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A two dimensional Cartesian model of a generalized thermo-microstretch elastic solid subjected to
impulsive force has been studied. The eigen value approach is employed after applying the Laplace and Fourier
transforms on the field equations for L-S and G-L model of the plain strain problem. The integral transforms
have been inverted into physical domain numerically and components of normal displacement, normal force
stress, couple stress and microstress have been illustrated graphically.
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1. Introduction

Inadequacy of the classical theory of elasticity to model the modern engineering components which
possess internal structure such as polycrystalline materials and materials with fibrous or coarse grain
structure led scientists to develop a new theory which can successfully explain the behavior of such
materials. Eringen (1966) coined a term micropolar to explain deformation of elastic media with such
oriented and interconnected particles made up of dipole atoms or dumb-bell molecules which are also
capable of translational as well as rotational motion when subjected to surface and body couples.

The conventional coupled thermoelasticity theory based on a parabolic heat equation, which predicts
an infinite speed for the propagation of heat leading to the conclusion that that if an isotropic, homogeneous,
elastic material is subjected to thermal or mechanical disturbances; the effects in the temperature and
displacement field are felt immediately at an infinite distance from the source of disturbance. To overcome
these deficiencies generalized thermoelasticity theories were developed consisting of a hyperbolic heat
equation, which admit a finite speed for thermal signals. The first generalization was due to Lord and
Shulman (1967), who obtained a wave-type heat equation by postulating a new law of heat conduction to
replace the classical Fourier law. The second generalization is known as the theory of thermoelasticity with
two relaxation times or the theory of temperature-rate-dependent thermoelasticity. Green and Lindsay (1972)
obtained an explicit version of the constitutive equations later.

Nowacki (1966) and Eringen (1970) extended the linear theory of micropolar continua to include the
thermal effect and formulated the micropolar thermoelasticity theory. One of the generalizations of the
classical theory is the linear theory of elastic materials with stretch. A micropolar elastic solid with stretch
which included the effect of axial stretch during the rotation of molecules was developed by Eringen (1971).
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Microstretch solids are capable of stretching and contracting independent of their translation and rotation. In
these solids, the motion is characterized by seven degrees of freedom, namely three for translation, three for
rotation and one for stretch. Examples of such elastic solids are porous media whose pores are filled with gas
inviscid liquid, asphalt and composite fibrous materials. Eringen (1990) also developed a continuum theory
of thermo-microstretch elastic solids. Green and Naghdi (1993) proposed the theory of thermoelasticity
without energy dissipation and presented the derivation of a complete set of governing equations of the
linearized version of the theory for homogeneous and isotropic materials in terms of displacement and
temperature fields and proved the uniqueness of the solution of the corresponding initial mixed boundary
value problem. Kumar and Deswal (2001) studied the disturbances caused by mechanical and thermal
sources in a homogenous, isotropic generalized thermo-microstretch elastic medium by using the Laplace
and Hankel transforms. Kumar et al. (2003) contributed to this field by studying a plane strain problem in a
microstretch elastic solid. A problem of bending of microstretch elastic plates was investigated by Ciarletta
(1999). Kumar and Partap (2009) investigated the propagation of axisymmetric free vibrations in a
microstretch thermoelastic homogeneous isotropic solid which was subjected to stress free thermally
insulated and isothermal conditions. Othman and Lotfy (2010) used a general model of the equations of
generalized thermo-microstretch theories of Lord-Shulman (L-S), Green-Lindsay and classical dynamical
coupled theory (C-D) for a homogenous isotropic elastic half space and compared results in the presence and
absence of microstretch effect. Lotfy and Othman (2012) studied the effect of rotation of generalized thermo-
microstretch elastic half space whose surface was subjected to Mode-I crack problem and compared the
results for L-S and CD theories. Abbas and Othman (2012) used the finite element method to study the
propagation of plane waves in a thermo-microstretch elastic solid half-space for the L-S and C-D model of
field equations. Othman et al. (2013) studied the effect of the magnetic field on generalized thermo-
microstretch isotropic elastic half space solid under rotation which is subjected to a mode-I crack problem in
the context of G-N theory with the help of normal mode analysis.

2. Formulation and solution of the problem

We take a Cartesian coordinate system (x;,x,,x;) and the x;-axis pointing vertically into the

medium. Following Eringen (1990), Lord and Shulman (1967) and Green and Lindsay (1972) field equations
and the constitutive relations without body load, body couples, heat sources and stretch force for a
homogeneous, isotropic generalized thermo-microstretch elastic solid can be written as
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oT
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=ag,,.8; +Bo; ; +v9;,, (2.6)
where
v:(37»+2u+K)0L,1, v;=(3A+2p+K)a

Since we are considering a two-dimensional plane strain problem, so we assume the components of
the displacement vector u and microrotation vector ¢ are of the form

u=(u1,0,u3), ¢=(0,¢2,0). (2.8)

. . . 0
Here due to symmetry about the x;-axis all the quantities are independent of x,, so that 6—50.
X2

With these considerations and using Eq.(2.8), the system of Egs (2.1) to (2.7) reduces to
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We define the dimensionless quantities as
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Using the dimensionless quantities defined in Eqs (2.14), the system of Egs (2.9)-(2.13) may be
recast into a dimensionless form after suppressing the primes as
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Applying the Laplace and Fourier transforms to Eqs (2.15) - (2.19) defined by
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0

7 (o3 p) = L{S (x3x3,0)} = [ £ (x,35.1) exp(pt)at, (2.20)
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The system of Eqs (2.22) - (2.26) can be written as
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where O is the null matrix, I unit matrix of order 4,[]’ transpose of matrix [] and D = i

To solve Eq.(2.27), we take N
W (&, x;,p)=W(E, p)e™™, (2.28)
for some parameter ¢ so that
A& p)W (&,x5,p) =qW (&3, ), (2.29)

which leads to the eigen value problem. The characteristic equation corresponding to the matrix A is given
by

det(A—gI)=0, (2.30)

On expanding (2.30), we get

9" —0,4" +0,4° 034" +0,47 +05=0 2.31)

where o;'s (i=1, 2, .., 5) are functions of & and p.
The eigen values of the matrix A are characteristic roots of Eq.(2.31).The eigen vectors X (&, p)

corresponding to the eigen value g, can be determined by solving the system of homogenous equations

[A-ql]X (& p)=0. (2.32)

The set of eigen vectors X (&, p); s=1, 2... 10 is be obtained as

X, (&p)= B:((ZZ)J , (233)

where
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Thus the solution of Eq.(2.27) as given by Singh et al. (2011) is

5
W(i, X35 CI) = Z[BsXs exp(qsx3) +B s X5 exp(—qsx3 )] (2.34)
s=1

where B, 's (s=1, 2, ..., 10) are arbitrary constants. Equation (2.34) represents the solution of the

generalized thermo-microstretch elastic medium for the plane strain case and gives displacement,
microrotation, temperature distribution and scalar microstretch in the transformed domain.

3. Application

We consider an infinite generalized thermo-microstretch elastic space in which a concentrated force
F =—F)8(x;)d(t) where F} is the magnitude of the force, acting in the direction of the x;-axis at the origin
of the Cartesian co-ordinate system as shown in Fig.1.

Generalized thermo

microstretch elastic

solid x;:<0

> X
Generalized thermo
microstretch elastic
solid x;=0
X
? 7

The boundary conditions for the plane x;=0 are given by

u x,0+,t—u x;,0,t]=0, u x,0+,t—u x;,0,t]=0, 3.1
1\ JARY] 31X 3\

¢2(x], o, t)-¢2(x1, 0, t)=0, (I)*(x[, 0, t)-d)*(xl, 0, z)=0, (3.2)
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+ - oT " oT _
T(x;,0 ,t)-u (x,O,t)zO, —\x;,,0" ) ——|x;,0,t|=0, 33
(1 1% 6x3(1 ) 8x3(] ) (3.3)

Z‘31(x1,0+,t)-t31(x1, 0_, t):0, t33(x1, 0+, t)_t33(XJ,0_, Z)Z_F()S(XI)S(I), (34)
+ - + -
m32(x1,0 ,Z)—m32(x1,0 ,t):0, 7»3(361,0 ,t)—?u3(x1,0 ,Z)ZO. (35)

For x;>0: Making use of Eqs (2.8) and (2.14) on Eqgs (2.5) - (2.7) and F) :%, we get the stresses in the

non-dimensional form with primes. After suppressing the primes and applying the Laplace and Fourier
transforms defined by Eqs (2.20) and (2.21) on the resulting equations and using boundary conditions (3.1)-
(3.5), we get the transformed components of displacement, microrotation, scalar microstretch, temperature
distribution, tangential force stress, normal force stress, tangential couple stress and microstress for x;>0,
given by

~ 5 _qu3
i (Ex3,p)=— % aq.Bg | se , (3.6)
s=1

~ 5 _qSX3

iz (&x;3,p)= X bB, se , 3.7
s=1

= J —qX3

b (8x5.0)=-5 2 B se 57, (3.8)
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o S —qX3

(I) (‘tj’xj,p): Z CSBS+56 ) (39)
s=1

~ S 443

T(&x;p)= X d B se , (3.10)
s=1

~ _ 5 2 . _qs'x3

t31(§,x3,p)— > (m3asqs +i& bymy, +Z;m4)BS+5e , (3.11)
s=1

> ¢ 4¢3

t33 (vapp) = Z [l§m15asqs +m1bsq‘v +m15cs +(1+T()p)ds] BS +5€ ’ (312)
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5
_ q X
gy (x5, p) = Emy zquBS+5e s, (3.13)
S =



496

V.Kumar and R.Singh

5 _
- q.x;
k3(§,x3,p)=—m,6 > csqus+5e S
s=1

For x;<0: the above expressions get suitably modified, e.g.,

5
- q,X3
u](g,xj’,p): ZlaSqSBSe §
S =

where

2 X2
) M A ow
m;s=—7

4 My = T 4
pC; > pCy > pCy > pC; -

(3.14)

(3.15)

Making use of the transformed displacement, microrotation, temperature distribution, scalar
microstretch and stress components given by Eqs (3.6)-(3.14) in region x;>0 and equations for the region
x3<0 in the boundary conditions, we obtain ten linear relations between B, 's (s=1, 2, .., 10) which on

solving give

)
Z‘IIAj
+(a4 —az){(c, —cz)(d3 —dz)—(d5 —dz)(c3 - )} +
+(a; —az){(c3 —c;))(dy—dy)—(ds —d,)(¢y —cz)}],

B, =B, =

5

B,=B5B, =—*[(a3 —al){(c5 —c,)(d4 —dl)—(d5 —dl)(c4 —cl)}+

2q,4,
+(a4 —a,){(c3 —c])(d5 —d,)—(d3 —d])(c5 —c])}+
+as—ay){(es—¢;)(ds —d;) = (dy —d; ) (es —¢; )}]

)

B; =By = * [(az —a;){(es —¢;)(ds ~d;)=(dy —d;)(c5 —¢;)} +

2434,

[(a3 —a,){(c4 —cz)(d5 —dz)—(d4 —dz)(c5 —cz)}Jr
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£y
m[(az —al){(c3 —¢;)(dy —d,)—(d3—d1)(c4—c,)}+

+(a3 —al){(c4 —c,)(d2 —d,)—(d4 —d,)(cz —c,)}+
+(a4 —al){(cz —cj)(d3 —dj)—(dz —dl)(c3 —cl)}J

Bs =By =

where

Ay =my|(c;—es){a; (dshy —dybs)+as (dyby —d by) +ay (dibs —dsby )| +
+(cy —c3){a, (dbs —dsby)+ay(dsh; —dbs )+ as(d;b, —d,b;)} +
+(cy —cs){a, (dsbs —dsby )+ ay (dshy —d;by) +az (d )by —d,by )} +
+(cy —cy){a, (dsb; —dsbs )+ az (d;bs —dsb, ) + a5 (dsb; —d by )} +
+(cy —c3){a, (dsby —dybs) +ay (djbs —dsh; )+ as (dyb; —d by )} +
+(cs —c3)a; (dyby —d by )+ ay(dby —dyby)+ay (d by —d by )} +
+(c; —c;){ay (dybs —dshy) +ay (dsby —dybs)+as (dyb, —d b, ) +
+(cs5 —c;){ay (dsby —dby) +az(dsby —dyby ) +ay (dyby —dsh, )} +
+(cy —c;){ay (dshs —dsbs)+az (dybs —dsb, )+ as(dsb, —d,bs )} +
+(c; —e;){az (dsby —d bs)+ay(dsbs —dsby ) +as(d by —dsby )}

Thus functions ;, i3, (T) s T, f315833, 5y, J)* and A 3 have been determined in the transform domain

and these enable us to find the displacements, microrotation, temperature distribution field, stresses, scalar
microstretch and microstress.

4. Method for the inversion of transforms

To obtain the solution of the problem in the physical domain, we must invert the transforms for both
theories that is L-S and G-L. These expressions are functions of x;, the parameters of the Laplace and Fourier

transforms p and &, respectively, and hence are of the form j?(xl,x3, p). To get the function f(x,,x3, p) in
the physical domain, first we invert the Fourier transform using

F(xpx5.p) = [ exp(ic xl)N(i,x3,p)d§=%J-{cos(§ x,) fo +isin(& x,) fy | d&. 4.1)
—0 0

The last step in the inversion process is to evaluate the integral in Eq.(4.1). This was done using
Romberg’s integration with an adaptive step size. This method uses the results from successive refinements
of the extended trapezoidal rule followed by extrapolation of the results to the limit when the step size tends
to zero. The details can be found in Press et al. (1986).
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5. Numerical results and discussion

Following Eringen (1984), we take the following values of relevant parameters for magnesium
crystal as

A=94x10"" N/m?>, nw=4x10""N/m’, K=1x10""N/m’>, p=174x10°kg/m’,
v=0.779x10°N, J=02x10"n’, K =1.1753x10""m?,

o =0.0787x10" ' Nsec/m®, 1,=613I1x10"s,  1,=8765x10"s,
£=0.073, Ty=296K, 1,=0.5x10""N/m?, %,=05x10" N/m’,

0y =0.779x10°N, C =3.525J Kg' K.

The variations of the non-dimensional normal displacement Uj (= 2usz/ Fb) , non-dimensional normal

stress 133 (= 233 /F0)> non-dimensional tangential couple stress M3, (=2m32 /FO), non-dimensional

microstress k§(=2k3 /FO) and non-dimensional temperature distribution 7" (= 2T /Fo) with non-

dimensional distance ‘x;” at the plane x;=1, /=10 m and coupling coefficient &=0.073 have been shown
in Figs 2 — 6 for (a) generalized thermo-microstretch elastic (GTMSE) solid (b) generalized thermo
micropolar elastic (GTME) solid; (c) generalized thermoelastic (GTE) solid for time =0.1, 0.125 and 0.5.

1 — L S (GTMSE)
—s— GL(GTMSE)
------- L-S{GTME)
——-#--- GL(GTME)
— — - LS(GTE)

— & - L-S(GTE)

0.8 -

04 -
>
A 02 ¢
= 6
02 >

Fig.2. Variation of normal displacement Us.

The behaviour of displacement for both theories (L-S and G-L) in all three media (GTMSE, GTME,
GTE) is similar, whereas due to the stretch effect, the value of normal displacement in the GTMSE medium
is slightly different as compared to those in the GTME medium for L-S and G-L theories as shown in Fig.2.
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The variations of normal displacement U; for L-S and G-L theories are less in the GTMSE medium as
compared to the GTME medium in the range 0<x;<2.5 and vice-versa in the range and for G-L theory values
ar greater in the GTME medium as compared to the GTME medium in the range 0< x;</.3, 4.3< x;<5.9 and
less in the range /.3< x;<4.3. The rotational effect on the values of normal displacement for all the three
theories has been depicted in Fig.2.

1

0.8 - ——— -5 (GTMSE)
—w— G-L(GTMSE)
g-ﬁ ——— L-S(GTME}
b - G-L{GTME}
0.4 + — — - L-S(GTE}
— & - L-S(GTE}
0,2 =
o
-0,2

Fig.3. Variation of normal stress 7T3;.

The values of normal force stress T3; for L-S theory are greater in the range 0< x;</.3, 3< x,<6 but
less in the range /.3< x;<3.3 for G-L theory values are less in the range 0< x;<[.25, 3< x;<6 and greater in
range /.25< x;<3.3 in the TE medium as compared to the MTE medium. Figure 3 depicts these variations
after dividing the original values of G-L theory in the GTE medium by 10 to depict the comparison.

—— LS (GTMSE})

—— G-L(GTMSE}
—mmmmm L-S{GTME)

—— GL(GTME)

Fig.4. Variations of tangential couple stree Mj;

Figure 4 shows these variations of normal force stress 73; for three different theories in both the
media after multiplying the original values of G-L theory in the GMTE medium by /0°.
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——L-S (GTMSE)

—w— G-L(GTMSE)

Fig.5. Variations of microstress Aj.

The variations of tangential couple stress A; for G-L theory are different and take place in a greater

range as compared to L-S and G-L theories. Also the values for G-L theory are greater as compared to L-S
theory in the range 0< x;<0.8 and 5.3< x;<6 and are less in the range 0.8< x;<5.3 as depicted in Fig.5.

1
——L-S (GTMSE)
0,8 —»— G-L(GTMSE)
------- L-S(GTME)
0.6 - ---6--- G-L(GTME)
— — - L-S(GTE)
04 | — A& - L-S(GTE)

Sao

~~~~~~~~~

Fig.6. Variation of temperature field 7*.

The temperature field T for three different theories in the MTE medium has variations similar to the
variations in the TE medium, where the range of variations for L-S theory is greater as compared to G-L
theory as depicted in Fig.6. For L-S theory, values of temperature distribution are less in the range 0< x;</1.7
and 3.5< x;<4.7 and greater in the range [.7< x;<3.5 and 4.7< x;<6; for G-L theory the values of
temperature distribution are less in the range 0< x,;<1.5 and 3.6< x,<4.5 and greater in the range /.5< x;,<3.6
and 4.5< x;<6 in the GTE medium as compared to the GMTE medium.



Response due to impulsive force in generalized thermo-microstretch ... 501

Conclusion

For both L-S and G-L theories, impact of microstretch effect on stress components is more as
compared to micropolarity. Additionally it is observed that effect of microstretch on displacement, normal
stress, tangential couple stress, microstress and temperature distribution depends upon the distance.
Furthermore variation in all these components shows oscillatory behavior as we move away from point of
application of impulsive force. Using these results, it is possible to investigate the disturbance caused by
more general source for practical applications

Nomenclature

" — specific heat at constant strain

j — micro-inertia
K" — coefficient of thermal conductivity
my; —couple stress tensor

T — temperature change

t; — force stress tensor

u — displacement vector

a, B,y ,K — micropolar material constants
o0, —coefficient of linear expansion

A — gradient operator
8, — Kronecker delta

g — alternating tensor
A, 0 — Lame’s constants
L3 —microstress component

v, v; —mechanical and thermal constant
p —density
1) - thermal relaxation time
t; — thermal relaxation time
¢ — microrotation vector

* .
¢ —scalar microstretch
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