
 
 

Int. J. of Applied Mechanics and Engineering, 2015, vol.20, No.3, pp.471-485 
DOI: 10.1515/ijame-2015-0032 

 
 

SCATTERING OF INTERNAL WAVES BY VERTICAL BARRIER IN A 
CHANNEL OF STRATIFIED FLUID 

 
P. DOLAI 

Department of Mathematics  
Prasanna Deb Women’s College 

Jalpaiguri-735101, INDIA 
E-mail: dolaiprity@yahoo.co.in 

 
 

The problem of two dimensional internal wave scattering by a vertical barrier in the form of a submerged 
plate, or a thin wall with a gap in an exponentially stratified fluid of uniform finite depth bounded by a rigid plane 
at the top, is considered in this paper. Assuming linear theory and the Boussinesq approximation, the problem is 
formulated in terms of the stream function. In the regions of the two sides of the vertical barrier, the scattered 
stream function is represented by appropriate eigen function expansions. By the use of appropriate conditions on 
the barrier and the gap, a dual series relation involving the unknown elements of the scattering matrix is 
produced. By defining a function with these unknown elements as its Fourier sine expansion series, it is found 
that this function satisfies a Carleman type integral equation on the barrier whose solution is immediate. The 
elements of the scattering matrix are then obtained analytically as well as numerically corresponding to any mode 
of the incident internal wave train for each barrier configuration. A comparison with earlier results available in 
the literature shows good agreement. To visualize the effect of the barrier on the fluid motion, the stream lines for 
an incident internal wave train at the lowest mode are plotted.  
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1. Introduction 

 
Within the framework of linearised theory, a train of internal waves is incident from infinity on a 

bottom standing thin vertical barrier present in a stratified fluid of uniform finite depth, was considered by 
Larsen (1969). He obtained the solution of the problem corresponding to incident internal wave of the lowest 
mode. The related problem of small horizontal oscillation of a barrier as a whole was investigated by 
Krutitsky (1988). Later, Korobkin (1990) studied the motion of a body taken as a dipole source in a weakly 
stratified fluid in the presence of a bottom obstacle modeled as a thin vertical bottom standing plane barrier 
by utilizing Larsen’s (1969) solution. Recently, Dolai (2011), Dolai and Dolai (2013) studied the problems 
of internal wave scattering by a strip or elastic plate on the surface in a stratified fluid. 

In this paper, we consider the problem of internal wave scattering by a vertical barrier in the form of 
a submerged plate or a wall with a submerged gap in an exponentially stratified fluid of uniform finite depth 
bounded above by a rigid plane. Due to the presence of the barrier in the stratified fluid, the incident waves 
(described by a stream function) are reflected back by the barrier with various modes and transmitted 
through the gap also with various modes. The reflected and transmitted internal waves are described by a 
scattering stream function which satisfies a boundary value problem in the fluid region. This stream function 
is expressed on both sides of the barrier by appropriate eigen function expansions involving the elements of 
the scattering matrix. By the use of appropriate conditions on the barrier and the gap, a dual series relation 
involving the elements of the scattering matrix is obtained. By defining a function on the barrier involving 
the elements of the scattering matrix as the coefficients of its Fourier series, the dual series relation reduces 
to a Carleman integral equation in a single integral for the submerged plate problem or in a double integral 
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for the problem of a wall with a submerged gap. The solution of this integral equation for each case is 
obtained by standard technique. Using the solution of the appropriate integral equation, the elements of the 
scattering matrix and hence the stream function describing the resulting motion in the fluid for each case are 
obtained in principle, and for the lowest mode of the incoming internal wave train, these are evaluated 
explicitly. For both the barrier configurations, the stream lines are plotted graphically to visualize the effect 
of the barrier on the incoming internal wave train.   

 
2. Formulation of the problem 
 
 A train of time-harmonic progressive internal waves is propagating along the positive x -direction in 
a channel of a stratified fluid, where we choose a rectangular Cartesian co-ordinate system , ,x y z    in which 

the origin is taken as a point on the bottom, the x z  -plane as the lower rigid boundary, the y -axis 

vertically upwards and y H   as the upper rigid boundary.  

 For small motion in the fluid, let  , ,u x y t    and  , ,v x y t    denote the velocity components along 

,x y   directions respectively. In the case of a weakly stratified fluid, the density and pressure denoted by 

 , ,1 x y t    and  , ,1p x y t    are given by  

 
       , , , ,1 0x y t y x y t           , 

   (2.1) 

       , , , ,
H

1 0

y

p x y t g y dy p x y t


           

 
where t  is the time, , p  are perturbed density and pressure, respectively, and  
 

  ( ) ( )exp0 0
y

y 0
L

     
 

.                                            (2.2) 

 
 Here, g is the acceleration due to gravity, ( )0 0  is the density at the bottom and L  is the linear 
dimension characterizing stratification. Again, the continuity equation is 
 

  
u v

0
x y

 
 
  

,                                                                  {2.3) 

 
so that  
 

  ,u v
y x

 
  

  
                                                            (2.4) 

 
where  , ,x y t    is the stream function describing the motion in the fluid region. We assume that , , ,u v p   

are small quantities so that their products and higher order derivatives can be neglected. 
 Assuming linear theory, the incompressibility condition produces 
 

  0d
0

t x dy

 
 
   

,                                                  (2.5) 
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and the Euler dynamical equations become 
 

  ( )0
u p

y
t x

   
  

, 

   (2.6) 

  ( )0
v p

y g
t y

    
  

. 

 
 Now, eliminating p  from the coupled Eqs in (2.6) and using (2.5), we find 
 

  
( )

( )
2 2 2

0
0 2 2

d y
y g

t x dy y tx y

                         
.                          (2.7) 

 
 Again, using the relation (2.2) and eliminating   from Eqs (2.7) and (2.5), we obtain 
 

  
2 2 2 3 2

2 2 2 2 2

1 g
0

L Lt x y t y x

         
                

.                               (2.8) 

 
 Using the non-dimensional variables x, y, t defined by 
 

  
/

, ,
1 2

g
x x y y t t

H H L

         
 

, 

 

and defining 
/

( , , ) , ,
1 2

H H L
x y t x y t

g

            
 and assuming 

H
1

L
  (which is equivalent to the 

Boussinesq approximation for a weakly stratified fluid), we find that  
 

  , ,
2 2

2
2 2

0 x 0 y
t x

   
         

 
,                                (2.9) 

 
which is the basic partial differential equation satisfied by the stream function ( , , )x y t .  

 Since the fluid lies between two rigid planes y 0  and y   , the bottom and the top conditions are 
 
  on  ,0 y 0    .                                                (2.10) 
 
 For time-harmonic motion with dimensionless frequency  , the time-dependence in ( , , )x y t  can 

be taken as  total( , , ) Re ( , )exp( )x y t x y i t      where total ( , )x y  now satisfies 

 

  
total

total , ,
2

2 2
2

x 0 y
x

 
          


,                      (2.11) 

 

  total on  ,0 y 0    .                                                 (2.12) 
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 In the absence of the barrier, progressive wave solutions for ( , )x y  are   
 

  exp sin
2

k x
i ky

1

   
  

 

 
where k  is the mode, and these exist only when 0 1  .  

 Let a train of progressive internal waves represented by the stream function Re inc ( , )exp( )x y i t    

with  
 

  inc ( , ) exp sin
2

k x
x y i ky

1

     
  

,                                       (2.13) 

 
be propagating along the positive x -direction, where k  is the mode of the internal wave. 
 In the absence of a barrier, the train of internal wave of mode k  will propagate in the fluid without 
any distortion. However, due to the presence of the barrier the incident internal wave train will be scattered 

by the barrier. Let ( , )x y  denote the stream function of the scattered wave such that total inc     . Then 
( , )x y  satisfies (2.11) and (2.12) together with 

 
  sin on ,ky x 0 y L                                              (2.14)    
 
where ( , ).jL L j 1 2   Here ( , )1L     corresponds to a submerged plate and ( , ) ( , )2L 0      

corresponds to a wall with a submerged gap. 
 Also,                                
 
  ( , ) behaves as outgoing waves as x y x  .                          (2.15) 

 
 Again, as the scattered stream function ( , )x y  is symmetric about the barrier line (x=0) we have  
   
  ( , ) ( , )x y x y    .                                                    (2.16) 
 

 Since 
   , ,

,
0 y 0 y

x x

   
 

 exist for all y, but 
 ,0 y

x




 exists only across the gap, and as such 

because of Eq.(2.16), ( , )x y  must satisfy 
 

  
   , ,

for
0 y 0 y

0 y L
x x

  
  

 
                                (2.17) 

 
where   ( , ) .L 0 L    

 
 
 
 



Scattering of internal waves by vertical barrier in a channel … 475 

3. Method of solution 
 
 The solution ( , )x y  satisfying Eq.(2.11) and the conditions (2.12), (2.16) and (2.15) are given by 
 

  ( , ) exp sink
m 2

m 1

m
x y p i x my

1





     
  

                                    (3.1) 

 

where the unknown constants  , , ,k
mp m 1 2 3   may be interpreted as the transmission or reflection co-

efficient for the mth transmitted ( )m k  or reflected mode corresponding to the kth incident mode. For 

, k
km k 1 p   is the transmission co-efficient for the kth transmitted mode. We call k

mp  an element of the 

scattering matrix for m k . 

 The following dual series relation for the elements k
mp  are obtained by using the conditions (2.17) 

and (2.14) when applied to Eq.(3.1)  
 

  sin for ,k
m

m 1

m p my 0 y L




                                             (3.2) 

 

  sin sin for k
m

m 1

p my ky y L




    .                                     (3.3) 

 
 To solve the dual series relations (3.2) and (3.3), we consider a function ( )kh y  involving the 

elements k
mp  as the Fourier sine series defined by 

 

  ( ) sin for k
k m

m 1

1
h y m p my 0 y

k





     ,                                  (3.4) 

 

then ( )kh y  is proportional to 
 ,0 y

x

 


, the vertical component of scattering velocity at x 0 . Because of 

the condition (3.2), 
 
  ( ) forkh y 0 y L  ,                                           (3.5) 
 
and ( )kh y is allowed to have at most a square root singularity near the edges of the barrier or plate.              

 The elements k
mp  are related to ( )kh y  by 

 

  ( )sink
m k

L

2 k
p h y my dy

m
 

  .                                          (3.6) 

 
 Using Eq.(3.6) in Eq.(3.3) we find that ( )kh y  satisfies the integral equation 
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sin sin sin

( ) ,k
m 1L

1 2 mu my ky
h u du y L

m k





     
   

 , 

 
which is equivalent to  
 

  
sin

sin
( ) ln ,

sin
k

L

y u
1 ky2

h u du y L
y u k

2

  
         

  

 .                       (3.7) 

 
This is a Carleman type integral equation and its solution can be obtained as follows. 
 Differentiation of both sides with respect to y produces a first kind singular integral equation with a 
Cauchy type kernel in the form 
 

   ( )
cos cos ,1k

L

G t1
dt k s s L

t s




  
                                 (3.8) 

 

where the integral is in the sense of Cauchy principal value  ( ) cos , cos ,1
k kG t h t t u   coss y  and L  

is the image of L . For  ,1L L    ,  / ,1L L b a    with cosa   ,  cosb b a    while for 

   , ,2L L 0      ,    / , ,2L L 1 b a 1       

 We now deal with the cases 1L L  and 2L L , respectively. 
 
Case (a):  ,1L L       

 
 This corresponds to a submerged plate. In this case ( )kh u  have square root singularities near u    

and u   , the two edges of the submerged plate. Thus the solution of the integral Eq.(3.8) for 

 / ,1L L b a    with the requirement that          

 

  
  
  

/

/

as ,
( )

as

1 2

k 1 2

a t t a 0
G t

t b t b 0





    
   


    (3.9) 

 
is given by (cf. Mikhlin (1964), Gakhov (1966), Cooke (1970)) 
 

  
 

   
/

/

( )( )
( ) cos cos ,

( )( )

1 2a
1

k 1 2
b

s b a s1 1
G t k s ds C b t a

s tt b a t


            
  

 
where C  is an arbitrary constant and the integral is in the sense of Cauchy principal value. Thus 
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   

   

/

/

( ) (cos )
cos cos cos cos

cos
cos cos cos cos .

cos cos

k k 1 2

1 2

1 1
h u G u

u u

ky
y y dy C

y u





  
    

 
      

  


 (3.10) 

 
 The constant C  can be evaluated by substituting the solution ( )kh u  given by Eq.(3.10) in the 

original integral Eq.(3.7) for  , ,1L L     and then evaluating the various integrals for any  ,y   . 

However, these integrals cannot be obtained analytically, but can be evaluated numerically for various values 
of  ,y    by Gauss quadrature taking care of the singular points and integer values of k . The following 

table gives C  numerically for , , , ,1 2 k 1 2 3      and various values of 0y  in  ,  . 

 
Table 1. Values of C . 
 

0y  k 1  k 2 k 3

1.3 1.353287 0.061550 -0.267210 

1.5 1.353327 0.061484 -0.267138 

1.7 1.353302 0.061437 -0.267208 

1.9 1.353098 0.061594 -0.267473 

 
 Thus C  is obtained numerically with an accuracy of three decimal places. It may be noted that C  is 
independent of y, and Tab.1 also demonstrates this fact. 

 The scattered elements k
mp  are now obtained in principle by using Eq.(3.6) for  ,L     and  

( )kh u  given by Eq.(3.10) after obtaining the constant C  as explained above. The scattered stream function 

( , )x y  is then obtained by using the relation (3.1). 
 
Case (b): ( , ) ( , )2L L 0       
 
 This corresponds to a vertical wall with a submerged gap between y    to y   . Here 

/ ( , ) ( , )2L L 1 b a 1      is a double interval and ( )kG u  has square root singularities near ,u b u a   and is 

zero near the end points ,u 1 1   corresponding to the vicinity of the two ends of the wall. The appropriate 

solution to the integral Eq.(3.7) in this case satisfying the conditions at , ,t 1 b a   is given by (cf. Gakhov 
(1966)) 
 

  
 

   
/

/
/

/

cos cos( )( )
( ) ,

( )( )
2

11 22

k 21 2 2
L

k ss a s b1 1 t
G t ds t L

s tt a t b 1 s


 

 
   

 .              (3.11) 

 
 Thus ( )kh u in this case is given by 
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 

  /

/

(cos )(cos )sin
( ) cos ,

cos cos(cos )(cos )
2

1 2

k 21 2
L

y a y b1 u
h u ky dy u L

y uu a u b

 
 
    .   (3.12) 

 

 Now the scattering co-efficients k
mp  are obtained from the relation given by Eq.(3.6) and hence the 

scattering stream function ( , )x y  is obtained by using the relation (3.1). It may be noted that if we make 

  , then the upper part of the wall becomes non-existent and it assumes the form of a bottom standing 

barrier considered by Larsen (1969). The expression for ( )kh u  in Eq.(3.12) then becomes 
 

  
sin cos cos

( ) cos cos ,
cos coscos cos

k

0

u
y2 y2h u ky dy 0 u
y u 2u

  
   
    . 

 
For k 1 , this becomes 

 

  
sin cos

( ) cos , ,
cos cos

1

u
22 12h u u 0 u

2u

       
    

 

 
which coincides with Larsen’s (1969) result for a bottom standing barrier. The scattering co-efficients for 
k 1  can be obtained explicitly in terms of Legendre polynomials and these are also given in Larsen’s 

(1969) paper. For / 2   , the co-efficients  , , ,k
kp k 1 2 3   have been obtained analytically by 

Korobkin (1990). The scattering co-efficients  , ,k
kp k 1 2 3  are also obtained here directly as a limiting 

process from the plate problem or the wall with a gap problem by a numerical procedure. These coincide 

with the numerical values of k
kp  given by Korobkin (1990) obtained analytically. This is discussed in some 

detail. 
 Again, if we make 0 , then the lower part of the wall becomes non-existent and the wall 
assumes the form of a top-piercing barrier. In this case the expression for ( )kh u  in Eq.(3.12) becomes 
 

  
sin cos cos

( ) sin cos ,
cos coscos cos

k

u
y2 y2h u ky dy u

y u 2u





 
    
    . 

 
 For k 1 , the scattering co-efficients can be obtained explicitly in terms of Legendre polynomials. 
 
4. Discussion 
 
4.1. Scattering co-efficients 
 
(a) Submerged plate: In this case  ,1L L    . 

 
 For a submerged plate, we have chosen ,1 2     so that the vertical length (non-dimensional) of 

the plate is 1. A representative set of the values of the scattering co-efficients  , , , , ,k
mp m 1 2 3 k 1 2 3   are 

given in the following table 
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Table 2. k
mp  (for a submerged plate barrier). 

 
m 

k 

1 2 3 

1 -0.857988 -0.039243 0.171077 

2 -0.078591 -0.402869 -0.043459 

3 0.515209 -0.065256 -0.236441 

 
 To check the validity of our numerical scheme, we have made 0  and / 2    so that the plate 
assumes the form of a bottom-standing barrier. In this case the following table depicts 

 , , ; , ,k
mp m 1 2 3 k 1 2 3   for , /0 2     , computed from the results of the submerged plate barrier. 

 

Table 3. k
mp  (for a bottom-standing barrier obtained as a limiting case of plate). 

 
m 

k 

1 2 3 

1 -0.747489 -0.250445 0.061265 

2 -0.502668 -0.437156 -0.248718 

3 0.183744 -0.374258 -0.560472 

 
 The values of ,1 2

1 2p p  and 3
3p  have been respectively given explicitly by Korobkin (1990) as -3/4, -

7/16, -9/16 i.e., -0.75, -0.4375, -0.5625 who calculated these directly from the bottom standing barrier 
problem, and these coincide with our results upto two decimal places. This shows the correctness of the 
numerical scheme used here. 
 The scattering co-efficients for a top-piercing barrier can also be obtained from the results of the 

plate problem by making   . In this case, the following table depicts  , , ; , ,k
mp m 1 2 3 k 1 2 3   for 

/ 2   . 
 

Table 4. k
mp  (for a top-piercing barrier obtained as a limiting case of plate). 

 
m 

k 

1 2 3 

1 -0.747309 0.250355 0.061296 

2 0.502932 -0.437289 0.248763 

3 0.183478 0.374392 -0.560517 
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 It may be noted that two geometrical configurations for which Tabs 3 and 4 are depicted are 

complementary to each other. If ( )1 k
mp  and ( )2 k

mp  correspond to bottom-standing and top-piercing barriers 
whose vertical lengths are equal to half the channel depth, then it can be shown that 
 

   ( ) ( )m k1 k 2 k
m mp 1 p

   

 
 This is also reflected in the Tabs 3 and 4. 
 
(b) Wall with a submerged gap: In this case ( , ) ( , )2L L 0       
 
 For a wall with a gap, we have chosen ,1 2     so that the length (non-dimensional) of the 
vertical expanse of the gap is unity. A representative set of the values of the scattering co-efficients 

 , , ; , ,k
mp m 1 2 3 k 1 2 3   are given in Tab.5. 

 

Table 5. k
mp  (for a wall with a gap with ,1 2    ). 

 
m 

k 

1 2 3 

1 -0.933026 -0.092683 -0.214593 

2 -0.033524 -1.050250 -0.047305 

3 -0.618495 -0.366265 -0.645788 

 
 Again, to check the validity of the numerical scheme followed here, we have made    and 

/ 2    so that the wall assumes the form of a bottom standing barrier. Table 6 depicts 

 , , ; , ,k
mp m 1 2 3 k 1 2 3   for this case. 

 
Table 6. k

mp  (for a bottom-standing barrier obtained as a limiting case of a wall with a gap). 

 
m 

k 

1 2 3 

1 -0.746568 -0.250057 0.061365 

2 -0.503799 -0.437415 -0.248697 

3 0.182792 -0.374831 -0.560893 

 
 A comparison of Tab.6 with Tab.3 shows that the elements in Tab.6 coincide with corresponding 
elements in Tab.3 upto 2 to 3 decimal places in most cases. Also, the diagonal elements agree with 
Korobkin’s (1990) explicit values. 
 Again, if we make 0 , then the wall assumes the form of a top-piercing barrier. In this case 

Tab.7 depicts  , , ; , ,k
mp m 1 2 3 k 1 2 3   for / 2   . 
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Table 7. k
mp  (for a top-piercing barrier obtained as a limiting case of a wall with a gap) . 

 
m 

k 

1 2 3 

1 -0.746568 0.250057 0.061265 

2 0.503799 -0.437415 0.248697 

3 0.182791 0.374831 -0.560893 

 
 The entries in Tab.7 coincide with the entries in Tab.4 almost 2 to 3 decimal places. It may be noted 
that while the entries in Tab.7 are calculated as a limiting process from the problem of a wall with a gap and 
the entries in Tab.4 are calculated as a limiting process from the plate problem. This again confirms the 
correctness of the numerical method utilized here. 
 
4.2. Stream function 
 
 To visualize the effect of the vertical barrier on the wave motion, the incident internal wave field of 
the lowest mode (i.e., k 1 ) is chosen for simplicity. In this case the stream function describing the motion 
in the fluid is obtained as                                                     
 

  total ( , , ) Re exp sin sin exp1
m2 2

m 1

m xx
x y t i t y p my i t

1 1





                          
               

  

 

where the scattering co-efficients ( , , )1
mp m 1 2   can be obtained at least numerically. For the two 

configurations of the barrier, as well as the bottom-standing and top-piercing barriers as limiting cases of the 
plate as well as the wall with a gap, these co-efficients have been obtained numerically. In the absence of the 
barrier, the stream lines corresponding to the incident internal wave with mode one are depicted in Fig.1, 
taking .0 6  and t 5  in the vicinity of x 0 . 

 

 
 

Fig.1. Stream lines in the absence of a barrier for k=1, .0 6 , t=5. 
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 When a barrier is introduced along the line x=0, the corresponding stream lines are depicted in Figs 
2 to 5.  

 

 
 

Fig.2. Stream lines for a submerged plate of unit length  ,2 1     with k=1, .0 6 , t=5. 

 
 Figure 2 shows the streamlines for a submerged plate of unit length  ,1 2    . Figure 3 shows 

the same for a thin wall with a gap of unit length  ,1 2    . 

 

 
 

Fig.3. Stream lines for a thin wall with a gap of unit length  ,2 1     with k=1, .0 6 , t=5. 
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 Figures 4 and 5 show the stream lines for a bottom-standing and top-piercing barrier. In all these 
figures .0 6 , t=5 have been taken. 

 

 
 

Fig.4. Stream lines for a bottom standing barrier  , 1     with k=1, .0 6 , t=5. 

 

 
 

Fig.5. Stream lines for a top-piercing barrier  ,0 2    with k=1, .0 6 , t=5. 

 
 The results for the last two cases have been obtained by making    (with 1  ) and 0  

(with 2  ) in the results of the wall with a gap configuration. The same results are also obtained by making 

0  (with 1  ) and    (with 2  ) in the results of the submerged plate configuration. In all the 
cases, it is observed that some stream lines abruptly change their direction, and the points where the changes 
in the direction of stream lines occur roughly lie on straight lines which intersect near the edges of the 
barriers. Different patterns in the stream line contours are formed for each of the barriers. 
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5. Conclusion 
 
 Scattering of internal waves by a thin vertical barrier in the form of a submerged plate or wall with a 
gap submerged in an exponentially stratified fluid of uniform finite depth under a rigid plane is studied here 
under the assumption of linear theory and Boussinesque approximation. The problem is formulated in terms 
of the stream function describing the motion in the fluid. The elements of the scattering matrix and the 
stream function are obtained through the solution of a Carleman integral equation for any mode of the 
incident internal wave. The scattering coefficients are also obtained numerically and some results are 
compared with the results available in the literature. Good agreement is seen to have been achieved. For the 
lowest mode of the incident internal waves, the stream lines are drawn to visualize pictorially the effect of 
the barrier for its various configurations. 
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Nomenclature 
 
 g – acceleration due to gravity 
 H – vertical length of the channel 
 k – mode of the internal wave 
 p – fluid perturbed density  
 1p  – fluid pressure at any point 

 t  – time 
 u, v – velocity components 
 ,x z   – horizontal distance 

 y  – vertical distance 
     – length of the plate or gap 
   – fluid perturbed density  
 0  – fluid density at the bottom 

 1  – fluid density at any point 

   – scattered stream function 
   – stream function 
   – circular frequency 
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