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The subject of the paper are Green’s functions for the stress intensity factors of modes I, II and III. Green’s
functions are defined as a solution to the problem of an elastic, transversely isotropic solid with a penny-shaped
or an external crack under general axisymmetric loadings acting along a circumference on the plane parallel to
the crack plane. Exact solutions are presented in a closed form for the stress intensity factors under each type of
axisymmetric ring forces as fundamental solutions. Numerical examples are employed and conclusions which can
be utilized in engineering practice are formulated.
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1. Introduction

The basic solutions, related among other to multifield materials, are Green’s functions, which were
proposed by George Green first in 1828. There are two different analysis processes for the solutions in the
science literature. One has focused on displacement, electric potential and magnetic potential, constructing
the equilibrium equations. The second has emphasized on equilibrium equations of stresses, electric
displacements and magnetic inductions and compatibility equations for strains. There are Stroh’s formalism
(1958) and Lekhnitskii’s approach (1963), for example. On the other hand, there are three commonly used
methods in analyzing boundary effects the theoretical solution, the numerical solution and the experiment.
But, appropriate Green’s functions for the stress intensity factors, not appear up till now since this problem is
a specific task.

It is easily understood that the point force continuously distributed in radial (Fig.2) and axial (Fig.4)
direction along a ring around the axis of symmetry gives the fundamental solutions for tension problems and
those distributed in circumferential direction (Fig.3) give the fundamental solutions for torsion problems.
The problems of the cracks treated in the present study are solved by using three types of axisymmetric ring
forces as fundamental solutions. Modes I, II and III stress intensity factors derived in this paper are in terms
of elementary functions and need no further elaboration. The results presented for general cases are new,
some of those relating to special cases of isotropic or transversely isotropic solids with crack surface
tractions are known (see Murakami (1987), Rogowski (1986), for example). Livieri nad Segala (2014)
obtained in analytical form the stress intensity factor of mode I using of the Oore — Burns weight function
(1980). Recently, Green’s function for an uncracked piezoelectric medium was presented by Chung (2014).

Nowacki et al. (2001; 2002) obtained exact solutions for a piezoelectric layer — substrate structure in
the form of Fourier integrals with detailed discussions on the convergence. Ting (2007; 2008) constructed
Green’s function for an anisotropic piezoelectric half — space bonded to a thin piezoelectric layer subjected
to a generalized line force and a generalized line dislocation. The Stroh formalism is adapted and the
solutions are explicitly given in elaborations by Chung and Nowacki et al.
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This article presents in a closed form new influence functions of a unit ring loadings on the
displacements and stresses for internal and external cracks and three boundary value problems of fracture
mechanics for a transversely isotropic medium. All these results are presented in terms of elementary
functions. It is well known that Green’s functions play a major role in solving boundary value problems in
integrals of different areas of mathematical physics, including fracture mechanics (see monographs by
Rogowski 2014a; 2014b).

2. Basic equations

In this study we use cylindrical coordinates and denote them by (r,e,z) or (x;, i=1, 2, 3). Let a

penny-shaped crack or an external crack be located in the plane z = 0 of a homogeneous and transversely
isotropic elastic solid.

The penny-shaped crack occupies the region 0 <r <a (z = 0) and the external crack occupies the
region 7 2 a(z = 0). Both sides of the cracks are stress free. The half- space z>0 is subjected to
axisymmetric body forces

1
F=58(r=b)3(= 1) (i=13).
@.1)
Fy=—2_5(r-b)5(2—h) (i=2).
2nr

distributed along the circumference of a circle (» = b, z = h) in the interior of the solid, where 8( ) is a Dirac

delta function and F,F,,F; are aradial force, a torsional force and an axial force, respectively, as shown in
Figs 2, 3 and 4.
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Fig.1. A transversely isotropic elastic solid with a penny-shaped or external crack.
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Fig.2. A radial force acting along a circle.
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Fig.3. A torsional force acting along a circle.
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Fig.4. An axial force acting along a circle.

We consider axisymmetric deformations of an elastic transversely isotropic solid. That is, the
displacements and stresses treated here are independent of angle 6 in cylindrical coordinates (r,@,z) . We

restrict our attention to the determination of singular stresses at the crack tip, since these are the quantities of
greatest physical interest. Due to the symmetry (Fig.5) or antisymmetry (Fig.6) of the problem, it can be
reduced to a mixed boundary value problem for half - space with the following mixed boundary conditions:

- for a penny-shaped crack (r :0<r< a)

u, =0, r>a, z=0, c,=0, r<a, z=0, (2.2a)
u, =0, r>a, z=0, G, =0, r<a, z=0, (2.2b)
ug =0, r>a, z=0, G, =0, r<a, z=0, (2.2¢)

- for an external crack (r:r>a)
u, =0, r<a, z=0, o, =0, r>a, z=0, (2.32)
u,. =0, r<a, z=0, c.. =0, r>a, z=0, (2.3b)

ug =0, r<a, z=0, G =0, r>a, z=0, (2.3¢)
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for symmetric, antisymmetric and antisymmetric torsional loading, respectively. The symmetric torsional

loading yields ¢,y =0 for r>0,z=0.

Suitable elasticity solutions for a cracked solid that represent unit ring loading are obtained using the
theory of Hankel transforms (see, Sneddon (1972), for example). A brief derivation of the main equations is
presented in the Appendix. On the basis of those fundamental solutions it can be shown that the displacement
and stress fields associated with the action of the concentrated axisymmetric ring forces and appropriate to
solve the mixed boundary conditions (2.2 a, b, ¢) or (2.3 a, b, ¢) on the plane where the crack exists are as

follows:

(i) For axial and radial symmetric forces as shown in Figs 4, 2 and 5

1
4G, C

V4

uz(r,O)z I3TJ0(E;r)Jo(c";b)Ho(isl-h)dX;+

o0

—UOIJTJO(c";r)JI(ﬁb)HJ(isih)d§+ [4(2)7y(&r)as |,

0

0

5. (r0)= _%jm(g)% (&r)de.

T
0

(i1) For axial and radial antisymmetric forces as shown in Figs 4, 2 and 6

1

0)=——@—
ur(r,) 4nG,Cs;s,

0,15 [ 7 (&) (8b) H (Esih)dE +
0

0

+1,TJ] (&r)J;(Eb) Hs (Es,h)de+[ B(8)J, (é;r)dg],

0

0

o, (r,0)= —%j&B(é)J, (&r)de .

T
0

(ii1) For antisymmetric torsional force as shown in Figs 2 and 6

1
4nG,s;3

ug (r,0) =

6.0(r0) :_T;Tgc(g)J,(gr)dg.

Izb—ITeésthJ(ér)Jj (E,b)d<§+TC(§)J1(dé)},

2.4)

2.5)

2.6)

In the solutions (2.4), (2.5) and (2.6) the following notation is used: J, denotes the Bessel function
of the first kind of order v; the known functions H,, H;, H, and H; are presented in terms of exponentials
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as shown in Eqs (A11) in the Appendix, G, denotes the shear modulus of the material in the z-direction and
the material parameters s;, C,v, and v, are given in the Appendix by Eqs (A9) and (A10).
Within the context of linear elastic fracture mechanics, the stress intensity factors are defined as

K, c.(r.0)

Ky t=1lim \2(r—a)so..(r.0)¢, 2.7
r—at

Ky G0 (r,O)

K; c, (r,O)

Ky = lim_,/2(a—r) o..(r,0)¢, (2.8)
r—a

K G2 (r,O)

for a penny-shaped crack and an external crack, respectively.
K,,K, K, are mode I, II, III stress intensity factors (Kanninen and Popelar, 1985), respectively,
corresponding to the cases (i), (ii) and (iii) of loading, respecively.
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Fig.6. Antisymmetric loadings.
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In the assumed axially symmetric problem, with respect to the z — axis, the torsional problem is
separated and may be solved separately, as here. But in the three — dimensional case we also have another
antisymmetric problem (the superposition), so that in general case the K;; and K; will be coupled. The

antisymmetric problem solution will be published separately.
3. Mode I loading
3.1. The penny-shaped crack

The boundary conditions (2.2a) and the solutions (2.4) yield

o0

[A()y (&)t =1, [ 1 (&) (20, (25h) e+

v 3.1)
+0o 1, [ o (&), (8b) H, (Es,h) dE, r>a,

0
jaA(g)Jo (&r)de =0, r<a. (32)

0

The dual integral Eqs (3.1), (3.2) are converted to the Abel integral equation by means of the
following integral representation for A (&)

A(E_.) = \/%jg(x)sin(éx)dx—@]o (ib)Ho (E_,sl-h)Jr vy 1;J; (&b)H, (E_,sih) s 3.3)

with the assumption that g(x) -0 as x—>0".
This representation of A(&) identically satisfies Eq.(3.1). Substitution of A(&) into Eq.(3.2) leads

to the following Abel integral equation for an auxiliary function g(x)

(oo}

0 (3.4)

0y 1, [ &7, (&)1 (E)H  (Es,h) dE.
0

Applying Abel’s solution method to invert the left-hand side of Eq.(3.4), the solution for g(x) is
obtained

g(x)= —[QTJO(&b)sin(&x)Ho(E_,Sih)di—uolITJI(ib)sin(ix)HI(&Sih)dg . (3.5)
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The improper integrals in Eq.(3.5) are calculated analytically (see Appendix, Eqs (Al) and (A2)).
Consequently, the auxiliary function g(x) is obtained explicitly in terms of the oblate spheroidal

coordinates ; and m; (see Appendix) as

2\ Is I  kn, Ny j
g(x :\/: —[ - +
) ank—]x £l +m,° ¢+
Vol b ks,C, _ 5,65
ksy =5y ¥ (5;12 +ﬂ12)(1+ C12) (sz +ﬂ22)(]+ sz)

(3.6)

where the material parameters s;,5,,k and v, are given in the Appendix.
The singular part of the axial stress is given by the formula

Gz(r,O)zﬁ\/%ﬂ as r—oa+. 3.7

W2 _ 2

Consequently, from Eqs (2.7);, (3.6) and (3.7), the stress intensity factor at the crack tip is obtained
explicitly in terms of the oblate spheroidal coordinates Zl- and 7m; (the values of {; and n; for x=a, see the
Appendix) as

KI:afs/z Iy (_ kn, __ n J+
o’ | k-1 C22+T_122 €12+ﬁ12

B B (3.8)
Y%l b ks, _ LS,
ksy =5, a (1+E12)(512 +T—112) (1+Zzz)(522 +T—122)
3.2.  An external crack

The boundary conditions (2.3a) with the use of Eq.(2.4) yield
[4(8)J5 (&) de=—1;[ 15 (&r) I, (b) Hy (Es,h)dE +
0 . 0 (3.9)
051, [ J5 (&), (Eb) H, (&) &, r<a,

0

[ea(e)Jy (&r)de=0, r>a. (3.10)

0

The dual integral Eqs (3.9), (3.10) are converted to the Abel integral equation, by means of the
following integral representation for A4 (é)
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A(&)z\/%j-f(x)cos(éx)dx. (3.11)

In this representation the auxiliary function f (x) is assumed to be continuous over the interval
[0, a]. This representation of A(EJ) identically satisfies Eq.(3.10). Substitution of A(é) into Eq.(3.9) leads to
the following Abel integral equation

\/%jf—%= —13TJ0 (&) Ty (b) Hy (&s;h)dE+

(3.12)
091, [ 1o (&), (8b) H, (Es,h) &, r<a.
0
Applying Abel’s solution method, the solution for f (x) is obtained
2 0
f(x)= \/%{—]d‘cos(éx)‘lo (8b)Hy (Es;h)dE+
0 (3.13)
+uy 1, Icos(@x)J](ib)H,(ésl-h)dé}.
0
Substituting the integrals (A3) and (A4) (see Appendix) gives the final solution for f (x)
2 I; 1 kC, ¢,
f(x)= —{— . —[ - J+
n| k=Ix\¢+m” ¢S4/
(3.14)

+00]] 1 i kszﬂ1(1+C12)_S1ﬂz(1+C22)
b ks, —s; €12 +n12 (sz ‘H”lzz)

where the oblate spheroidal coordinates C;,m; are defined in the Appendix.

The stress o, (r,O) for r < a is given by

_ 2| _fle) fdf(x)  ax
Gz(r,O)—4n\/;{m j el SENEAEE (3.15)

Consequently, from Eqs (3.14), (3.15) and (2.8),, the stress intensity factor of mode I can be obtained
in terms of the coordinates ¢, 7, such that
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K, = a’? Iy {_ kiz __ E] }_
o’ k-1 sz +ﬁ22 (;12 +T—112
Ji ks2ﬁ1(1+212) sM; (1+522)
ksy=s;| T +m/S (Zzz +ﬁ22)

24

—0011% I-

where Zi ,M; are obtained from (;,n; for x=a (see the Appendix).

4. Mode II loading
4.1. The penny-shaped crack

Substituting the formulae (2.5) into the boundary conditions (2.2b) the following dual integral
equations for antisymmetric loading cases are obtained

o}

[B(e)J; (&r)de= ollg]oJ] (&rWo (eb) H, (&s:h)dE+

) @.1)
-1, j J (&M, (8b) H; (Esih)dE,  r >a,
0

o0

jaB(g)J, (gr)de=0, r<a. 4.2)

0
The integral representation for B (i)

a

/2 12
B(g)=¢ lx h(x) 3 (xE)dx + (4.3)

+0, 13 (Eb) H, (&s;h) — 1,7, (Eb) H3 (Es;h),

with the assumption that x? h(x) — 0 as x > 0+, satisfies identically Eq.(4.1), while Eq.(4.2) is converted
to the Abel integral equation

I’Z—XZ

\El-d[xflzx(ﬂ]\/ dx :—U;lsrz&fﬁ(ir)Jo(ib)Hg(is,-h)d§+

(4.4)
17 [ 1 (& W (Eb) H (Es,h)dE
0

The solution of this equation is
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h(x) =\E[—U,J3TJO (ab)(Sigf" —cosi,x)Hz (&5,h)dE +

(4.5)

N sin
+1 [ (éb)( = —cosE,xJHg (asih)da}.
) &x
Using the integrals (A3) + (A6) (see the Appendix) gives the final solution for the auxiliary function h(x)

h(x)= z{—011—3 ! [k52££—tan_lgz— &2 ]-‘r

n X ksy—s; 2 g3 +m3
(4.6)
x e 5, 1 |Rn(2-mi) my(1-m3)
1 1 1
Bl S s e | e 2.2 2.2
2 G +my bk=1 & +n; Co+m;
The singular part of the shear stress is given by
h

L |2a (a) as r—oa+. 4.7)

o (r0)="~ i

Defining the stress intensity factor of mode II as in Eq.(2.8)2, and substituting h(a) from Eq.(4.6) yields

-3/2 3
a v,/ T =
KH = {— 173 l:ksz(z—tan ]CZ_—2€2_2J+

ks; —s, 2 +t1N;
_ _ _ _ _ (4.8)
x4 T I o (1-77) m(1-73)
P LS o 9 ; a 3
S an - Gy —=5"— +k bl 72,2 =2 —2
2 YtV —1 ¢ +my G +m;

where EI- ,M; are the values of (;,n,; for x = a (see the Appendix).

4.2. An external crack

Substituting the formulae (2.5) into the boundary conditions (2.3b) the following dual integral
equations for antisymmetric loading cases are obtained

o}

[B(2)J,(&r)de= 0113TJ1 (&r W, (D) H , (E5;h)dE +

0 (4.9)

1, [, (& W, (gb) Hy (s, dE, r<a,
0

o0

jaB(g)J,(ar)dazo, r>a. (4.10)

0
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The integral representation for B (&)

2008
—\/;;‘)‘t(x)sm(l‘,x)dx, (4.11)

satisfies identically Eq.(4.10), while Eq.(4.9) is converted to the Abel integral equation

fj—dx U][3FTJ1 (&r Wy (ED)H, (Es;h)dE+

(4.12)
—zler, (&r W, (b) H; (&5;h)dE,
0
The solution of this equation is
t(x)= \/%I:U]]_;IJO((:[))Sin(EJX)HZ (&s;h)dE+
0 (4.13)

—IITJ] (£b)sin(Ex) H; (&sih)dé}.

Substituting the analytical formulae of the improper integrals (Eqs (Al) and (A2) in the Appendix)
we get

((x)= 2|yl 1 ks, sy |
nlox k-5 \GG4m; & +mj

(4.14)
Lb 1 k¢, ~ S ‘
2 k-1 (]+Qf)(§f+nf) (1+§§)(C§+n§)

The stress o, (r,0) is

21 r t(a) d[t /x] dx
(r()) \/747[[— — a +rI e > rz}, r<a. 4.15)

—-r r X~ -

The mode II stress intensity factor of an external crack is obtained as

-3/2

KH:a [~ vl kson, sy +
on’ " ksy -5\ GG 4m5 G +my

_ _ (4.16)
N/ B T |
k=lal (1+87)(T +7) (1+8)(E3+73)
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5.  Mode III loading

5.1. The penny-shaped crack

The boundary conditions (2.2¢) with the use of Eq.(2.6) yield the following dual integral equations
of axisymmetric torsion of a penny-shaped crack

[y (&r)de=—b"1,[ 7, (&), (gb)e " dE, r>a, (5.1)
0 0

jgc(ayj(ar)dazo . r<a. (5.2)
0

The integral representation for C (&)

a

c(g)=¢"? j X2, (x) 55 (x€)dE—b7 1, (Eb)e 3", (5.3)
0

under the assumption that x 2(1)(x)—>0 as x— 0+, satisfies identically Eq.(5.1) and gives the Abel

integral equation

(oo}

rd X r _
\EI [xj;x(xﬂ\/ Zd > 712]’&,/](@).1,(@1))6 S (5.4)
0 r —X

0

Applying Abel’s solution method to invert the left-hand side of Eq.(5.4) and then substituting the
integrals (A4) and (A6) from the Appendix give the final solution for ¢(x)

_ |2 n
¢(x)—\/;12 x2(1+g§)3(z;§ =y (5.5)

where C; and n; are defined in the Appendix.
The singular part of the stress G is given by

1 [2a ¢(a)
o4(r,0)=—,————— as r—a+. 5.6
0(r0) 4n\m r m (5:6)
The solution (5.5) and Eq.(5.6) give
-5/2 =
a n
Ky = 3 (5.7)

o’ (1+G5) (2 +73)

where 53 , N3 are the values of {;,m; forx = a (see the Appendix).
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5.2. An external crack

The boundary conditions (2.3c) and the solutions (2.6) yield

[cey(eryae=—b"1[ 7, (&) (gb)e @ ae,  r<a, (5.8)
0

0
jgc(g)lj(zgr)dg:o, r>a. (5.9)
0

These equations are formally similar to Egs (4.9), (4.10).
Thus, the integral representation for C (%’;)

27 .
=\/%£w(x)sm(ax)dx, (5.10)

gives the final solution for an auxiliary function w(x)

__ 2L G
y(x)= \/;XZZ(I+C§)(3€§+“§) (5.11)

where (;,m; are the oblate spheroidal coordinates associated with the material parameter s, (see the

Appendix).
The stress 6. (7,0) is

0.0 (r0) = \FJEL \/T jd["’ /x] r<a. (5.12)

The stress intensity factor of mode III for an external crack is given by the formula

-5/2 =
La Cs

2’ (1+33)(E5 +73)

Ky = (5.13)

where (;, ; are obtained from ¢;,m; for x = a.

6. Application

Exact solutions have been presented for the stress intensity factors of mode I, II and III at the tips of
a penny — shaped crack and an external crack under axial, radial and torsional loadings. These solutions are
obtained explicitly in terms of elementary functions. For any axisymmetrical distribution of those loadings of
the medium with internal or external cracks the integration and / or simple superposition of the obtained
results give the possibility of obtaining exact solutions for the stress intensity factors.
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Example 1

We now proceed to consider some specific cases of loadings, when the axial loading /;/2 and the
radial loading /,/2 are applied on the planes z=/ in an annular region b<r<c symmetrically with
respect to the z =0 plane (see Fig.7).

Fig.7. Axial /; and radial /; loadings which generate the mode I stress intensity factor K.

Then

Ky =2 [ K, (r,h)rdr (6.1)
b

where rdr =a’ (Qz +n2)d§/§, d¢/C=—dn/n in oblate spheroidal coordinates r’ =a’ (]+Q2)(1+n2),

Sph = a’Cn and K (r,h) , Kig (r,h) are presented in those coordinates.
From Eqgs (3.8) and (6.1) we obtain for a penny — shaped crack 0<r <a

KIZ\/E I nij‘C)[ kn, — my JH_Qﬂédnz] or (—ﬂdeJf

an? | k=1 o (G3+my Gf+mj n, n;
Gile) 2. .2
Vol b ks,C, 2 2\dg, 5,65 SEAF
- - C +n - dc =
e A [ e LA U e e s )

) \/E{ 5 _Tns ((8)-ma(e)) =y () +my (e)] +

207 k-1
I, b - - - B
s (€ et () s o)t €50

where
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&i(r)= ! \/\/(rz Jrsl-zh2 —a2)2 +4a25i2h2 +7? +Sl-2h2 —d’,
a2

(6.3)

T]i(’”)z ! \/\/(r2+s[2h2—a2)2+4a2s[2h2 —(r2+s[2h2—a2) i=12.
a2

For an external crack » > a we have

K; Z%{%[Mz ((e)=C2 ()= (e)+ &, (b) ]+

b| b’ —c? 1 1 1
_VOIIZ{ " _k52—81{kslszz(m_r(b)_g](c)—H;I(b))}_ (6.4)

_slszh(#(c)_#(b)_gz(c)% (b)H.

In special cases K; assumes the values
- for a penny — shaped crack

—IS]h
1 . ks,tan " ———s, tan .
ﬁ[knz(b)—m(b)]—v(ﬂz; - , for ¢c—>wo

&

_ -1 _ -1
1{1—%]—%52{]‘“”” Ci(e)= sy tan CZ(C)} for b#0, ¢ finite (6.5)
— a

b 1 C2 1 bz
—vyl;—| tan~ —Z—J—tan_ —2—], for h=0, b>a, c>a
a a a

When the axial loading is in plane of a crack but outside of a crack surface, then K, are zero. This

coefficient exists for radial loading applied outside a crack surface in its plane. Note that if the axial loading
is applied in an infinite region » >0 on the plane z=+A, K, is independent on %, while for radial loadings

this coefficient depends on /.
Example 2

Consider the case where I;/2 and 1;/2 is applied on the plane z=+A in the annular region
antisymmetrically with respect to the z=0 plane (see Fig.8).
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Fig.8. Axial /; and radial /; loadings which generate the mode II stress intensity factor K; .

Then for a penny — shaped crack (0<r<a) we obtain from Eq.(4.8)

C2(c) 2 2
Kﬂﬁ{i{ I kgz(g_tan_lgz_ < ]C2+n2 i

ol | ks, —s &) C§+n§ -
Ci(e)
s T anlg, - SRR dc, |+ (6.6)
1 P 1 2 2 1
Ql(b) C.»] +n1 C—’I

+1_12WC)"“1(’”5)[c5+n5jdn,mj(c)‘b(’”5)(c§+n§Jdn2”,

2 2 2 2
17(b) Ci+m; Ny n(b) Co+m; n2

big :%{_ks‘}[ijs [ksz(fZ(c)_ﬁ(b)_Cz (C)"'CZ (b))_SI (fl (c)—f](b)—C](C)-i-C](b))]"‘
278 (6.7)
+ﬁg[;{m (e)-n, (b)_§n3<c)+§nf(b)]—(n2 (e)=n ()51 (c)+§n§<b)ﬂ
where
_r T tan~! +L1__nl i=
f,»(r)_?& ™! 4 1+n,} 2. 9

For the external crack we have Eq.(4.16)

_\/5{ v 1z

=77
o’

[‘kSZ(“z(C)—nz (b))+s1 (m (¢)-m; (b))]Jr

ks = s (6.9)
1]

+E§[k (tanfj & (c)- tan ¢, (b))— (tanfj &5 (c)- tan~! ¢, (b))}
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Example 3

For antisymmetric torsional loading /,/2 acting on the planes z=+h (Fig.9), we obtain

Fig.9. Torsional loadings which generate the mode III stress intensity factor K, .

- for a penny — shaped crack Eq.(5.7)

2 2\(r2 L2 2 2
S Y (AR [ (SRR I SN (6.10)
La s;h| ' 1 1
SEALRELE: —t b)-
27t2 a {an Q3(c) an §3( ) C3(C)+C2(b):|’
- for an external crack we have Eq.(5.13)
a2 E3(c) ¢ 22 4xf La~
Ky =22 ot 2 g = 5% [han ! G (c)—tan ¢ (b) ] (6.11)
(GG em) & o

7. Numerical results

To investigate the dependence of the influence functions of a unit annular ring loadings on the stress
intensity factors of mode I, I and III numerical results for the graphite — epoxy composite transversely
isotropic material will be presented below. The material parameters are: c¢;; =0.82, ¢;, =0.26 , ¢;3=0.32,

¢33 =8.68 and c,, =0.41 in units of 10*MPa.

Figure 10 shows the variations of K, but calculated for /; =1 and I, =—1I. It shows that the radial
loading acts in the opposite direction to the positive direction of the » — axis. Figure 11 shows the variations

of non — dimensional K :K,/(13\/;/2n2) for I;=1 and I; =1. A comparison of Figs 10 and 11, for a

penny — shaped crack, shows that if /; =—/ then the SIF increases. The radial loadings in the opposite

direction to the » — axis give additional crack opening displacement (“buckling effect” of a penny — shaped
crack).
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3,00
Ki*, b>=0, c tends to infinity
2,50 -
2,00 -
b/a=2

1,50 \ b/a=1
1.00 b/a=0,5

\ bla=0
0,50

h/a

0,00 ~
-0,50 -

0,0 2,0 4,0 6,0 8,0 10,0

Fig.10. The variation of K, with 4/a for
different b/a and I;=1 and 1, =-1.

1,2
K*, b=a, c finite

1,0
0,8

cla=4
0,6 -

c/a=3
04 c/a=2

cla=1
0,2 -

h/a
0,0 T T T e
0 10 20 30 40 50

Fig.12. The variation of K; with 4/a for
different ¢/a and I;=1 and 1, =—1.

1,2

K/*, b>=0, c tends to infinity

04 h/a

-0,8 -
0,0 2,0 4,0 6,0 8,0 10,0

Fig.11. The variation of K; with h/a for
different b/a and I; =1 and 1, =1.

0,00 \ ‘ ‘
\\\ K*, h=0, b>=a, c>=a
-0,20

\
040 \\k\ b/a=5

-0,60 b/a=4
\ b/a=2
-0,80 ~—
b/a=1 cl/a

-1,00

0,0 100 200 300 400 500

Fig.13. The variation of K}k with ¢/a for
different b/a and 1,=1.

Figure 12 shows the variation of K; with A/a for dissimilar annulus dimensions (b =a, c changes)

for /;=1 and I; =—1. Figure 13 shows K}k for h=0, b/a, c/a change for I;=1 (no influence) and
I;=1.Inthecase (h=0) K: (related to /;) depends only on I; =—I (“buckling effect”). Both Figs 12 and

13 are for a penny — shaped crack.
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Figure 14 shows K; versus c¢/a and b/a for the buckling force 1, =—1I. Figure 15 shows the

variation of K, for a penny — shaped crack.

1,00 + : 1,20 - ‘
Ki*, h=0, b>=a, c>=a b/a=1 Ki*, b=a
0,80 1,16 -
b/a=2 c/a=6
_ cl/a=4,5
0,60 | b/a—4 1’12 i
c/a=3
—
— cla=1,5

1,04 - %—

0,40 - / b/a=5 1,08 \

0,20 -
cl/a h/a
0,00 T 1,00 T T
0,0 10,0 200 30,0 400 500 0 10 20 30 40 50
Fig.14. The variation of K}k with ¢/a and Fig.15. The variation of K;‘, with h/a for
bla for 1, =-1. different c¢/a if f=a and I;=1,
1; =1 (penny — shaped crack).
2,00 ‘ 4,00
Ki*, b=a Ku*, b=a
3,50 ~
1,50 -
cla=1,5 3,00 1 c/a=6
1,00 c/a=3 i 250 \ cla=4,5
‘ \
c/a=4.,5 c/a=3 ‘
0501 c/a=6 2007 \ c/a=1,5
1,50 \
o / ——— N\ \ \\
1,00 ™ -
’ h/a
_0,50 | / \
0,50 | T~
-1,00 0,00 ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
Fig.16. The variation of K, with &/a for Fig.17. The variation of K ; with h/a for b=a
different ¢/a and b = a (an external and different ¢/a (penny — shaped crack).

crack).



364 B.Rogowski

Figure 16 shows the variation of K;} for an external crack. In Figs 15 and 16 extreme values appear

for h/a~2.5. Figure 17 shows K;H =K111/(]2\/Z/27r2) versus hfa for b=a and different c/a, for a

penny — shaped crack. Figure 18 shows K}, versus i/a for b=a and different c/a, for an external crack.

In the case of torsional loading the extreme value of K;” appears for 4/a~4.0 in the case of a penny —

shaped crack.
1,60
Ku*, b=a

1,40 ~

1,20 1 cla=6

1,00 c/a=4,5
c/a=3

0.80 1 c/la=1,5

A\
S\

0,00

0 4 8 12 16

Fig.18. The variation of with /#/a for b=a and different c¢/a (an external crack).

8. Conclusions

1. Getting exact Green’s functions for SIF is essential in applications because of their accuracy and
computational efficiency.

2. The possibility of obtaining exact solutions in terms of elementary functions based on Green’s functions
constructed in this paper has not been exhausted as presented in Sections: Application and Numerical
Results and three examples. We can also display a variety of other similar examples, including examples
of discontinuous fields with prescribed loading sources, which can serve as a good test base for various
numerical methods for solving boundary value problems of fracture mechanics.

Appendix
The following integrals are used to evaluate the auxiliary functions which appear in this paper

oo}

: —GS; _ M;
!Jo(ib)51n(§xk : hdg_w, (A1)
TJ,(&b)sin(E,x)e_Efgith,: b g (A2)

) (1467 )6 +m7)
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(oo}

JJO (E_,b)cos(E,x)e_‘t’S"hdi:%, (A3)
0 X(Ci n; )
% |1+ Cz’z
I J,(&b)cos(&,x)e_‘:sihd&:é 1—% (A4)
0 C.ai +ni
I 717, (Eb)sin (&x)e " de = g —tan”' ¢, (A5)
0
j 717, (eb)sin (gx)e ¥ de = %(1 -n;). (A6)
0

The oblate spheroidal coordinates ;,m; are related to b, s, s, x by the equations
b =7 (1467 )(1-n]) sih=xgm; (A7)

where —/<m; </ and (; 20. The surface {; =0 and m,; =0 are respectively the interior and exterior of the
circle b =x, h =0 ; here therefore

h=0, b>x G=0, m=1-(b15).

h=0, b>x, = (bz/xz)—l, n; =0, (A8)

b=0, E; =s;h/x, n, =1.

The coordinates C;,n; forx = a are denoted by zi M-
Three sets of oblate spheroidal coordinates C;,m; (i = 1, 2, 3) are associated with three material

parameters s, (i = /, 2, 3) which are given by equations

. 4 2 _
S5 82 €33C445 — [011033 —cy3(es3+2¢y )]S +¢pi¢4y =0,
(A9)

Sg = (011 ¢ )/2044 =G, /G.

where ¢ are five elastic constants of a transversely isotropic solid and G, , and G are the shear moduli

along the r-axis and z-axis, respectively; the z-axis is the axis of elastic symmetry of the material.
The remaining material parameters are given as
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k=C33S12_C44 C:(k+])(sl_32)
C3+cy (k—1)s;s,
(A10)
_ ks _ksy =5,
o0 (k—])s]sz’ v k-1~
Expressions for functions # ; (&sih) that appear in the analysis are as follows
ol i),
H, (E_,sih) = — (ksze_éfg’h - S]e—§s2h ),
(A11)
H, (isih) = (ksze_gszh - Sle_gsjh )

ks, —s;

1 —&s —&s
H3(§sl-h):ﬁ(ke it

Each of these functions tend to unity as 4 tends to zero.
Let us consider a brief derivation of the main equations by means of Hankel transforms.

It is assumed that the geometry of the medium and the applied internal loads are axisymmetric.
Therefore, one may easily separate the torsion component of the problem in which uy, oy, and oy, are the

only non zero displacement and stress components, for which

993 0’05 O’; 10g;

_ 903 - = S 4 Al2
“o or’ Ce: = C- oroz’ % =Cr ol ror ) ( )
(V2 +55°07 o7 ) g3 (r2) =0, V7 =& 1o’ +(1/r)l o, (A13)
ug (r,zg =) —ug (r,zg +)=0, . (7,29 =) — 06 (1,29 +)=47I;2 8(r—ry)., (A14)
oo, (r,0)=0 or  uy(r,0)=0. (A15)

The first condition in Eqs (A1l5) corresponds to symmetric and the other one to antisymmetric
torsion loading with respect to the z =0 plane.
The solution of Eq.(A13) could be obtained through the application of Hankel integral transform.

Then @;(r,z) is found to be
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o0

@3(r.z)= Ia_] [A3 (a)e™3* + By (a)e_asﬂ}Jo (ar)do  0<z<z,

0
(Al6)
03 (r,z)zIa_1C3(a)e_w3zJ0(0Lr)doc zy <z
0
The conditions (A14) and (A15) yield
1
A, =(-1)"B,=——2 %370 ,
;=(-1)" By 87y, € 1(ar)
(A17)
1
C :_—2( os3zg .y n —OLS3Z())J
¥ 8nG,s31 ¢ +( ) ¢ I(OWO)

where n=0 and n=1 correspond to symmetric and antisymmetric loading conditions. In deriving the
results (A17) the following integral representation of the right-hand side of Eqs (A14) is used

o0

5 o, (ary)J; (ar)do. (A18)

1
S _ — 2
4’ (r ro) 4nr "

The displacement and stresses (A1) are obtained in the form

0

_ 1 —as3(z—zg( | [ g\ —as3(z+2p) Al
w(r2) =gt o(e +(-1)'e G IACT TS (A19)
oy, (r,2)=- Sifro Ja(ﬁe_as3(z_zo( +(-1)" e s3(+20) )J, (ary)J; (ar)do, (A20)

0
0,9(r.z)= —;T—S];Ja(e_a”(z_zo( +(-1)" e~ es3(2+20) )JI (ary)J, (o )da (A21)
0

where 3= sgn(z - Zo) equals unity if z >z, and minus unity if z<z,.
The remaining problem under the given internal axial and radial loads in the absence of the cracks

may be solved using the displacement functions and the conditions of symmetry, continuity and
discontinuity, which for axisymmetric problems may be written (Rogowski, 1975)

8 8
u, =5(k<pz +0,), u, zg(@z +kp,), (A22)
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_ G (ke 26. 19 (&
o, =—G. (k+ )az_g((P1+(P2)_ r;g( ®;+¢,),

&’ o’
Soo =G (k+1)—= (9, +9,) - 2G, —(ko; +9;),
oz or

(A23)
o’ 2
G, :Gz (k+1)az_2(S1 P;+s; ‘*PZ)a
o2
G,, = GZ (k + 1)%(@] +0, )9
(V2 +s70 1627 )oi(r2)=0  i=12, (A24)
u, (r,zo —)—ur (r,zo +)=0, u, (r,z —)—uz (r,zo +)=0, (A25)
c (r Zy —)—G (r Zy +):]—18(r—r0)
rz \">» rz \"» drr >
(A26)
1
c,, (r,z(, —) -0, (r,zo +) =4_73cr6(r - ro),
uz(r,0)=0, C,, (r,0)=0, (A27)
or
u, (r,0)=0, c,, (r,0)=0. (A28)
The potentials @, (r,z) are found to be
(pi(r,z)zja_l[Ai(oc)ew"z +Bi(a)e_asiZJJ0 (ar)do  0<z<z,, (A29)
0
¢ (r.2)= [0'C, (a)e 7y (ar)da Zp<z. (A30)

0

The conditions (A25), (A26) and (A27) or (A28) yield
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1 . Lk _
A — —I nB :_—36 (X,SIZOJ or _]—e (XS]ZOJ gr ,

=05, $1G, (k* 1) 1{on) $1G, (K ~1)s, /(&)

Lk _ i _

A, =(-1)"B 3 e 5270 J (o) + L e ¥ (Er)),

2=() $1G, (k* 1) o(ar) $1G. (K - 1)s, &)

(A31)
C] :1—3(6(15120 _(_])n e_aSIZO)JO(OU’O)—L(ew’ZO +(_])n e_aSIZO)J] (aro)a
§mG. (k* ~1) 8nG, (K 1),
Lk , , I ,

Cy=— S (eO“ZZ” —(-1 ne_mzz(’)J ary )+ L (eo‘szzf’ +(-1 ne_mzz(’)J Eor)s

T 8nG. (k-1 1) o(%) $1G, (K ~1)s, ) 1{&r)

for symmetric (n = 0) and antisymmetric (n =1 ) loading with respect to z =0 plane.
The displacements (A22) and stresses (A23) are

u, (r,z)=— pve ( ){13kj[ ( ~asg|z-zg| *wz‘z—zo\)_(_])”(efasl(erzo)+

e ] (o () [l e el (A3
S]SZ

+(_1)n (S]e—asz(z+20) _ kZSZe—ocS1(z+Z()) ):| J] (OLV() )JI (ocr)d(x},

1 K 2 —oLs ‘zfz ‘ —os ‘zfz ‘
uzr,z=——1|:kse W g e IO
( ) SRGZ(/CZ—I){S‘([ 2 1
_(_])n (kZSZe—OLSQ(Z+Z()) -5, e—ocs1(z+zo)):|J0 (aro)Jo ((xr)d(x+ (A33)

+I]kT[B(e—as1z—zo _e—asz\z—zo\)_i_(_])n (e—ow(z+zo) _ e—asg(z+zo))}J1 (Wo)Jo (ar)da}’
0

o (r.z)= ﬁ{%j[ﬁ( ~osglz=) _ke*asz\z—zo\)_i_

(-1’ (e—asl(erzo) _ ke_wz(mo)):'a Ty (o), (o) dou+ (A34)

+_I[ —(XSZ‘Z Z()‘ e—(XS]‘Z—Zo‘ + (_1)’1 (Sle—OLAS‘z(Z+Z()) _ksze—aé‘](zﬂ-Zo))} (X,JI ((X,I"O)JO ((X,}")da},

S152°%
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1 T —asy|z—z, —ass|z—z,
_(_])n (Slefow](erzo) _kszefotsz(zﬁo)):l(xn]o (OU”O)JI (Otr)dot + ]IJ‘[B(e*asg\z—zo\ N (A35)
0

ke —asy|z—zg| ) N (—1)n (6*0“2(2“0) _ kefas1(z+zo) )} oJ; (0”’0 )JI (ar)da},

The stresses o,, and oy may be similarly expressed.
For two half-spaces problem with cracks the displacement and stress field are obtained in the forms
(z > 0)

0

] —osz —0oS»z
ur(r,2)=—m£c(a)(ks2e 507 ) (o) dar, (A36)

o0

[(a)(kem®2 =), (ar)dar, (A37)

o..(rz)= - jsz IC(&)(SIe_“SZZ —sze_o‘sfz)(xJo (ar)da, (A38)
0
o, (r.z)= %152 C(a)(e_(“]z —e 2 )OLJ] (or)da, (A39)
S1752%

for symmetric loading, i.e., o, (r,0)=0, and

o0

1 _ —os
— D k asyz asyz J d , A40
GZC(k—I)s]sz-([ (o) ke e @), (ar)do (A40)

“r(r’Z)

[e'e]

] —0SH»Z —Qs;z
uz(r,z)z—m;[D(a)(ksze 2 —s5e ! )Jo(ocr)doc, (A41)
o..(rz)=— . fsz jD(a)(e““’Z —e ®F )OLJO (ar)do, (A42)
0
o, (r.z)= . jsz D(a)(sze_‘”zz —s,e_aSIZ)OLJ, (or)da, (A43)
0

for antisymmetric loading, i.e., o, (r,O) =0, and
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ug (r,z) = ! E(o)e *37J, (or)do, (A44)
ZS3 0
o0 (r2) ==[ E(a)e 7 as, (ar)da, (A45)
0
g (r,z)——s3IE(a)e_as3zm]2 (or)da (A46)
0

for antisymmetric torsion.

The solution for each half-space may be obtained as the superposition of two fields obtained above.

Nomenclature

a —radius of a penny — shaped crack or radius of bonded region for an external crack
¢; —elastic constants of a transversely isotropic solid

h —the z — coordinate of applied ring forces

K;,K;,K;; - stress intensity factor of mode I, mode II and mode III, respectively
k — the material parameter of transversely isotropic material

r —radial coordinate
s — the eigenvalue of transversely isotropic body
u, —radial displacement

ug — circumferential displacement

u, —axial displacement

z
z —axial coordinate
1, —the resultant of radial ring force

1, —the resultant of circumferential ring force

~

;  — the resultant of axial ring force

& — Hankel parameter

¢ — oblate spheroid coordinate

n — oblate spheroid coordinate

G —stress

0 — circumferential coordinate

v — material parameter
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