
 
 

Int. J. of Applied Mechanics and Engineering, 2015, vol.20, No.2, pp.267-282 
DOI: 10.1515/ijame-2015-0018 

 
 

EFFECT OF CAPILLARITY ON FOURTH ORDER NONLINEAR 
EVOLUTION EQUATION FOR TWO STOKES WAVE TRAINS IN DEEP 

WATER IN THE PRESENCE OF AIR FLOWING OVER WATER 
                                            

A.K. DHAR* 
Department of Mathematics 

Indian Institute of Engineering Science and Technology, Shibpur 
P.O-  B. Garden, Shibpur, Dist.- Howrah- 711103 

West Bengal, INDIA 
E-mail: dhar.asoke@gmail.com 

 
J. MONDAL 

Department of Mathematics, Kandi Raj High School 
P.O.- Kandi, Dist.- Murshidabad 

West Bengal, INDIA 
E-mail: joydev.71@gmail.com 

 
 

Fourth order nonlinear evolution equations, which are a good starting  point for the study of nonlinear water 
waves, are derived for deep water surface capillary gravity waves in the presence of second waves in which air is 
blowing over water. Here it is assumed that the space variation of the amplitude takes place only in a direction 
along which the group velocity projection of the two waves overlap. A stability analysis is made for a uniform 
wave train in the presence of a second wave train. Graphs are plotted for the maximum growth rate of instability 
wave number at marginal stability and wave number separation of fastest growing sideband component against 
wave steepness. Significant improvements are noticed from the results obtained from the two coupled third order 
nonlinear Schrödinger equations.  
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1. Introduction 

 
 A reasonable approach to the study of the stability of finite amplitude surface gravity waves in deep 
water is through the application of the lowest order nonlinear evolution equation, which is a nonlinear 
Schrödinger equation. This analysis is suitable for small wave steepness and for long wavelength 
perturbations. But, for wave steepness greater than 0.15, predictions from nonlinear Schrödinger equations 
do not agree with the exact results of Longuet-Higgins (1978a; b). 
 Dysthe (1979) showed that stability analysis made from fourth-order nonlinear evolution equation 
which is one order higher than nonlinear Schrödinger equation, gives results consistent with the exact results 
of Longuet-Higgins (1978a; b) and with the experimental results of Benjamin and Feir (1967) for wave 
steepness up to 0.25.The fourth-order effects give a surprising improvement compared to ordinary nonlinear 
Schrödinger effects in many respects, and some of these points were elaborated by Janssen (1983). The 
dominant new effect that comes in the fourth order is the influence of wave-induced mean flow and this 
produces a significant deviation in the stability character. So it can be concluded that a fourth-order evolution 
equation is a good starting point for studying nonlinear effects of surface waves in deep water. Fourth-order 
nonlinear evolution equations for deep-water surface gravity waves in different contexts and stability 
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analysis made from them were derived by several authors Debsharma and Das (2002; 2005; 2007), Dhar and 
Das (1990; 1991; 1994), Hogan (1985), Majumder and Dhar (2009; 2011). 
 All these analyses made by the said authors are for a single wave. A stability analysis of a surface 
gravity wave in deep water in the presence of a second wave was made by Roskes (1976) based on the lowest 
order nonlinear evolution equation, which consists of two coupled nonlinear Schrödinger equations. In his 
investigation modulational perturbation is restricted to a direction along which group velocity projections of 
the two waves overlap and it is argued that the modulation will grow at a faster rate along this direction when 

. 00 7 0 5   , where   is the angle between the two propagation directions of two waves.  
      In the present paper we extend the analysis performed by Dhar and Das (1991) for the case of 
capillary waves in the presence of air blowing over water. Two coupled fourth order nonlinear evolution 
equations are derived for a surface capillary gravity waves in deep water that propagate in the presence of a 
second wave. It is supposed that the space variation of the amplitude takes place in a direction along which 
group velocity projection of the two waves overlap. A stability analysis is made for the case when the 
amplitude of the two waves is the same. The maximum growth rate of instability and wave number at 
marginal stability and wave number separation of fastest growing sideband component are derived and 
graphs are ploted for these expressions against wave steepness for different values of wind velocity v and 
. Significant derivations are noticed from the results obtained from the third-order evolution equations which 
consist of two coupled nonlinear Schrödinger equations. 
 
2. Basic equations 

 
       A common horizontal interface between water and air in the undisturbed state is taken as the z = 0 
plane. In the undisturbed state air flows over water with a velocity U in a direction that is taken as the x- axis. 
We consider that the two waves move in the x-y plane with wave numbers 1k  and 2k respectively. We take 
the x- axis in a direction along which group velocity projection  of  the two waves overlap and consider the 
modulations only along this line. We take ( , , )z x y t   as the equation of the common interface at any time t 

in the perturbed state. We introduce the dimensionless quantities  * * * * * *, , , , ,x y z  

 * * * * * *, , , , ,x y z t v s  and *  which are, respectively, the perturbed velocity potential in water, perturbed 

velocity potential in air, surface elevation of the air water interface, space coordinates, time, air flow 
velocity, surface tension and  the ratio of densities  ,   of air to water. These dimensionless quantities are 
related to the corresponding dimensional quantities by the following relations 
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where 0k  is some characteristic wave number, T is the surface tension and g is the acceleration due to 
gravity. In the future, all the quantities will be written in their dimensionless form with their asterisks ( ) 
dropped.  
      The perturbed velocity potentials ,    for water and air respectively satisfy the following Laplace 
equations for a irrotational flow of incompressible, inviscous fluids 
 

              
2 0            in        z    ,                                                                     (2.1)   
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               2 0           in          z    .                                                                 (2.2)                
 
 The kinematic boundary conditions to be satisfied at the interface are as follows. 
 

     
z t x x y y

     
  

     
,            when            z   ,                       (2.3) 

 

  v
z t x x x y y

        
   

      
,         when           z   .                 (2.4)     

                                                                                       
 The dynamical condition of continuity of pressure at the interface gives 
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when   z   .                     (2.5)            
           
 Finally,   and   should satisfy the following conditions at infinity as 
 
              0           as          z  ,   
   (2.6) 

and      0            as            z  .                     
 

 Since the disturbance is assumed to be a progressive wave we can look for a solution to the above 
equations in the form 

 

  
   *exp exp
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 

 

           

 

 
                      (2.7) 

 
where   ,1 1 x 1 y 1 2 2 x 2 y 2k x k y t k x k y t          ,                   (2.8)    

                                                                                                                           

and G  stands for  ,  ,   and star denotes complex conjugate. Here , , ,00 00 mn    * *
,,m n m n m n   

are slowly varying functions of z, , , ,1 1 1x y y t tx        and , ,00 m n m n  


 
are the functions of 
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, ,1 1 1x y t  and  is a slowness parameter. We consider the simplifying assumption that the wave numbers 

1k =  
1

2 2 2
1x 1yk k  and 2k =  

1
2 2 2

2x 2yk k  are the same and let this common wave number be equal to 0k , 

the characteristic wave number. Also we have 0k 1  and obtain the following linear dispersion relation 
 

       cos os2 2 21 2 v v c 1 s 0
2 2

 
                       (2.9)      

 

                                 
 

where   is the angle between the two propagation directions of two waves having wave numbers 1k
 
and 

2k , respectively. From Eq.(2.9) we have    

                

       cos cos2 2 2v 1 v 1 s 1
2 2

  
             

 
,                             (2.10) 

 
which corresponds to two modes and we designate this two modes as positive and negative modes.  
 The positive mode moves in the positive direction of the x-axis with a frequency  
 

       cos cos2 2 21 v 1 s v 1
2 2

  
           

 
, 

 
while the negative mode moves in the negative direction of the x-axis with a frequency  
 

       cos cos2 2 21 v 1 s v 1
2 2

  
           

 
. 

 
 If v  is replaced by - v  the frequency of the positive mode becomes equal to the frequency of the 
negative mode. So the results for the negative mode can be obtained from those for the positive mode by 
replacing v  by  v . Therefore we have made a nonlinear analysis for the positive mode only and then we 
have obtained the results for the negative mode by replacing v  by  v . From the expression Eq.(2.10) for 

  we find that for linear stability v  should satisfy the following condition 
     

  ( )( ).
cos

1 1 s1v

2

      
.                                                                                 (2.11)                     

 
 Thus our present analysis will remain valid as long as the dimensionless flow velocity of the air 

becomes less than the critical value 
( )( )

.
cos

1 1 1 s

2

    
 

. For air flowing over water .0 00129   and 

for 0  , s = 0.075, this critical value becomes 28.87. 
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3. Derivation of the evolution equations 
 

 By a standard procedure as shown in Dhar and Das (1991), we find that 2
1 101 102       and 

2
2 011 012      , where 1  and 2  are the complex amplitudes of the first and second wave, 

respectively, satisfying the following fourth order nonlinear evolution equations, where we assume that the 
complex amplitudes depend on the   coordinate only and not on the coordinate perpendicular to the   axis 
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  (3.1) 

 
and 
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             (3.2)  

 
where the coefficients 11 , 12 , 11 , 12 , 11 , 12 , 13 , 14 , 15 ,  are given in the Appendix and where 
 

  ( ),  2x ut t       .                  (3.3) 
                                                   
  Here u is the component of group velocity of any one of the two waves along the x-axis and is given 

by cos
k 1

d
u

2 dk 

        
   

, where   is the angle between the two propagation directions of two waves 

having wave numbers 1k  and 2k , respectively, and H is the Hilbert transform given by 

            

     d1




   
   

    .                                                                             (3.4) 

 
    For , ,0 0 v 0    and in the absence of the second wave the coupled evolution equations given by 
Eqs (3.1) and (3.2) reduce to a single equation which becomes same as Eq.(2.20) of Hogan (1985) for a one 

dimensional case. The interaction coefficient 12
12 4


    depends on , ,v s  and  .  
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4. Stability analysis of a finite amplitude wave trains   

 
 The evolution Eqs (3.1) and (3.2) admit the Stokes wave solution 
 

   exp1
1 1i

2


            and         ex p2

2 2i
2


                     (4.1) 

 
where ,1 2   are real constants and 1 , 2  are the nonlinear frequency shifts of two waves. As the 

two waves have the same wave number equal to 1, the change in the phase speeds of the two waves 1c  

and 2c  are given by  
 

   2 2
1 1 1 1 1 1 1 2 2

1
c

4
           1k ,                        (4.2)       

 

   2 2
2 2 2 1 1 2 1 2 1

1
c

4
           2k .                        (4.3)       

 
 The change in the phase speeds of each wave train is therefore made up of two parts. The first 

correction to 1c  is given by 2
11 1

1

4
    which is the well known Stokes correction. This term is due to the 

nonlinearity of the wave train itself and is present even if the second wave train is absent. The second 

correction is given by 2
1 2 2

1

4
    and is entirely due to the presence of the second wave train. It is of the 

same order as the usual Stokes correction.  
 To study modulational instability of these uniform wave trains we introduce the following 
perturbations in the uniform solutions  
 

                  j expj
j j j1 i

2


         ,             (j = 1, 2)                                (4.4)                    

 
where j , j ,  ,j 1 2  are small real perturbations  in amplitudes and phases, respectively. Substituting 

Eq.(4.4) for j = 1, 2 into Eqs (3.1) and (3.2) respectively, linearizing and then assuming the space time 
dependence of j , j ,  ,j 1 2  to be of the form  exp i      , we arrive at the following 

nonlinear dispersion relation, the details of derivation are given in Dhar and Das (1991). 
 

     
1

22 2

1 11 13 14 2 2 11 13P P P 2
4 2

                        
        

, (4.5) 

   

 

here         3
1 12P u       ,                                                              (4.6) 

 

     
2

2 11P    ,                                                                            (4.7) 
 
  u     ,                                      (4.8) 
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and   is the common amplitude of the two waves. 
 From Eq.(4.5), it follows that for instability we must have  
 

   
2

2 2 11 12P P 2 0
2

 
       

  
,                                     (4.9) 

 

and if this condition is satisfied , then the maximum growth rate M  is given by  
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 

2
11 12

M
11 12

1
4
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     

   where   11 0    ,     11 12 0    , (4.10) 

 

    2
11 12

M
11

1
4

     
   

   
     where    11 0  ,     11 12 0       . (4.11)    

 
 At marginal stability we obtain  
 

   
2

2 2 11 12P P 2 0
2

 
       

  
, (4.12)  

 
and this gives the following expression for the wave number   at marginal stability 
 

  
 

 
11 12

11 12

1
2 2

       
     

     where     11 0    ,     11 12 0    ,   (4.13) 

 

  
11 11

1
2 2

  
    

    
     where     11 0  ,     11 12 0       .    (4.14)  

 
 If we put 0  , v 0 , s 0  then Eqs (4.10), (4.11), (4.13) and (4.14) reduce to the corresponding 
equations of Dhar and Das (1991). 
 Now the maximum growth rate M  occurs for the wave number  
 

  
 11 12 2

M
1 3

2 8

  
   

 
         where        11 0    ,        11 12 0    ,         (4.15)    

 

       2
M

11 11

1 3

2 8

 
    

 
,      when        11 0  ,     11 12 0       .    (4.16) 

 
 In Figs 1a, 1b, 1c and 1d the maximum growth rate M  of instability from Eqs (4.10), (4.11) as a 

function of non dimensional wave steepness   have been plotted for . , .0 00129 s 0 075    and for some 

different values of v  and  . From these graphs we observe that a significant improvement can be achieved 
from the results obtained from the third order nonlinear evolution equations. From these graphs, we also 
observe that for particular values of  , M  increases up to certain values of v  and then decreases with the 

increase of v . 
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Fig.1a. , , .v 0 0 s 0 075    . 
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Fig.1b. , . , .v 10 0 00129 s 0 075    . 
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Fig.1c. , , .v 0 0 s 0 075    . 

 

 
   

 
Fig.1d. , . , .v 6 0 00129 s 0 075    . 

 
Figs 1a,b,c,d.  Maximum growth rate M  as a function of dimensionless wave steepness  . - - - - - - - third-

order result;  fourth-order result. 
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      In Figs 2a, 2b, 2c and 2d the wave number   at marginal stability from Eqs (4.13), (4.14) as a 
function of non dimensional wave steepness   have been plotted for . , .0 00129 s 0 075    and for some 

different values of v  and  . From these graphs we get the stable-unstable regions. 
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Fig.2a. , . , .v 0 0 00129 s 0 075    . 
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Fig.2b. , . , .v 10 0 00129 s 0 075    . 
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   

 

Fig.2c. , . , .v 0 0 00129 s 0 075    . 
 

 
   

 

Fig.2d. , . , .v 6 0 00129 s 0 075    . 
 

Figs 2a,b,c,d.  Plot of perturbed wave number   at marginal stability against dimensionless wave steepness 
 . - - - - - - - third-order result;  fourth-order result. 
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
  
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 In Figs 2a, 2b, 2c and 2d we also observe that the fourth order effect produces a decrease in the 
growth rate giving a stabilising influence and in Figs 2a, 2b, 2c and 2d we get a shrinkage of the instability 
regions in the    plane. In Figs 3a, and 3b the wave number separation M  of fastest growing sideband 

component from Eqs (4.15), (4.16) as a function of dimensionless wave steepness   has been plotted for 
. , .0 00129 s 0 075    and for some different values of v  and  . 

 

 
    

 

Fig.3a. , . , .v 6 0 00129 s 0 075    . 
 

 
   

 

Fig.3b. , . , .v 10 0 00129 s 0 075    . 
 

Figs 3a,b.  Wave number separation M  of fastest growing side band against dimensionless wave steepness 

 . - - - - - - - third-order result;  fourth-order result. 
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 For 0180  , the Hilbert transform terms which only contribute at the fourth order terms vanish 
identically and so there is no fourth order contribution in the above three expressions for M ,   and M . 
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 The coefficients of Eqs (3.1) and (3.2) 
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Nomenclature 
 
 g  – acceleration due to gravity 
 H – Hilbert’s transform operator 
 s – dimensionless surface tension 
 t – time 
 v – air flow velocity 
 ( , , )x y z  – space coordinates 
   – wave steepness 
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 – coefficients given in the Appendix 

   – slowness parameter 
   – ratio of densities of air to water 
   – elevation of the air water  interface 
   – wave number 
   – perturbed frequency at marginal stability 
   – frequency 
   – frequency shift 

 
Reference 
 
Benjamin T.B. and Feir J.E (1967): The disintegration of wave trains on deep water. Part I Theory. – J. Fluid Mech., 

vol.27, pp.417-430.  

Debsharma S. and Das K.P. (2002): Fourth order non linear evolution equation for counter propagating capillary 
gravity wave packets on the surface of water of infinite depth. – Physics of Fluids, vol.14, pp.2225-2234. 

Debsharma S and Das K.P. (2005): A higher order non linear evolution equation for broader bandwidth gravity waves 
in deep water. – Physics of Fluids, vol.17, pp.104101-104108. 

Debsharma S and Das K.P. (2007): Fourth order non linear evolution equation for capillary gravity wave packets in the 
presence of another wave packet in deep water. – Physics of Fluids, vol.19, pp.1-16. 

Dhar A.K and Das K.P. (1990): Fourth order nonlinear evolution equation for deep water surface gravity waves in the 
presence of wind blowing over water. – Phys. Fluids A2(5), pp.778-783.  

Dhar A.K. and Das K.P. (1991): Fourth order nonlinear evolution equation for two Stokes wave trains in deep water. – 
Phys. Fluids A3(12), pp.3021-3026. 



282  A.K.Dhar and J.Mondal 

Dhar A.K. and Das K.P. (1994): Stability analysis from fourth order evolution equation for small but finite amplitude 
interfacial waves in the presence of a basic current share. – J. Austral. Math. Soc.B35, pp.348-365. 

Dysthe K.B. (1979): Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. 
– Proc. R. Soc. Lond.A369, pp.105-114.  

Hogan S.J. (1985): The fourth order evolution equation for deep water gravity capillary waves. – Proc. R. Soc. Lond. 
A402, pp.359-372.  

Janssen P.A.E.M. (1983): On fourth order evolution equation for deep water waves. – J. Fluid Mech., vol.126, pp.1-11. 

Longuet-Higgins M.S. (1987): The instabilities of gravity waves of finite amplitude in deep water. – I. Super 
Harmonics. Proc. R. Soc. Lond. A360, pp.417-488.  

Longuet-Higgins M.S. (1978): The instabilities of gravity waves of finite amplitude in deep water. – II. Sub Harmonics. 
Proc. R. Soc. Lond. A360, pp.489-506. 

Majumder D.P. and Dhar A.K. (2009): Stability analysis from fourth order evolution equation for two stokes wave 
trains in deep water in the presence of air flowing over water. – International Journal of Applied Mechanics and 
Engineering, vol.14, pp.989-1008.  

Majumder D.P. and Dhar A.K. (2011): Stability of small but finite amplitude interfacial capillary gravity waves for 
perturbations in two horizontal directions. – International Journal of Applied Mechanics and Engineering, vol.16, 
pp.425-434. 

Roskes G.J. (1976): Nonlinear multiphase deep-water wave trains. – Phys. Fluids, vol.19, pp.1253-1254. 

 

 

Received: February 6, 2014 

Revised:   March 4, 2015 

 
 
 
 
 

 


