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A fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water 
waves as first pointed out by Dysthe (1979) is derived for gravity waves propagating at the interface of two 
superposed fluids of infinite depth in the presence of air flowing over water and a basic current shear. A stability 
analysis is then made for a uniform Stokes gravity wave train. Graphs are plotted for the maximum growth rate of 
instability and for wave number at marginal stability against wave steepness for different values of air flow 
velocity and basic current shears. Significant deviations are noticed from the results obtained from the third order 
evolution equation, which is the nonlinear Schrödinger equation.  
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1. Introduction 

 
The study of Mclean et al. (1981) for three-dimensional stability of finite amplitude water-waves  

on the surface of deep water reveals that there are two distinct types of instability of gravity waves  of finite 
amplitude in deep water. One is predominantly two-dimensional and is related to all known results (for 
example Benjamin - Feir instability) for special case, and this has been designated as type-I instability. The 
other designated as type-II instability is predominantly three-dimensional and becomes dominant when wave 
steepness is sufficiently large.  
 Yuen (1984) made an extension of the above mentioned paper to the case of interfacial waves with 
current jump. The type-I instability in the particular case of long-wavelength perturbation and small wave 
steepness can be investigated analytically from the nonlinear evolution equation, which consists of a 
nonlinear Schrödinger equation coupled to an equation for the wave-induced mean flow. Such an analytical 
study for the stability of interfacial wave was made by Grimshaw and Pulin (1985). The corresponding 
numerical stability analysis for finite wave length of perturbation and finite wave steepness was carried out 
in a subsequent paper by Pulin and Grimshaw (1985). Pulin and Grimshaw (1986) have made an extension 
of the above two papers for interfacial gravity waves propagating on a basic current shear, in which both 
analytical and numerical results are presented. Analytical results are for long-wavelength modulational 
instability of small-amplitude waves. This was done starting from a third-order nonlinear evolution equation 
for two space dimension (i.e., one dimension in propagation space), which is a nonlinear Schrödinger 
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equation. The results are presented for two superposed fluids of finite depths. The case of infinitely deep 
fluids on both sides of the interface was considered in detail for air-water interface. 
 For a small amplitude, .ka 0 1  the results obtained from the lowest order nonlinear Schrödinger 
equation, when compared with Longuet-Higgins’s (1978; 1978) exact results, are fairly accurate. Here k  is 
the wave number and a is the amplitude of the wave. 
 But for .ka 0 15   the prediction from the nonlinear Schrödinger equation do not agree with the 
exact results of Longuet-Higgins’s (1978; 1978), Dysthe (1979), showed that a surprising improvement on 
these results relating to stability of a finite amplitude wave can be attained by extending the perturbation 

analysis one step further, i.e., adding the order 4  term in the nonlinear Schrödinger equation.  
 From this fourth-order evolution equation Janssen (1983) elaborated on the Dysthe’s approach by 
investigating the effect of wave-induced flow on the long-time behavior of Benjamin-Feir instability and also 
applied this equation to the homogeneous random field of gravity waves and obtained the nonlinear energy 
transfer function found by Dungey and Hui (1979). Stiassnie (1984) showed that Zakharov’s integral 
equation yields the modified or fourth-order nonlinear Schrödinger equation for the particular case of narrow 
spectrum. Hogan (1985) considered the stability of a train of non-linear capillary-gravity wave on the surface 
of an ideal fluid of infinite depth. He derived from the Zakharov equation under the assumption of a narrow 
band of waves, and including the full form of the interaction coefficient for capillary gravity-waves, an 
evolution equation for the wave envelope that is correct to fourth order in the wave steepness. Derivation of 
fourth order nonlinear evolution equations for deep water surface gravity waves including different context 
and stability analysis made from them were carried out by several authors, e.g., Dhar and Das (1999; 2001), 
Majumder and Dhar (2011). 
 The second-order corrections to the first order stability properties are shown to depend on the 
interaction between the mean flow and the frequency dispersion term of the wave envelope. Brinch-Nielsen 
and Jonsson (1986) also derived the fourth-order evolution equation for a three-dimensional Stokes wave on 
arbitrary water depth. In deep water the equation reduces to those of Dysthe (1979), and on finite depth the 
third order terms agree with these of Davey and Stewartson (1974), and Hasimoto and Ono (1972).  
 In the present paper we extend the paper considered by Pulin and Grimshaw (1986) for the case of 
wind blowing over water, starting from a fourth order nonlinear evolution equation. Therefore this paper 
considers the influence of wind on Benjamin-Feir instability. The present fourth order analysis shows an 
appreciable deviation from the third order analysis considered by Pulin and Grimshaw. 

Here we derive a two dimensional fourth order nonlinear evolution equation for gravity waves 
propagating at the interface of two superposed fluids of infinite depth in the presence of air flowing over 
water and a basic current shear. 

From this nonlinear evolution equation, a nonlinear dispersion relation is determined, and an 
expression for the maximum growth rate of instability is obtained. Graphs are plotted showing the maximum 
growth rate of instability against wave steepness for an air-water interface for different values of air-flow 
velocity v , and basic current shears 1  and 2 . It is observed that in the fourth-order analysis, the 
maximum growth rate of instability first increases with the increase of wave steepness and then it decreases, 
while in the third-order analysis, the growth rate increases steadily with the increase of wave steepness. 
Again stable and unstable regions in 0    space are shown in the figures for air-water interface for 

different values of air-flow velocity v , and for basic current shears 1  and 2 .   

 
2. Basic equations 

 
 The common horizontal interface between air and water in the undisturbed state is taken as y 0  

plane. In the undisturbed state air flows over water with a velocity v  in a direction that is taken as the x-axis. 
Each fluid has a basic current shear which has uniform vorticity 1  and 2 , respectively corresponding to a 

basic horizontal current in the x-direction - 1y  and - 2 y , respectively. We take  ,y x t   as the equation 
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of the common interface at any time t in the perturbed state. Let 1  and 2  be the density of air and water 

respectively. We introduce the dimensionless quantities  ,  ,  ,  ,  ,  ,x y  , t , 1
 , 2

 , v  

and   denoting respectively perturbed velocity potentials of water, perturbed velocity potentials of air, 
perturbed stream function of water, perturbed stream function of air, surface elevation of air-water interface, 
space coordinates, time, current shear of water, current shear of air, air flow velocity and the ratio of the 
densities of air to water respectively. These dimensionless quantities are related to the corresponding 
dimensional quantities by the following relations. 
 

  , ,
3 3k k

8g 8 g
         

 

  , ,
3 3k k

8g 8 g
         

 

     , , , ,0k 0 0
2

k k
x y x y

2 2
         

 
 (2.1) 

 

    , ,0
0

k g 2
1 12 k gt t      

 

   , ,0 1
0 2

k2
2 2k g g

v v   
       

     
where 0k  is some characteristic wave number. In the future all these quantities will be written in their 
dimensionless form but with their asterisks deleted. 

The perturbed velocity potentials  ,   and stream functions  ,   of the water and air 
respectively satisfy the two-dimensional Laplace equations 

 
2 0   ,        2 0   ,         in         y    , (2.2) 

 
2 0   ,        2 0   ,       in         y    . (2.3) 

 
The kinematic boundary conditions to be satisfied at the interface are the following  

 

  2y t x x

            
,         when         y   , (2.4) 

 

  1v
y t x x x

                
,         when         y   , (2.5) 

 
 The condition of continuity of pressure at the interface is given by 
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when .

22
1

2 22

22
1

1 12

y
t x y x

y v y
t x y x x

                         
                                       

 (2.6) 

 

 Also  ,  ,  ,   should satisfy the following conditions at infinity 
 
  , 0        as      y  ;      , 0          as      y  . (2.7) 

 
Since a disturbance is assumed to be a progressive wave we look for solutions of the above equations 

in the form  
 

     *exp exp0 n n
n 1

P P P in kx t P in kx t




         (2.8) 

 

where P stands for  ,  ,  ,  ,   and denotes the complex conjugate. Here it is assumed that 0 , 0 , 

n , n , 0 , 0 , n , n  and their complex conjugates are functions of 1x , y , 1t  where 1x x  , 1t t   

while 0 , n , n
  are functions of 1x , 1t  only. Here   is a slowness parameter, and  , k satisfy the 

following linear dispersion relation 
 

       , 2 2 2
1 2 1k 1 1 k 2 v k v k kv 0                    . (2.9)                     

 
 We now suppose that the first harmonic linear wave, whose nonlinear evolution equation we are 
going to study, has its wave number equal to the characteristic wave number 0k . Thus we have k 1  in 
Eq.(2.9) and the linear dispersion relation determining   becomes 
 

       2 2
1 2 11 1 2 v v v 0                . (2.10) 

 
3. Derivation of evolution equation 
  
 On substituting the expansion (2.8) in Eqs (2.2) and (2.3), and then equating coefficients of 
exp ( )in x t ,  ,n 1 2  we get the following equations 

 

  
2

2n
n n2

d
0

dy


    ,           

2
2n
n n2

d
0

dy

     , (3.1) 

 

  
2

2n
n n2

d
0

dy


    ,         

2
2n
n n2

d
0

dy

      (3.2) 

 

where n  is an operator given by  
 

  n
1

n i
x


   


,      ,n 1 2 . (3.3) 
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The solution of these equations satisfy the boundary conditions (2.7) and can be put in the form  
   

 expn n ny A   ,         expn n ny A     , (3.4) 

 
   expn n ny B   ,         expn n ny B     , (3.5) 

 
where nA , nB , nA , nB ,  ,n 1 2  are function of ,1 1x t . 

 We take the Fourier transform of Eqs (2.2) and (2.3) for n 0 . The solution of these transformed 
equations becomes 
 

   exp0 x0 A k y  ,           exp0 x0 A k y    , (3.6) 

 

   exp0 x0 B k y  ,          exp0 x0 B k y     (3.7) 

 

where 0 , 0 , 0 , 0 , are Fourier transforms of , , ,0 0 0 0      respectively defined by  

 

       , , , , , , exp0 0 0 0 x 1 1 1 10 0 0 0 i k x t dx dt




               (3.8) 

 

and 0A , 0A , 0B , 0B  are functions of xk ,  . 
 Again substituting the expansion (2.8) in the Taylor-series from Eqs (2.4)-(2.6) about y 0  and then 

equating coefficients of exp ( )in x t  for , ,n 0 1 2  on both sides, we get three sets of equations, in each of 

which we substitute the solutions for , , ,n n n n      given by Eqs (3.4)-(3.7). For the sake of convenience, 
we take the Fourier transform of the set of equations corresponding to n 0 . The set of equations 
corresponding to , ,n 1 2 0  has been designated respectively as the first, second and third set respectively. 

To solve the three sets of equations, we make the following perturbation expansion of the equations nA , nB , 

,A  nB , n ,  , ,n 0 1 2 . 

 

  n
1 1n

n 1

E E




  ,          n
m mn

n 2

E E




  ,            ,m 0 2  (3.9) 

 
where jE  stands for jA , jA , jB , jB , j ,  , ,j 0 1 2 . 

 On substituting the expansion (3.9) in the above three sets of equations, and then equating various 
powers of   on both sides we get a sequence of equations.  
 From the first-order (i.e., lowest-order) and second-order equations corresponding to the first set of 
equations resulting from (2.4) and (2.5), we get the solutions for ,11 11A A  and ,12 12A A , respectively. Next, 
from the first-order and second-order equations corresponding to the second set of equations resulting from 
(2.4)-(2.6), we get the solutions for , ,22 22 22A A   and , ,23 23 23A A  , respectively. Finally, from the first-
order equations corresponding to the third set of equations resulting from (2.4)-(2.6), we get the solutions for 

, ,02 02 02A A  , and from the second-order equations corresponding to the third set of equations resulting from 

(2.6) we get the solution for 03 .  
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 The equation corresponding to Eq.(2.6) of the first set of equations, which has not been used in 
getting the above perturbation solutions, can be put in the following convenient form after eliminating 1A , 

1A , 1B , 1B . 
 
       , 1 2 1 1 1 1 1k i a i b k c i vk d                   (3.10) 

 
where 

1

i
t

   


,            
1

k k i
x

   


, (3.11) 

 
and 1a , 1b , 1c , 1d  are contributions from nonlinear terms. 

We keep terms up to 4  in Eq.(3.10) and then substitute the solutions for various perturbed 
quantities appearing on its right hand side, and finally using the transformations 
 
  1 g 1x c t   ,          1t   , (3.12)  

 
and writing 11 12      we arrive at the fourth order evolution equation 

 

2 3

1 22 3
i i
    

   
  

 =
 2 2

1 2 3 4i i H


 

  
           

  
 (3.13) 

 
where H is the Hilbert transform given by  

 

 H  =
 

 
 P  

1
d





 


    . (3.14) 

 
4. Stability of a finite amplitude wave trains  

 
Equation (3.13) admits a Stokes wave-solution 

 

   exp0 i
2


    (4.1) 

 
where 0  is a real constant and the nonlinear frequency shift   is given by 
 

  2
0 1

1

4
     . (4.2) 

 
 To study modulational instability of this uniform wave train, we introduce the following perturbation 
in the uniform solution 
 

     exp0 1 i
2

          (4.3) 
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where '  and '  are small real perturbations in amplitude and phase, respectively, and are real.  

Substituting (4.3) in the evolution Eq.(3.13), and linearizing with respect to  ,  , we get the 
following equations 

 

 2
1 2 0 2 3

1
P P 0

4

         


, (4.4) 

 

 
2

2 2 4 0
1 2 1 0 0 3 2

1 1
P P P 0

2 4 2





                    
        (4.5) 

 

where   
3

1 2 3
P

 
  
 

,            
2

2 1 2
P


 


. (4.6) 

 
Now if we suppose that  -dependence of   and   is of the form  exp i    , then Eqs (4.4), (4.5) 

remain the same as before but 1P  now stands for  
 

  
3

1 2 3
P i

    


. (4.7) 

 
 Next, taking the Fourier transform of Eqs (4.4), (4.5), with respect to   defined by  
 

         , , exp
1

i d
2





                , (4.8) 

 

we get two linear algebraic equations for   and  . The condition for the existence of a nontrivial solution 
of these two equations gives the dispersion relation, given by 

 
1

22 2
40 2 0 1

1 2 2
1

P P P 1
4 2

                     
 (4.9) 

 

where   3
1 g 2P c      ,      2

2 1P          and      gc     . (4.10) 

 
From Eq.(4.9) it follows that for instability we must have 
 

  
2

42 0 1

1 1

1
2

   
     

, (4.11) 

 
and if this condition is met, then the maximum growth rate M  is given by  

 

  
2
0 1 0 4

M
1 1

1
4 2

    
      

. (4.12) 
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For 0  , 1 2 0    and v 0 , Eq.(4.12) reduces to Eq.(3.10) of Dysthe (1979). At marginal 

stability we have  
 

2
40 1

2 2
1

P P 1 0
2

            
, (4.13) 

 
and this gives the following expression for   at marginal stability. 
 

  .0 4 1
0

11 1

1
28

        
   

. (4.14) 

  
5. Conclusion 
 
 In the case of air-water interface, the maximum growth rate of instability M  given by Eq.(4.12) has 

been plotted in Figs 1a and 1b against wave-steepness 0 , for some different values of 1  with 2 0   and 

for air flow velocity v 4  and 7, respectively. The same growth rate M  for some different values of 2  

with 1 0   and for v 4  and 7, respectively, has been plotted in Figs 2a and 2b. From these figures it is 

seen that M  first increases with the increase of 0  and then its value decreases, while the growth rate 

obtained from the third order evolution equation increases steadily with the increase of 0 . 
 In the case of air-water interface, the wave number   at marginal stability given by Eq. (4.14) has 
been plotted in Figs 3a and 3b against wave-steepness 0 , for some different values of 1  with 2 0   and 

for v 4  and 7, respectively, and hence this gives the stable - unstable region in 0    plane. The same 

wave number   for some different values of 2  with 1 0   and for v 4  and 7, respectively, has been 
plotted in Figs 4a and 4b. 
 

 
 

Fig.1a.  One-dimensional modulational instability. Maximum growth rate M  against wave steepness 0 , 

2 0  , .0 00129  , v 4 , ----------------third-order & __________________ fourth -order results.         
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Fig.1b.  One-dimensional modulational instability. Maximum growth rate M  against wave steepness 0 , 

2 0  , .0 00129  , v 7 , -------------------third-order & ________________ fourth -order results.   
 

 
 

Fig.2a.  One-dimensional modulational instability. Maximum growth rate M  against wave steepness 0 , 

1 0  , .0 00129  , v 4 ,  --------------third-order &___________ fourth -order results. 
 

 
 

Fig.2b.  One-dimensional modulational instability. Maximum growth rate M  against wave steepness 0 , 

1 0  , .0 00129  , v 7 , --------------third-order &___________ fourth -order results. 
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Fig.3a.  One-dimensional modulational instability. Perturbed wave number   at marginal stability against 

wave steepness 0 , 2 0  , .0 00129  , v 4  --------------third-order &___________ fourth-
order results. 

 

 
 

Fig.3b.  One-dimensional modulational instability. Perturbed wave number   at marginal stability against 
wave steepness 0 , 2 0  , .0 00129  , v 7 , --------------third-order & ___________ fourth -
order results.            
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Fig.4a.  One-dimensional modulational instability. Perturbed wave number   at marginal stability against 
wave steepness 0 , 1 0  , .0 00129  , v 4 , ---------- third-order & _______ fourth -order results. 

 

 
 

Fig.4b.  One-dimensional modulational instability. Perturbed wave number   at marginal stability against wave 
steepness 0 , 1 0  , .0 00129  , v 7 , ---------- third-order & ________ fourth -order results. 
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where i ’s are given by 
 

        22 2 2 2
1 1 2 1 1 2 22 2 v 2 v 2                 

+ 

 
       

  
,

2 12 2
1 2 2

g 1 2

2 v 4 v 4 2 v

1 c
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      6 1 1 1

g 2 1

1
2 2v 2 v 2

1 c
               
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+       2 1 g 1 1 2 22 2 v 2 c 4          + 

   g 1 2 2c 4       
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      2 2
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. 

 
Nomenclature 
 
 g – acceleration due to gravity 
 H – Hilbert’s transform operator 
 k – wave number 
 P – general solution to Eqs (2.4) - (2.6) 
 t – time 
 v – air flow velocity 
  ,x y  – space coordinates 

 

 
 
 

,

, , , , ,

, , ,

i

i

i

i 1 2

i 1 2 3 4 5 6

i 1 2 3 4

  


  
  

 – coefficients given in the Appendix 

   – frequency shift 
   – ratio of densities of air to water 
   – slowness parameter 
   – elevation of the air-water interface 
 0  – wave steepness  

  ,    – small real perturbations of amplitude and phase 

 ,   – transformed variables 
   – perturbed frequency at marginal stability 
 ,    – velocity potentials of air and water respectively 
 ,    – stream functions of air and water respectively 
 ,1 2   – current shears of air and water respectively 

   – frequency 
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