V=456, re= |1 (ki_lé) o &=h23
m=4,m#v m=1,m#g
3 -1
o= 1 (n-2) s a=123.
m=1,m=q
We will prove the following Lemma:
Lemma: The matrix Y is the fundamental matrix of the operator ®(A), i.e.,
O(A)Y (x)=0(x)I(x), (2.61)
Proof: To prove the above Lemma, it is sufficient to prove that
L (A5 (A)Y 5 (x) = 8(x), (2.62)
L' (A)Y 77 (x) =8(x), (2.63)
r Z(A)(A A2 )Y44 (x) = 8(x) . (2.64)
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Now we find that

Tptrpp t 13 1y +1s =r12(7»f —76)""”13(7“5 —K§)+7’14(7¥5 —7”421)""”15(7&5 —7@)20:
”13(7¥? —7@)(7‘5 —7“5)‘”14(7‘? ‘7“421)(7*5 —7“5/)*"’15(7“5 —7@)(7‘5 —7@)=0,
rg (M =23)(23=23)(23 =23+ 15 (A7 -23)(23 =23 ) (A3 -23) =0, (2.65)

(17 -32)(03-22) 04 -2) 0 -22) =1,
(A+xfn)gn(x)=6(x)+(xfn—xﬁ)gn(x), M= 1,2, . 5.
Now consider

(AT (A)Y =(A+k§)(A+X§)(A+kj)(A+k§)irM [5+(xf —kﬁ)gn} -

() 2w +23) S 1), -
~(a2)(a23)(a 22 )irl (1 -3 [5+(13-22)c, |-
_(a+23)(as2 )(Am)jr, (13 -22)(13-22)e, =

R (S5 A
:(Amz)(Mz)grm( 12)(13-22) (05 23 =

=(A4a2) 3, (17 -22) (13 =02 ) (13 - 22 [ B+ (1 -3 s, | = (A + 23 )s =3

n=3

Equations (2.63) and (2.64) can be proved similarly.
Introducing the matrix

G(x)=R(D,)Y(x). (2.66)
From Egs (2.60), (2.61) and (2.66), we obtain
F(D,)G(x)=F(D,)R(D,)Y(x) =O(A)Y (x) = 8(x) I(x) (2.67)

where G(x) is a solution to Eq.(2.20).

Therefore, we proved the following theorem.
Theorem: The matrix G(x) defined by the Eq.(2.66) is the fundamental solution to the system

of Eqs (2.12)-(2.15).
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3. Basic properties of the matrix G(x)

Property 1. Each column of the matrix G(x) defined by Eq.(2.66) is the solution to the system of

Eqgs (2.12)-(2.15) at every point x € £ I except the origin.
Property 2. The matrix G(x) can be written in the form

G= HGgh

8x8’

G ()= R,y (D) Y 15 (%),

Grun3(X) = Ry 3 (Dy )Y 44 (1),

Gy7(x)= R,z (Dy ) Y77 (%),

Grs(x)=Ry5 (D) Ygg(x), m=12,......... 8, n=1223.

If we take A", p*,K *,a*,B*,y*,é*,g*,r*—)m we obtain the resulting expressions for micropolar

thermoelastic solids with one relaxation time and these results are similar to those obtained by Svandze
(2007).

4. Conclusion

The fundamental solution G(x) to the system of Eqgs (2.12)-(2.15) makes it possible to investigate

three-dimensional boundary value problems of the generalized theory of micropolar thermoelastic solids
with voids by the potential method Kupradge ef al. (1979).

Nomenclature

C - specific heat at constant strain
j — microinertia
K; —thermal conductivity
T=0-1, - smalltemperature increment
T, —reference temperature of the body choosen such that ‘;0‘ <<

u — displacement vector
X =(x;,x;,x;3) — point of the Euclidean three-dimensional space E’

a, — coefficient of linear thermal expension
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® — absolute temperature of the medium

MK, o,B,7.8,6,0
* * * kK %k K
wLK Lo By .61
p —density

— material constants

1y —relaxation time

® —volume fraction field
¢ — microrotation vector

x  — equilibrated inertia

£ . .
®; — characteristic frequency
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