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Employing Biot’s theory of wave propagation in liquid saturated porous media, waves propagating in a 
hollow poroelastic circular cylinder of infinite extent are investigated. General frequency equations for 
propagation of waves are obtained each for a pervious and an impervious surface. Degenerate cases of the general 
frequency equations of pervious and impervious surfaces, when the longitudinal wavenumber k and angular 
wavenumber n are zero, are considered. When k=0, the plane-strain vibrations and longitudinal shear vibrations 
are uncoupled and when k0 these are coupled. It is seen that the frequency equation of longitudinal shear 
vibrations is independent of the nature of the surface. When the angular (or circumferential) wavenumber is zero, 
i.e., n=0, axially symmetric vibrations and torsional vibrations are uncoupled. For n0 these vibrations are 
coupled. The frequency equation of torsional vibrations is independent of the nature of the surface. By ignoring 
liquid effects, the results of a purely elastic solid are obtained as a special case.  
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1. Introduction 
 
 Free vibrations of a solid cylinder of isotropic elastic material were given by Love (1944). Gazis 
(1959) discussed the propagation of free harmonic waves along a hollow elastic circular cylinder of infinite 
extent. Employing Biot’s (1956) theory, Tajuddin and Sarma (1980) studied the torsional vibrations of 
poroelastic cylinders. Wisse et al. (2002) presented the experimental results of guided wave modes in porous 
cylinders.  Chao et al. (2004) studied the shock-induced borehole waves in porous formations. The model 
consisting of concentric cylinders having different saturation levels is used to study the propagation of waves 
in porous cylinders by Berryman and Pride (2005) who obtained two distinct analytical expressions for 
torsional wave modes. Farhang et al. (2007) investigated the wave propagation in transversely isotropic 
cylinders. Sharma and Sharma (2010) studied the three dimensional free vibrations of transradially 
thermoelastic spheres. Karpfinger et al. (2010) used the method of discretization of cylindrical structures 
along the radial axis to study the dispersion properties of Stonely waves and attenuation in poroelastic layers. 
The author (2006; 2007; 2008; 2010a; 2010b; 2011) studied different problems wave propagation in 
poroelastic cylinders.  
 In the present analysis, the free vibrations of an infinite hollow poroelastic circular cylinder are 
studied employing general displacement components in cylindrical polar coordinates, following Biot’s 
(1956) theory. General frequency equations of pervious and impervious surfaces are obtained. Let the 
infinite poroelastic hollow cylinder be homogeneous and isotropic. Degenerate cases of the general 
frequency equations of pervious and impervious surfaces, when the longitudinal wavenumber k and angular 
wavenumber n are zero, are considered. When k=0, the plane-strain vibrations and longitudinal shear 
vibrations are uncoupled and when k0 these are coupled. When the angular (or circumferential) 
wavenumber is zero, i.e., n=0, axially symmetric vibrations and torsional vibrations are uncoupled. For n0 
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these vibrations are coupled. By ignoring liquid effects, the results of a purely elastic solid are obtained as a 
special case. The plots of non-dimensional frequency as a function of ratio of wall thickness to wavelength 
are presented for non-axially symmetric vibrations each for a pervious and an impervious surface. Results 
are discussed for two different poroelastic materials namely, sandstone saturated with kerosene (Fatt, 1959) 
and sandstone saturated with water (Yew and Jogi, 1976). It is seen that frequency is same for n=1 and 2 in 
the case of a thin poroelastic cylindrical shell each for a pervious and an impervious surface. Frequency is 
not the same, however, for a thick shell or a poroelastic solid cylinder.  
 The considered problem is of importance in civil engineering, ceramic industry where the frequency 
play an important role. The investigation is also applicable to Bio-Mechanics, wherein osseous tissue, bony 
elements saturated with a fluid are approximated by a hollow poroelastic cylinder.  
 
2. Governing equations 

 
 The equations of motion of a homogeneous, isotropic poroelastic solid (Biot, 1956) in the presence 
of dissipation b are  
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here 2 is the Laplacian operator,  = , ,u v wu  and  = , ,U V WU  are displacements of the solid and liquid 

respectively, e and  are the dilatations of the solid and liquid, A, N, Q, R are all poroelastic constants and  
ij (i, j=1, 2) are the mass coefficients following Biot (1956). 
 The stresses ij, and the liquid pressure s are  
 
     σ δ ,         , , θ, ,ij ij ij2Ne Ae Q i j r z      

   (2.2) 
  s Qe R                                                                                                       
 
where ij  is the well-known Kronecker delta function. 
 
3. Solution of the problem 
 
 Let (r, , z) be the cylindrical polar coordinates. Consider a homogeneous, isotropic, infinite hollow 
poroelastic cylinder with inner and outer radii r1 and r2, respectively, having thickness h [=(r2-r1)>0] whose 
axis is in the direction of the z-axis. 
 
Let  Φ ,             Φ .1 1 2 2   u UΨ Ψ                                              (3.1) 
 
 In Eq.(3.1), u, U are displacements of the solid and liquid, respectively, and 1, 2 are scalar 
potentials, 1Ψ , 2Ψ  are vector potentials. 
 
Let     θ θ, , ,            , , 1 r z 2 r zh h h H H H Ψ Ψ .                                 (3.2) 

 
 Equations (2.1), together with Eqs (3.1) reduce to 
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     Φ Φ ρ Φ ρ Φ Φ Φ ,2 2
1 2 11 1 12 2 1 2P Q b                

 

     Φ Φ ρ Φ ρ Φ Φ Φ ,2 2
1 2 12 1 22 2 1 2Q R b                    

   (3.3) 

     ρ ρ ,2
1 11 1 12 2 1 2N b       Ψ Ψ Ψ Ψ Ψ       

 

     ρ ρ12 1 22 2 1 20 b      Ψ Ψ Ψ Ψ                                  

 
where a dot over a quantity represents differentiation with respect to time t and P=A+2N.  
 

Let            ( ω ) ( ω )Φ cos θ ,        Φ cos θ ,i kz t i kz t
1 1 2 2f r n e f r n e          

 

           ( ω ) ( ω ) ( ω )
θ θsin θ ,   ( )cos θ ,   sin θ ,i kz t i kz t i kz t

r r z 3h g r n e h g r n e h g r n e          

   (3.4) 

             ( ω ) ( ω ) ( ω )
θ θsin θ ,   cos θ ,   sin θ .i kz t i kz t i kz t

r r z 3H G r n e H G r n e H G r n e      

 
 In Eqs (3.4), k is the axial wavenumber, n is the integer number of waves around the circumference 
or also known as the angular wavenumber,  is circular frequency. The second and third Eqs of (3.3) with 
(3.2), when first two Eqs of (3.3) remain the same, are reduced to  
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     ρ ρ ,2
z 11 z 12 z z zN h h H h H                 

 

     ρ ρ ,12 r 22 r r r0 h H b h H              

 

     θ θ θ θρ ρ ,12 220 h H b h H                

 

     ρ ρ12 z 22 z z z0 h H b h H      .                                  

 
Equations (3.5) with the help of Eqs (3.4) reduce to 
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   Δ Δ ω ,2
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   Δ ω ,2
3 11 3 12 3N g K g K G    

 

   ω ,2
12 r 22 r0 K g K G          

 

   θ θω ,2
12 220 K g K G       

 

   ω2
12 3 22 30 K g K G                                                           

 
where 
 

  Δ ,
2 2

2
2 2

d 1 d n
k

r drdr r
                

   (3.7) 

  ρ ,       ρ ,     ρ .
ω ω ω11 11 12 12 22 22
ib ib ib

K K K                             

 
 The general solutions of Eqs (3.6) can be obtained in terms of the Bessel functions of the first and 
second kind J and Y or the modified the Bessel functions of first and second kind I and K, depending on 
whether its arguments 1r, 2r, 3r are real or imaginary. Equation (3.6) after a long calculation yields 
 
  ( ) (α ) (α ) (α ) (α ),1 1 n 1 2 n 1 3 n 2 4 n 2f r C Z r C W r C Z r C W r       
 
     ( ) α α ,3 3 n 3 3 n 3g r A Z r B W r            

   (3.8) 
  θ( ) - (α ) (α ),1 r 1 n 1 3 1 n 1 32g r g g 2A Z r 2B W r        
 
     θ( ) α α ,2 r 2 n 1 3 2 n 1 32g r g g 2A Z r 2B W r                                           

 
where Zn denotes Bessel function or modified Bessel function of first kind, i.e., Jn or In and Wn denotes the 
Bessel function or modified Bessel function of second kind, i.e., Yn or Kn, depending on its arguments  
 

  α ξ ,     α ξ ,     α ξ ,2 2 2 2 2 2 2 2 2
1 1 2 2 3 3k k k                                       (3.9) 

 
are positive or negative and 
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  ω ξ              ( , , ).2 2 2
i iV i 1 2 3                                                         (3.10) 

 
 In Eq.(3.10) V1, V2 are dilatational wave velocities of first kind and second kind respectively, and V3 
is shear wave velocity. 
 The gauge invariance property (Gazis, 1959) is used to eliminate two integration constants from 
Eq.(3.8). Any one of the potential functions g1, g2 or g3 can be set equal to zero, without loss of generality of 
solution. Choosing g2=0, we obtain 
 
  gr = -g = g1.                                                                                       (3.11) 
 
 The displacement vector of the solid u =(u, v, w) with the help of Eqs (3.1), (3.2) is given by  
 

  θ θ θΦ Φ Φ
,     ,     .

θ θ θ
1 z 1 r z 1 rh h hh h h h1 1 1

u v w
r r z r z r z r r r

       
         

        
   (3.12) 

 
 Substituting Eqs (3.4) in Eqs (3.12), the displacement components of the solid are     
 

              ( ω ) ( ω )
θ cos θ ,       sin θ ,i kz t i kz t

1 3 1 r 3
n n

u f g ikg n e v f ikg g n e
r r

              
   

   

   (3.13) 

            ( ω )
θ θ cos ,i kz t

1 r
n

w ikf g g g n e
r

      
 

                                                                    

 
 Substituting Eq.(3.11) in Eqs (3.13), the solid displacement is  
 

     ( ) ( )cos θ ,       sin θ ,i kz t i kz t
1 3 1 1 1 3

n n
u f g ikg n e v f ikg g n e

r r
              

   
 

   (3.14) 

    ( )( )
cos θ i kz t

1 1 1
n 1

w ikf g g n e
r

    
 

                                                  

 
where the ‘prime’ over a quantity denotes differentiation with respect to r.    
 The proper selection of either the Bessel function or modified Bessel function is shown in Tab.1. 
 
Table 1 
 

Interval Functions used 

kV1< J(1r), Y(1r),  J(2r),  Y(2r),  J(3r),  Y(3r). 

kV3<<kV1 I(1r),  K(1r),  I(2r),  K(2r),  J(3r), Y(3r). 

<kV1 I(1r),  K(1r),  I(2r),  K(2r),  I(3r), K(3r). 
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1, 2, 3, are the absolute values of 1, 2, 3, respectively, when these values are imaginary, and 1, 2, 3  
are defined in Eq.(3.9). 
 The dilatations of the solid and liquid media are   
   

     ( ω ) ( ω )Δ ( )cos θ ,       Δ ( )cos θi kz t i kz t
1 2e f r n e f r n e                       (3.15) 

 
where  is defined in Eq.(3.7).  

 By substituting Eqs (3.14) into strain displacement relations and then using Eq.(2.2), the stresses ij 
and the liquid pressure s are 
 

  


   ( ω )

σ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) cos θ ,

rr 1 11 2 12 3 13 4 14

i kz t
3 15 3 16 1 17 1 18

s C M r C M r C M r C M r

A M r B M r A M r B M r n e 

     

   
                 (3.16) 

 

  


  
θ

( ω )

σ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) sin θ ,

r 1 21 2 22 3 23 4 24

i kz t
3 25 3 26 1 27 1 28

C M r C M r C M r C M r

A M r B M r A M r B M r n e 

    

   
                    (3.17) 

 

  


   ( ω )

σ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) cos θ ,

rz 1 31 2 32 3 33 4 34

i kz t
3 35 3 36 1 37 1 38

C M r C M r C M r C M r

A M r B M r A M r B M r n e 

    

   
                    (3.18) 

 

      ( ω )( ) ( ) ( ) ( ) cos θ ,i kz t
1 41 2 42 3 43 4 44s C M r C M r C M r C M r n e                      (3.19) 

 

      ( ω )( ) ( ) ( ) ( ) cos θ ,i kz t
1 41 2 42 3 43 4 44

s
C N r C N r C N r C N r n e

r


   


             (3.20) 

 
where the coefficients Mij (r) and Nij(r) are given as  
 

  

         

( - )
( ) λ α

λ β
+ δ λ α β β ,

2
11 1 12

2 2 2 1 1
1 1 1 n 1 n 1 1

n n 1
M r 2N

r

2 N
Q R A Q k Z r Z r

r 

       

      

 

 

  

         

( - )
( ) λ α

β
+ δ λ α β β ,

2
12 1 12

2 2 2 1
1 1 1 n 1 n 1 1

n n 1
M r 2N

r

2N
Q R A Q k W r Z r

r 

       

      

 

 

  

         

( - )
( ) λ α

λ β
+ δ λ α β β ,

2
13 1 22

2 2 2 1 2
2 1 2 n 2 n 1 2

n n 1
M r 2N

r

2 N
Q R A Q k Z r Z r

r 

       

      
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         

( - )
( ) λ α

β
+ δ λ α β β ,

2
14 1 22

2 2 2 2
2 1 2 n 2 n 1 2

n n 1
M r 2N

r

2N
Q R A Q k W r Z r

r 

       

      

 

 

     λ β( )
( ) β β ,2 3

15 n 3 n 1 32

2 Nn2Nn n 1
M r Z r Z r

rr



   

 

     β( )
( ) β β ,3

16 n 3 n 1 32

2Nn2Nn n 1
M r W r Z r

rr



   

 

     ( )
( ) β β β ,17 3 n 3 n 1 3

2N n 1 ik
M r 2Nik Z r Z r

r 


    

 

     ( )
( ) β β β ,18 2 3 n 3 n 1 3

2N n 1 ik
M r 2 Nik W r W r

r 


       

 

     β( )
( ) β β ,1 1

21 n 1 n 1 12

2 Nn2Nn 1 n
M r Z r Z r

rr



   

 

     β( )
( ) β β ,1

22 n 1 n 1 12

2Nn2Nn 1 n
M r W r W r

rr



   

 

     β( )
( ) β β ,1 2

23 n 2 n 1 22

2 Nn2Nn 1 n
M r Z r Z r

rr



   

 

     β( )
( ) β β ,2

24 n 2 n 1 22

2Nn2Nn 1 n
M r W r W r

rr



   

 

  
     - λ β

( ) λ α β β ,2 2 3
25 2 3 n 3 n 1 32

2Nn 1 n 2 N
M r N Z r Z r

rr


 
   
 

 

 

  
     - β

( ) λ α β β ,2 3
26 2 3 n 3 n 1 32

2Nn 1 n 2N
M r N W r W r

rr


 
   
 

 

 

       ( ) β β β ,27 3 n 3 n 1 3
2N n 1 ik

M r ikN Z r Z r
r 


   

 

       ( ) β β β ,28 2 3 n 3 n 1 3
2N n 1 ik

M r ikN W r W r
r 


    

 

     ( ) β λ β β ,31 n 1 1 1 n 1 1
2Nnik

M r Z r 2 Nik Z r
r    
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     ( ) β β β ,32 n 1 1 n 1 1
2Nnik

M r W r 2Nik W r
r    

 

     ( ) β λ β β ,33 n 2 1 2 n 1 2
2Nnik

M r Z r 2 Nik Z r
r    

 

     ( ) β β β ,34 n 2 2 n 1 2
2Nnik

M r W r 2Nik W r
r    

 

     ( ) β ,       ( ) β ,35 n 3 36 n 3
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M r Z r M r W r
r r

   

 

       β
( ) β -λ α β ,2 23

37 n 3 2 3 n 1 3
Nn

M r Z r N k Z r
r 


   

 

       β
( ) β -λ α β ,2 22 3

38 n 3 2 3 n 1 3
Nn

M r W r N k Z r
r 


   

 

           ( ) δ λ α β ,       ( ) δ λ α β ,2 2 2 2 2 2
41 1 1 1 n 1 42 1 1 1 n 1M r R Q k Z r M r R Q k W r       

 

           ( ) δ λ α β ,       ( ) δ λ α β ,2 2 2 2 2 2
43 2 1 2 n 2 44 2 1 2 n 2M r R Q k Z r M r R Q k W r       

 

           ( ) δ λ α β β δ α λ β ,2 2 2 2 2 2
41 1 1 1 n 1 1 1 1 1 n 1 1

n
N r R Q k Z r R Q k Z r

r        

 

           ( ) δ λ α β β δ α β ,2 2 2 2 2 2
42 1 1 1 n 1 1 1 1 1 n 1 1

n
N r R Q k W r R Q k W r

r         

 

           ( ) δ λ α β β δ α β ,2 2 2 2 2 2
43 2 1 2 n 2 2 2 2 1 n 1 2

n
N r R Q k Z r R Q k Z r

r         

 

           ( ) δ λ α β β δ α β ,2 2 2 2 2 2
44 2 1 2 n 2 2 2 1 2 n 1 2

n
N r R Q k W r R Q k W r

r              (3.21) 

 
 In Eqs (3.21), 
 

  
       δ .            ,2 2 2

i 11 12 i
12 22

1
RK QK V PR Q i 1 2

RK QK
      

                  (3.22) 

 
 Also 1 and 2 are parameters which are introduced in order to account for the differences in the 
recurrence and differentiation formulas between the different kinds of Bessel functions.  The values 
of these parameters are 1 and -1 when Bessel functions of first kind and second kind and modified 
Bessel functions of first and second kind are used.  It is seen from Table-I that 1 and 2 vary as 
follows 
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  kV1<:                             1=1,                                  2=1,    
 
  kV3<<kV1:                     1= -1,                                    2=1,    (3.23) 
 
  <kV1:                                 1= -1,                                    2= -1.                      
 

4. Boundary conditions - frequency equation 
 

 The boundary conditions for traction free inner and outer surfaces of the hollow poroelastic cylinder 
in the case of a pervious surface are  
 
             θσ ,          σ ,          σ ,          ,rr r rzs 0 0 0 s 0           at     r=r1     and     r=r2,       (4.1) 
 
while the boundary conditions for free vibrations in the case of an impervious surface are 
 

             θσ ,          σ ,          σ ,          ,rr r rz
s

s 0 0 0 0
r


    


    at     r=r1     and     r=r2.        (4.2) 

  
 Equations (3.16)-(3.19) together with Eq.(4.1) yield eight homogeneous equations for eight arbitrary 
constants C1, C2, C3, C4, A3, B3, A1, and B1. A non-trivial solution can be obtained only when the determinant 
of the coefficients vanishes. Thus the frequency equation for a pervious surface is  
 

   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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41 1 42 1 43 1 44 1

M r M r M r M r M r M r M r M r

M r M r M r M r M r M r M r M r

M r M r M r M r M r M r M r M r

M r M r M r M r 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2

21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2

31 2 32 2 33 2 34 2 35 2 36 2 37 2 38 2

41 2 42 2 43 2 44 2

M r M r M r M r M r M r M r M r

M r M r M r M r M r M r M r M r

M r M r M r M r M r M r M r M r

M r M r M r M r 0 0 0 0

.0  (4.3) 

 
 Similarly, with the help of Eqs (3.16)-(3.18) and (3.20) together with Eq.(4.2) we get the frequency 
equation of an impervious surface  
 

   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1

21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1

31 1 32 1 33 1 34 1 35 1 36 1 37 1 38 1
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M r M r M r M r M r M r M r M r

M r M r M r M r M r M r M r M r

N r N r N r N r 0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2

21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2

31 2 32 2 33 2 34 2 35 2 36 2 37 2 38 2

41 2 42 2 43 2 44 2

M r M r M r M r M r M r M r M r

M r M r M r M r M r M r M r M r

M r M r M r M r M r M r M r M r

N r N r N r N r 0 0 0 0

.0  (4.4) 

 
  In Eqs (4.3), (4.4) the elements Mij(r) and Nij(r) are defined in Eq.(23). 
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  By ignoring the liquid effects in the frequency equation of a pervious surface (4.3), the results of a 
purely elastic solid are obtained as a special case considered by Gazis (1959). The frequency equation of an 
impervious surface has no counterpart in a purely elastic solid. Now we consider the particular cases of the 
general frequency Eqs (3.3), (3.4) when the axial and angular wavenumbers vanish. 
 
4.1. Motion independent of z 

 
 When the axial wavenumber k is taken equal to zero, i.e., by considering zeroth azimuthal mode, the 
frequency Eq.(4.3) of a pervious surface degenerates into the product of two determinants as  
 
  D1D2=0,                                                        (4.5) 
 
where 
 

                

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) (

11 1 12 1 13 1 14 1 15 1 16 1

21 1 22 1 23 1 24 1 25 1 26 1

41 1 42 1 43 1 44 1
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11 2 12 2 13 2 14 2 15 2 16 2
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M r M r M r M r M r M r

M r M r M r M r M r M r

M r M r M r M r 0 0
D

M r M r M r M r M r M r

M r M r M r M r M r M r

 ,

)

( ) ( ) ( ) ( )41 2 42 2 43 2 44 2M r M r M r M r 0 0

 

 

               
( ) ( )

.
( ) ( )

37 1 38 1
2

37 2 38 2

M r M r
D

M r M r
                                                                            (4.6) 

 
 The terms Mij(r) appearing in D1 and D2 are given in Eqs (3.21) for k=0. It is clear that for k=0, 1

2, 
2

2, 3
2, are all positive thereby Bessel functions of first and second kind enter the solution.  

 Arguing on similar lines the frequency equation of an impervious surface (4.4) when k=0 reduces to 
the product of two determinants 
 
  D3D4=0,                                                                   (4.7) 
 
where the determinants D3, D4 are  
 

                   

( ) ( ) ( ) ( ) ( ) ( )
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N r N r N r N r 0 0
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 ,

)

( ) ( ) ( ) ( )41 2 42 2 43 2 44 2N r N r N r N r 0 0

 

 

                  
( ) ( )

.
( ) ( )

37 1 38 1
4

37 2 38 2

M r M r
D

M r M r
                                                                      (4.8) 

 
 Equation (4.5) is satisfied, if either D1 or D2 is equal to zero. The case of D1=0 corresponds to plane-
strain vibrations of thick-walled hollow poroelastic cylinders, discussed by Malla Reddy and Tajuddin 
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(2000), for a pervious surface. Equation (4.7) is satisfied when either D3=0, or D4=0. The case of D3=0, 
corresponds to the plane-strain vibrations of thick-walled hollow poroelastic cylinders for an impervious 
surface discussed by Malla Reddy and Tajuddin (2000). From Eqs (4.6) and (4.8) it is clear that D2 and D4 
are same. The case of D2=0, corresponds to longitudinal shear vibrations which involve only longitudinal 
displacement w. Also, since D2=0, is the same for a pervious and an impervious surface, hence we find that 
longitudinal shear vibrations are independent of the nature of the surface. From Eqs (4.5) and (4.7) we find 
that plane-strain vibrations and longitudinal shear vibrations are uncoupled for a pervious and an impervious 
surface, respectively, when the motion is independent of the longitudinal coordinate z, and these vibrations 
are coupled for the non-zero longitudinal wavenumber k, that is k0. The frequency equation of longitudinal 
shear vibrations D2=0, when expanded gives 
 
         α α α α ,n 3 1 n 3 2 n 3 2 n 3 1J r Y r J r Y r 0                                          (4.9) 

 
and the amplitude ratio is given as  
 

  
(α )

.
(α )

n 3 11

1 n 3 1

Y rA

B J r


 


                                                                  (4.10) 

 
 The frequency equation of longitudinal shear vibrations of hollow poroelastic cylinders (4.9) is 
discussed by Tajuddin and Ahmed Shah (2010a). 

 
4.2. Motion independent of  

 
 When the motion is independent of the angular coordinate  (i.e., n=0), the frequency Eq.(4.3) for a 
pervious surface is reduced to the product of two determinants given by 

 
  D5D6=0                                                                            (4.11) 
 

where 
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( ) ( )

.
( ) ( )

25 1 26 1
6

25 2 26 2

M r M r
D

M r M r
                                                                                (4.12) 

 
The terms Mij(r) in D5 and D6 are given by Eqs (3.21) for n=0. 

 Similarly, the frequency equation for an impervious surface (4.4), for n=0 yields into the product of 
two determinants as 

 
  D7D8=0,                                                     (4.13) 
 

where the determinants D7, D8 are  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) (

11 1 12 1 13 1 14 1 17 1 18 1

31 1 32 1 33 1 34 1 37 1 38 1

41 1 42 1 43 1 44 1
7

11 2 12 2 13 2 14 2 17 2 18 2

31 2 32 2 33 2 34 2 37 2 38 2

M r M r M r M r M r M r

M r M r M r M r M r M r

N r N r N r N r 0 0
D

M r M r M r M r M r M r

M r M r M r M r M r M r

 ,

)

( ) ( ) ( ) ( )41 2 42 2 43 2 44 2N r N r N r N r 0 0

 

 

           
( ) ( )

.
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M r M r
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M r M r
                                                                                (4.14) 

 
 From Eqs (4.12) and (4.14) it is clear that the determinants D6 and D8 are same. Now Eq.(4.11) is 

satisfied if D5=0 or D6=0. The case of D5=0 gives the frequency equation of axially symmetric vibrations of 
an infinite hollow poroelastic cylinder for a pervious surface discussed by Ahmed Shah (2008). Similarly, 
Eq.(4.13) is satisfied when D7=0 or D8=0. The case of D7=0 gives the frequency equation of axially 
symmetric vibrations of an infinite hollow poroelastic cylinder for an impervious surface discussed by 
Ahmed Shah (2008). The case of D6=0 or D8=0 when simplified yields the equation 

 
  (α ) (α ) (α ) (α ) ,2 3 1 2 3 2 2 3 2 2 3 1J r Y r J r Y r 0                                (4.15) 
 

which is the frequency of torsional vibrations of infinite hollow poroelastic cylinders studied by Tajuddin 
and Ahmed Shah (2007) in the presence of dissipation. Moreover, the frequency Eq.(4.15) is independent of 
the nature of the surface, i.e., pervious or impervious. Also, Eq.(4.15) is the same for pervious and 
impervious surfaces.   

 
4.3. Equivoluminal modes 

 
 For n=0, the stress free boundary conditions at the inner and outer surfaces of the hollow poroelastic 
cylinder are satisfied if 
 

  α .2 2
3 k 0                                                     (4.16) 

 
 The dilatational and equivoluminal potentials f1 and g1 are coupled through the boundary conditions. 
To consider purely equivoluminal modes, we set 
 
  ,           .1 2 3f f 0 g 0                                                      (4.17) 
 
 Substituting Eqs (4.17) into Eq.(3.15), it is seen that the dilatations of solid and liquid media are 
zero. Hence from Eq.(2.2), the liquid pressure is zero. Therefore the equivoluminal modes are independent of 
the nature of the surface, i.e., pervious and impervious. Accordingly, no distinction between pervious and 
impervious surfaces is seen. Therefore from Eqs (4.16) and (4.17), we have 
 
  (α ) (α ) ,            [σ ]1 3 1 1 3 2 rrg r g r 0 s 0                             (4.18) 
where 
  ( ) ( ) ( ).1 3 1 1 3 1 1 3g r A J r B Y r                                               (4.19) 
 
 Substituting Eq.(4.19) into Eq.(4.18) and eliminating the constants A1, B1, the frequency equation of 
purely equivoluminal modes is  



Study of three dimensional propagation of waves …  577 

  ( ) ( ) ( ) ( ) ,1 3 1 1 3 2 1 3 2 1 3 1J r Y r J r Y r 0                                      (4.20) 
 
with the amplitude ratio 
 

  
( )

,
( )

1 3 11

1 1 3 1

Y rA

B J r

 
 

 
                                                                  (4.21) 

 
and the non-zero displacement and stress for equivoluminal modes are  
 

          ( ) ( )(α ) (α ) ,      α ( ) ( ) ,i kz t i kz t
1 1 3 1 1 3 3 1 0 3 1 0 3u ik A J r B Y r e w A J r B Y r e          

   (4.22) 

        ( )σ ( ) ( ) .i kz t
rr 1 1 3 1 1 32Nik A J r B Y r e                                                                   

 
 Equation (4.20) is same as Eq.(4.9) of longitudinal shear vibrations for a case of n=1. The frequency 
Eq.(4.20) for the two limiting values of h/r1 is given below: 

 
4.3.(i)  For a thin poroelastic cylindrical shell   
 
 When h/r1<<1, that is for a thin poroelastic cylindrical shell, the frequency Eq.(4.20) by using 
Hankel-Kirchoff asymptotic approximations (Abramowitz and Stegun, 1965) is reduced to  
 

       α
sin α cos α sin α .

α α
3

3 3 32 2
3 1 2 3 1 2

7 h 49
h h h 0

8 r r 64 r r
                        (4.23) 

 
 As 3r1, 3r2, with the help of Eq.(4.16), Eq.(4.23) is simplified to 
 

   π 
ω .          , , ,.....

π

2
3

2 2
1

q V 7 h
2 1 q 1 2 3

h r8q

      
   

                     (4.24)  

 
 Equation (4.24) determines the frequency of purely equivoluminal modes of a poroelastic plate of 
thickness h. 
 
4.3.(ii)  For a poroelastic non-hollow cylinder 
 
 When r1/h0, that is for a poroelastic non-hollow cylinder, the frequency Eq.(4.20) is reduced 
asymptotically to   
 
   α ,1 3J h 0                                                             (4.25) 

 
which is the frequency equation of purely equivoluminal modes of a poroelastic solid cylinder of radius h. 

 
5. Non-dimensionalisation of frequency equation 

 
 For propagating modes in a non-dissipative medium, the wavenumber k is real. To analyze the 
frequency equations of pervious and impervious surfaces, it is convenient to introduce the following non-
dimensional parameters 
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                  - ,      ,      ,      ,1 1 1 1
1 2 3 4a PH a QH a RH a NH          

 

                  -ρ ρ ,      ρ ρ ,      ρ ρ ,      Ω ω ,1 1 1 1
11 11 12 12 22 22 0m m m hC       (5.1) 

 

                       ,      ,      ,      δ
2 2 21 1 1 1

0 1 0 2 0 3x V V y V V z V V hL                    

 
where  is the non-dimensional frequency, H=P+2Q+R, =11+212+22, C0 and V0 are the reference 
velocities (C0

2=N/, V0
2=H/), h is the thickness of the hollow poroelastic cylinder and L is the wavelength. 

Let 
 

  2

1

r
g

r
      so that        .

1

h
g 1

r
                                                        (5.2) 

 
6. Numerical results and discussion 

 
 Two types of poroelastic materials are used to carry out the computational work, one is sandstone 
saturated with kerosene say Material-I, (Fatt, 1959), the other one is sandstone saturated with water, 
Material-II (Yew and Jogi, 1976), whose non-dimensional physical parameters are given in Tab.2 
 

Table 2 
 

Material/ 
Parameter a1 a2 a3 a4 m11 m12 m22 x  y  z  

I 0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851
II 0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129

                                                                                                                      
 For a given poroelastic material, the frequency Eqs (4.3) and (4.4) of pervious and impervious 
surfaces when non-dimensionalised by using the Eqs (5.1) and (5.2) present the relation between the non-
dimensional frequency  and ratio of thickness to wavelength () for given dimensions of the hollow 
poroelastic cylinder. The ratio of the outer radius to that of the inner radius of the hollow poroelastic 
cylinder, that is, g takes the values 1.034, 3 and , which represent the thin poroelastic shell, thick 
poroelastic shell and poroelastic non-hollow cylinder, respectively. The number of waves around the 
circumference, or angular wavenumber n take values 1 and 2. The value n=1 corresponds to flexural 
vibrations and n=2 corresponds to typical non-axially symmetric vibrations. 
 The non-dimensional frequency  as a function of the ratio of thickness to wavelength  is computed 
for the referred material. The frequencies of first five modes are shown in the figures. The frequencies of the 
thin poroelastic shell of material-I are presented in Fig.1. for n=1 and n=2. Frequencies are same for n=1 
and n=2, each for a pervious surface and an impervious surface in the case of a thin poroelastic shell. From 
Fig.1 it is clear that for material-I, the frequency of a pervious surface and an impervious surface is same for 
the first three modes in 0.10.7, while for the fourth and fifth mode the frequency is same in 0.1<0.5 
and 0.8<1. In 0<0.1, the frequency of an impervious surface is more than of a pervious surface for the 
second, third, fourth and fifth mode while the frequency of an impervious surface is less than the frequency 
of a pervious surface in 0.71 for the first mode. The frequencies of the thick poroelastic shell of material-
I with n=1 is presented in Fig.2. The frequency of an impervious surface is less than that of a pervious 
surface for the second, third, fourth and fifth mode in 0<<0.1 and 0.0<1, while for the first mode the 
frequency of an impervious surface is less than that of a pervious surface in 0.3<<0.5. The frequency of the 
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poroelastic non-hollow cylinder of material-I with n=1 is presented in Fig.3. The frequency of an impervious 
surface is more than that of a pervious surface for the third, fourth and fifth mode, while the first and second 
mode have frequency less than that of a pervious surface in 0.1<0.3. 
 

 
 

Fig.1. Frequency as a function of wavelength (Mat – I, thin-shell, n=1, 2). 
 

 
 

Fig.2. Frequency as a function of wavelength (Mat – I, thick-shell, n=1). 
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Fig.3. Frequency as a function of wavelength (Mat – I, non-hollow cylinder, n=1). 
 

 The frequencies of the thick poroelastic shell of material-I when n=2 are presented in Fig.4. The 
frequency of a pervious and an impervious surface is same in 0.3<<0.8 for the first five modes. In 0<<0.3, 
the frequency of an impervious surface is less than that of a pervious surface for the first, fourth and fifth 
mode. In 0.8<<1, the frequency of an impervious surface is less than that of a pervious surface for the first 
five modes. The frequency of the poroelastic solid cylinder of material-I with n=2 is shown in Fig.5. The 
frequency of an impervious surface in the case of the third, fourth and fifth mode is less than that of 
corresponding modes of a pervious surface in 0.5<1. The modes near the origin, when the wavelength is 
large are presented for material-I in Fig.6. From Fig.6 it is observed that the frequency of an impervious 
surface is more than that of a pervious surface for n=1 and n=2. Also, these frequencies are constant. 
 

 
 

Fig.4. Frequency as a function of wavelength (Mat – I, thich-shell, n=2). 
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Fig.5. Frequency as a function of wavelength (Mat – I, non-hollow cylinder, n=2). 
 

 
 

Fig.6. Frequency as a function of wavelength (Mat – I, thin-shell, large wavelength, n=1, 2). 
 
 The frequencies of the thin poroelastic shell of material-II are shown in Fig.7 for n=1 and n=2. The 
frequencies are same for n=1 and n=2 in the case of a thin poroelastic shell. From Fig.7 it is clear that in 
0.30.5 the frequency of an impervious surface is less than that of a pervious surface for the first five 
modes while in 0<0.3 and 0.51, the frequency of a pervious and an impervious surfaces are same for 
all the first five modes. The frequency versus the ratio of thickness to wavelength for a thick poroelastic shell 
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with n=1 is presented in Fig.8 in the case of material-II. It is seen that the frequency of an impervious 
surface for all the first five modes is higher than that of a pervious surface in 0.7<<0.9. The frequency of an 
impervious surface is less than that of a pervious surface in 0.2<<0.4, and same in the case of the first three 
modes in 0.4<1. The fourth and fifth mode have same frequency for a pervious and an impervious surface 
in 0.61. In 0.4<<0.6, the frequency of an impervious surface is more for the fourth and fifth mode than 
the corresponding modes of a pervious surface. It is observed from Fig.9 that for the poroelastic solid 
cylinder of material-II, the frequency of the first five modes of an impervious surface is less than 
corresponding modes of a pervious surface in 0.8<<0.9. The frequency of the second, third, fourth and fifth 
mode of an impervious surface is less than that of the corresponding modes of a pervious surface in 
0.1<<0.3, while the frequency of an impervious surface for the first mode is less than that of a pervious 
surface in 0.650.75. The frequency of the thick poroelastic shell of material-II is shown in Fig.10 for 
n=2. It is observed that in 0<<0.3, the frequency of an impervious surface is more than that of a pervious 
surface for the first five modes, just an opposite phenomenon to material-I. The frequency of a pervious 
surface and an impervious surface is same in 0.3<<0.6 and 0.8<<1 for all the first five modes. In 
0.6<<0.8, the frequency of an impervious surface is more than that of a pervious surface. 
 The variation of frequency of the poroelastic solid cylinder of material-II when n=2 is shown in 
Fig.11. The frequency of an impervious surface is more than that of a pervious surface for the first five 
modes in 00.3, and 0.5<0.7. The frequency of an impervious surface of the first five modes is less than 
that of corresponding modes of a pervious surface in 0.3<0.5 and 0.7<1. The modes near the origin for 
material-II with n=1 and n=2 are presented in Fig.12. From Fig.12 it is seen that the frequency of a pervious 
and an impervious surface is same for material-II when n=1 and n=2. The frequency of material-I is higher 
than that of material-II for pervious and impervious surfaces. 
 

 
 

Fig.7. Frequency as a function of wavelength (Mat – II, thin-shell, n=1, 2). 
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Fig.8. Frequency as a function of wavelength (Mat – II, thick-shell, n=1). 
 

 
 

Fig.9. Frequency as a function of wavelength (Mat – II, non-hollow cylinder, n=1). 
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Fig.10. Frequency as a function of wavelength (Mat – II, thick-shell, n=2). 
 

 
 

Fig.11. Frequency as a function of wavelength (Mat – II, non-hollow cylinder, n=2). 
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Fig.12. Frequency as a function of wavelength (Mat – II, thin-shell, large wavelength, n=1, 2). 
 
7. Concluding remarks 

 
       The investigation of the propagation of wave in hollow poroelastic circular cylinders of infinite 
extent has lead to the following conclusions: 
(i) When n0 and k=0, non-axially symmetric plane-strain modes are generated and uncoupled family of 

longitudinal shear vibrations are derived from the potential function g1(r) alone as a special case. 
(ii) When k0 and n=0 axially symmetric longitudinal modes are generated. 
(iii) When both the number of waves around the circumference n and longitudinal wavenumber k are zero, 

the motion is axially symmetric and of infinite wavelength. The potential functions f1(r), g1(r) and 
g3(r) generate three types of uncoupled vibrations that are plane-strain extensional, plane-strain shear 
and longitudinal shear vibrations. 

(iv) For n0 and k0 the potential functions f1(r), g1(r) and g3(r) are coupled through the boundary 
conditions and generate the non-axially symmetric vibrations. 

(v) The frequency is same for flexural and non-axially symmetric vibrations both for a pervious and 
impervious surface, in the case of a thin poroelastic cylindrical shell. This is not true for a thick 
poroelastic shell or a poroelastic non-hollow cylinder.   

(vi) In general, the frequency of an impervious surface is higher than that of a pervious surface. 
(vii) When the wavelength is large, the propagation of waves in thin poroelastic cylindrical shells is non-

dispersive.   
 

Nomenclature 
 

 A, N, Q, R – poroelastic constants 
 b – dissipation 
 e – dilatation of solid 
 h – thickness of the hollow poroelastic cylinder 
 ,n nI K  – modified Bessel functions of first and second kind of order n 

 ,n nJ Y  – Bessel functions of first and second kind of order n 
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 k – axial wavenumber  
 n – angular wavenumber 
  , θ,r z  – cylindrical polar coordinates 

 , 2 1r r  – outer and inner radii of the hollow poroelastic cylinder 

 s – liquid pressure 
  , , U V WU  – displacement of liquid 

  , , u v wu  – displacement of solid 

 , , 1 2 3V V V  – dilatational wave velocities of first and second kind, shear wave velocity 

 δ  – non-dimensional wave number 
   – dilatation of liquid 
 ρij  – stresses 

 ρ , ρ , ρ11 12 22  – mass coefficients 

 Φ ,Φ ,Ψ ,Ψ1 2 1 2  – potential functions 

   – non-dimensional frequency 
 ω  – circular frequency 

 2  – Laplacian operator 

 
References 
 
Abramowitz A. and Stegun I.A. (1965): Handbook of Mathematical Functions. – National Bureau of Standards, 

Washington. 

Ahmed Shah S. (2008): Axially symmetric vibrations of fluid-filled poroelastic circular cylindrical shells. – Journal of 
Sound and Vibration, vol.318, pp.389-405. 

Ahmed Shah S. and Tajuddin M. (2011): Torsional vibrations of poroelastic prolate spheroids. – International Journal 
of Applied Mechanics and Engineering, vol.16, pp.521-529. 

Berryman J.G. and Pride S.R. (2005): Dispersion of waves in porous cylinders with patchy saturation: Formulation and 
torsional waves. – J. Acoust. Soc. Am., vol.117, pp.1785-1795. 

Biot M.A. (1956): Theory of propagation of elastic waves in fluid-saturated porous solid. – J. Acoust. Soc. Am., vol.28, 
pp.168-178. 

Chao G., Smeulders D.M.J. and van Dongen M.E.H. (2004): Shock-induced borehole waves in porous formations: 
Theory and experiments. – J. Acoust. Soc. Am., vol.116, pp.693-702. 

Farhang H., Esmaeil E., Anthony N.S. and Mirnezami A. (2007): Wave propagation in transversely isotropic cylinders. 
– Int. Journal of Solids and Structures, vol.44, pp.5236-5246. 

Fatt I. (1959): The Biot-Willis elastic coefficients for a sandstone. – J. Appl. Mech., vol.26, pp.296-297. 

Gazis D.C. (1959): Three-dimensional investigation of the propagation of waves in hollow circular cylinders. 
 – J. Acoust. Soc. Am., vol.31, pp.568-578. 

Karpfinger F., Gurevich B., Valero H.P., Bakulin A. and Sinha B. (2010): Tube wave signatures in cylindrically layered 
porous media computed with the spectral method. – Geophysical Journal International, vol.183, pp.1005-1013. 

Love A.E.H. (1944): A Treatise on the Mathematical Theory of Elasticity. – New-York: Dover. 

Sharma J.N. and Sharma N. (2010): Three-dimensional free vibration analysis of a homogeneous transradially isotropic 
thermoelastic sphere. – Trans ASME, J. Appl. Mech., vol.77, 021004 (9 pages). 

Tajuddin M. and Sarma K.S. (1980): Torsional vibrations of poroelastic cylinders. – Trans. ASME, J. Appl. Mech., 
vol.47, pp.214-216. 

Tajuddin M. and Ahmed Shah S. (2006): Circumferential waves of infinite hollow poroelastic cylinders. – Trans. 
ASME, J. Appl. Mech., vol.73, pp.705-708.  



Study of three dimensional propagation of waves …  587 

Tajuddin M. and Ahmed Shah S. (2007): On torsional vibrations of infinite hollow poroelastic cylinders. – Journal of 
Mechanics of Materials and Structures, vol.2, pp.189-200. 

Tajuddin M. and Ahmed Shah S. (2010a): Longitudinal shear vibrations of hollow poroelastic cylinders. – Bull. Cal. 
Math. Soc., vol.102, pp.289-298. 

Tajuddin M. and Ahmed Shah S. (2010b): Radial vibrations of thick-walled hollow poroelastic cylinders. – Journal of 
Porous Media., vol.13, pp.307-318. 

Wisse C.J., Smeulders D.M.J., van Dongen M.E.H. and Chao G. (2002): Guided wave modes in porous cylinders: 
Experimental results. – J. Acoust. Soc. Am., vol.112, pp.890-895. 

Yew C.H. and Jogi P.N. (1976): Study of wave motions in fluid-saturated porous rocks. – J. Acoust. Soc. Am., vol.60, 
pp.2-8.  

 

 

Received: May 8, 2014 

Revised:   May 28, 2015 

 
 
 

 


