
 
 

Int. J. of Applied Mechanics and Engineering, 2015, vol.20, No.3, pp.637-645 
DOI: 10.1515/ijame-2015-0042 

 
Brief note 
 

INELASTIC STABILITY ANALYSIS OF UNIAXIALLY COMPRESSED 
FLAT RECTANGULAR ISOTROPIC CCSS PLATE  

 
O.M. IBEARUGBULEM, U.G. EZIEFULA* and D.O. ONWUKA 

Department of Civil Engineering 
Federal University of Technology, Owerri 

P.M.B. 1526, Owerri, Imo State, NIGERIA 
E-mail: uchechi.eziefula@yahoo.com 

 
 

This study investigates the inelastic stability of a thin flat rectangular isotropic plate subjected to uniform 
uniaxial compressive loads using Taylor-Maclaurin series formulated deflection function. The plate has clamped 
and simply supported edges in both characteristic directions (CCSS boundary conditions). The governing 
equation is derived using a deformation plasticity theory and a work principle. Values of the plate buckling 
coefficient are calculated for aspect ratios from 0.1 to 2.0 at intervals of 0.1. The results compared favourably 
with the elastic stability values and the percentage differences ranged from -0.353% to -7.427%. Therefore, the 
theoretical approach proposed in this study is recommended for the inelastic stability analysis of thin flat 
rectangular isotropic plates under uniform in-plane compression. 
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1. Introduction 

 
Thin rectangular plate elements are commonly used in thin-walled engineering structures to transmit 

in-plane and/or lateral loads. A plate is classified as “thin” if the ratio of its thickness to its smaller 
characteristic dimension is less than 1/20 (Ugural, 1999). When a thin rectangular plate is subjected to in-
plane compressive loads and the loads are gradually increased, the plate loses its stability and begins to 
buckle at a critical value of the compressive loads even in the absence of transverse loads. Buckling may 
occur in the elastic range where the plate material obeys Hooke’s law and the buckling stress is less than the 
proportional limit of the plate material. On the other hand, inelastic buckling is characterized by nonlinear 
stress-strain relationship. In the inelastic range, the actual buckling load is always smaller than the elastic 
buckling load. Therefore, it is important to know the inelastic buckling characteristics in order to accurately 
predict the critical buckling loads in the inelastic range. 

Many theoretical and experimental studies have been conducted in the past decades to obtain the 
critical buckling loads of plates in the inelastic range. Despite the fact that such studies have been carried out 
extensively, several aspects in the theory of inelastic plate buckling are still controversial primarily because 
of the difficulty in the proper representation of the stress-strain relationship (Szilard, 2004). The most 
commonly used plate plasticity theories are the deformation theory developed by Ilyushin (1947) and the 
incremental theory or flow theory developed by Handelman and Prager (1948). Even though the incremental 
theory has a strong mathematical basis, it predicts results which are unreasonably higher than experimental 
values when applied to inelastic stability problems of homogenous plates. The deformation theory, on the 
other hand, gives results which are in closer agreement with experiments. Some researchers have thus 
continued to use the deformation theory in solving inelastic stability problems of plate elements despite its 
weak theoretical formulation. 
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In finding solutions to plate inelastic stability problems of various boundary conditions, investigators 
have used various methods (Stowell, 1948; Isakson and Pifko, 1969; Guran-Savadkuhi, 1981; Iyengar, 1988; 
Shen, 1990; Wang et al., 2004; Wang et al., 2005; Becque, 2010). Most of these solutions were obtained 
using the Fourier series or trigonometric series irrespective of the plasticity theory or analytical method 
applied. In using the trigonometric series in the energy approach, formulation of the deflection function for 
certain boundary conditions becomes very difficult (Ugural, 1999; Ventsel and Krauthammer, 2001). 
Because of these limitations in using trigonometric series, the Taylor series may be used. The application of 
the Taylor’s series in plate stability analysis has not attracted much attention in literature. To the best of the 
researchers’ knowledge, the Taylor series has not been used in the energy method to formulate the deflection 
function for the inelastic stability analysis of CCSS plates, and solutions to the inelastic stability problem of 
CCSS plates are unavailable in open literature. Therefore, the objective of the present investigation is to 
provide a solution to the inelastic stability problem of a CCSS thin rectangular isotropic plate using a work 
principle and Taylor’s series formulated deflection function. The deformation theory of plasticity proposed 
by Stowell (1948) is used to analyze the inelastic stability behaviour. 
 
2. Methodology 

 
2.1. Formulation of the stability problem 

 
Consider a homogenous rectangular flat isotropic plate and assume that the thickness of the plate in 

the z-direction is small compared with its length and width in the x- and y-directions respectively. The thin 
rectangular plate is subjected to uniform in-plane compressive loads along the longitudinal axis (x-direction). 
The plate is clamped along one longitudinal edge, clamped along one short edge, simply supported along one 
longitudinal edge and simply supported along one short edge as illustrated in Fig.1. In Fig.1, C represents a 
clamped edge while S represents a simply supported edge. 
 

 
 

Fig.1. CCSS plate under uniaxial in-plane compression in Cartesian coordinates. 
 

To facilitate the solution of the problem, the Cartesian coordinates are expressed in dimensionless 
parameters as  

 
  / ;  /R x a Q y b  . (2.1) 
 

For the clamped edges, the deflection and rotation vanish while the deflection and moments are 
equal to zero along the simply supported edges. Thus, the boundary conditions of the CCSS plate are 
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      Rw R 0 w R 0 0    , (2.2) 

 

     Rw R 1 w R 1 0    , (2.3) 

 

     Qw Q 0 w Q 0 0    , (2.4) 

 

     Qw Q 1 w Q 1 0     (2.5) 

 

where w is the deflection in the z-direction, Rw  and Qw  are the first derivatives of the deflection and Rw  

and Qw  are the second derivatives of the deflection in the R-direction and Q-direction respectively. 
 
2.2. Inelastic stability equation 

 
Stowell (1948) expressed the equation governing the inelastic stability of a thin, flat, rectangular 

plate subjected to uniform axial compression in the x-direction as 
 

  
4 4 4 2

x
4 2 2 4 2

N1 3 T w w w w

D
2

4 4 S x x y y x

        
     

  (2.6) 

 
where T is the tangent modulus, S is the secant modulus, D  is the inelastic flexural rigidity and Nx is the 
buckling load. 
 Work is defined mathematically as the product of force and displacement produced by the force in 
the direction of the force. Ibearugbulem et al. (2013) solved bending problems of isotropic rectangular plates 
using direct integration and a work principle. They carried out direct integration of the governing differential 
equation of isotropic rectangular plates to obtain shape functions instead of assuming the shape function – a 
technique more commonly used in the conventional equilibrium and variational methods. They derived 
equations for deflections by using the principle of equilibrium of works performed by the load and the 
reaction (i.e., plate resistance). Eziefula (2013) applied this approach and transformed Eq.(2.6) using the 
principle of conservation of work in a static continuum. He multiplied the equation of force equilibrium by 
the deflection and integrated the resulting equation in a closed domain. Making Nx the subject of the formula, 
he obtained 
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  (2.7) 

 
where  
 
  w AH , (2.8) 
 

  /3D Sh 9 , (2.9) 
 
  /p a b . (2.10) 
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 In Eqs (2.7) to (2.10), A is the amplitude of the deflection function, H is the buckling curve 
expression, h is the thickness of the plate, a is the length of the plate, b is the width of the plate and p is the 
aspect ratio. 
 
2.3. Taylor’s series formulated deflection function 
 
 Ibearugbulem (2012) expanded the deflection function using Taylor’s series and he assumed that the 
deflection function is differentiable and continuous. Truncating the infinite polynomial series at m = n = 4, he 
got 

  
4 4

m n
m n

m 0 n 0

w J K R Q
 

  . (2.11) 

 
For the CCSS boundary conditions, Eqs (2.2) to (2.5) are applied in Eq.(2.11). Substituting Eqs (2.2) 

and (2.4) into Eq.(2.11) gives 
 

      ;   0 1 0 1J J 0 K K 0    . 
 
Substituting Eq.(2.3) into Eq.(2.11) and solving the simultaneous equations yields 

 
   . ;  .  2 4 3 4J 1 5J J 2 5J  . 
 

Similarly, substituting Eq.(2.5) into Eq.(2.11) and solving the resulting simultaneous equations gives 
 
    . ;  .  2 4 3 4K 1 5K K 2 5K  . 
 
Substituting the values of J0, J1, J2, J3, J4, K0, K1, K2, K3 and K4 into Eq.(2.11) and solving gives the 

distinctive deflection function of the CCSS plate. This deflection function is expressed as  
 

     . . . .2 3 4 2 3 4
4 4w J K 1 5R 2 5R R 1 5Q 2 5Q Q       . (2.12) 

 
From Eqs (2.8), (2.11) and (2.12), we have 
 
   4 4A J K , (2.13) 
 

      . . . .2 3 4 2 3 4H 1 5R 2 5R R 1 5Q 2 5Q Q     . (2.14) 

 
2.4. Application of a work principle 

 
Partial derivatives of Eq.(2.14) with respect to R, Q or both R and Q gave 
 

     
. . . .

4 22 3 4 2 3 4
4

H
H 24 1 5R 2 5R R 1 5Q 2 5Q Q

R


    


, (2.15) 

 

    . . . .
4 22 3 4 2 3 4

4

H
H 24 1 5R 2 5R R 1 5Q 2 5Q Q

Q


    


, (2.16) 
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  

  . . . . ,

4
2 2

2 2

2 3 4 2 3 4

H
H 9 1 5R 4R 1 5Q 4Q

R Q

1 5R 2 5R R 1 5Q 2 5Q Q


    

 

   

 (2.17) 

 

    . . . .
2 22 2 3 4 2 3 4

2

H
H 3 1 5R 4R 1 5R 2 5R R 1 5Q 2 5Q Q

R


      


. (2.18) 

 
Equations (2.15) to (2.18) are expanded and integrated partially with respect to R and Q respectively 

in a closed domain. The results in five significant figures are 
 

 .
1 1 4

4
0 0

H
H R Q 0 013571

R


  

 , (2.19) 

 

 .
1 1 4

4
0 0

H
H R Q 0 013571

Q


  

 , (2.20) 

 

 .
1 1 4

2 2
0 0

H
H R Q 0 0073470

R Q


  

  , (2.21) 

 

 .
1 1 2

2
0 0

H
H R Q 0 00064626

R


  

 . (2.22) 

 
Substituting the values of the integrals in Eqs (2.19) to (2.22) into Eq.(2.11) gives 
 

 

.
. .

.

2
2

x 2

0 013571 1 3T
0 014694 0 013571p

4 4Sp
N

0 000

D

64626 b

        
 
 
 

. (2.23) 

 
Generally, the plate buckling equation is often expressed as 
 

   
2

x 2

k
N

b

D
  (2.24) 

 
where k is the plate buckling coefficient. If Eq.(2.23) is written in the form of Eq.(2.24), then the plate 
buckling coefficient may be expressed as 
 

   
.

  . .
   

2
2

2 12767 1 3T
k 2 30374 2 12767 p

4 4Sp

     
 

. (2.25) 
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3. Results and discussion 
  
 The present investigation derived the inelastic critical load equation for the CCSS boundary 
conditions of the thin rectangular isotropic plate as 
 

    .
  . .   

   

2
2

x cr 2 2

2 12767 1 3T
N 2 30374 2 12767 p

4 4Sp b

D        
  

. (3.1) 

 
 Ibearugbulem (2012) gave the critical load equation for the elastic stability of the same plate as 
 

    .
.  .

2
2

x cr 2 2

D 2 1278
N 2 1278 p 2 303

b p

 
    

 
. (3.2) 

 
 Both solutions in Eqs (3.1) and (3.2) are upper bound and approximate. Both solutions also 
employed the Taylor series formulated deflection function. The present investigation based on Stowell’s 
method used D  instead of D. The notation, D, is the elastic flexural rigidity and is expressed as  
 

  
 

3

2

Eh
D

12 1


 
  (3.3) 

 
where   is the Poisson ratio and E is the modulus of elasticity. Stowell (1948) used a numerical value of 0.5 
for the value of the Poisson ratio during the inelastic buckling and expressed D  as shown in Eq.(2.9). 
 From Eq.(3.1), it may be noted that k is a function of p, T and S. A thorough knowledge of the stress-
strain relationship of the plate material in the inelastic range is required in order to calculate the values of T 
and S. The factor T/S is always less than one in the inelastic buckling analysis. If its value is expressed as T/S 
= 1, then the value of the critical buckling load for the inelastic buckling will be equal to that of the elastic 
buckling. In the present investigation, numerical values of T/S equal to 0.6, 0.75 and 0.9 are used to calculate 
the values of the aspect ratios . .0 1 p 2 0   at intervals of 0.1. The values of k are shown in Tab.1. 
 From Tab.1, the average percentage difference between the solution from the present investigation 
for T/S = 0.9 and the solution for Ibearugbulem (2012) is - 3.040%. It may be observed that the percentage 
difference between the two solutions improves as the aspect ratio increases. However, solutions were 
unavailable in open literature for comparing the results of the present investigation and Ibearugbulem (2012) 
for the CCSS boundary conditions. Table 2 shows the minimum (p = 0.1) and maximum (p = 2.0) values of k 
for the inelastic stability (T/S = 0.9) and elastic stability of plates with CCSS, CCCC and CSSS boundary 
conditions, as well as the minimum (p = 0.1) and maximum (p = 2.0) percentage differences. 
 The data in Tab.2 indicates that the minimum and maximum percentage differences for the CCSS, 
CCCC and CSSS boundary conditions have similar numerical values. According to Ibearugbulem (2012), the 
elastic stability solutions for the CCCC and CSSS plates compared favourably with those of previous 
research studies. The average percentage difference for Ibearugbulem (2012) and Iyengar (1988) was 
3.538% for . .0 1 p 1 0   at intervals of 0.1 for the CCCC boundary conditions. For the CSSS boundary 
conditions, the difference with Michelutti (1976) was 0.55% for p = 0.79 while the difference with Fok 
(1980) was 6.25% for p = 1.0 as cited in Ibearugbulem (2012). These differences are quite close to one 
another and are acceptable in statistics. Further research could be conducted to confirm the accuracy of the 
results presented in this paper. 
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Table 1. Values of k for uniaxially compressed CCSS plate. 

 
p 

k from Present Investigation k from 
Ibearugbulem 

(2012)

              * 

α T/S = 0.60 T/S = 0.75 T/S = 0.90 

0.1 151.262 175.198 199.134 215.104 –7.424 
0.2 39.623 45.607 51.591 55.583 –7.182 
0.3 19.044 21.703 24.363 26.137 –6.787 
0.4 11.953 13.449 14.945 15.942 –6.254 
0.5 8.793 9.751 10.708 11.346 –5.623 
0.6 7.207 7.872 8.537 8.980 –4.933 
0.7 6.386 6.874 7.363 7.688 –4.227 
0.8 5.993 6.367 6.741 6.989 –3.548 
0.9 5.866 6.161 6.457 6.653 –2.946 
1.0 5.921 6.160 6.400 6.559 –2.424 
1.1 6.109 6.307 6.505 6.636 –1.974 
1.2 6.402 6.568 6.734 6.845 –1.621 
1.3 6.781 6.922 7.064 7.158 –1.313 
1.4 7.234 7.356 7.478 7.559 –1.072 
1.5 7.753 7.859 7.966 8.036 –0.871 
1.6 8.332 8.426 8.519 8.581 –0.723 
1.7 8.968 9.051 9.134 9.189 –0.599 
1.8 9.657 9.731 9.805 9.854 –0.497 
1.9 10.397 10.463 10.530 10.574 –0.416 
2.0 11.187 11.247 11.306 11.346 –0.353 

* α means percentage difference between k from Present Investigation (T/S = 0.90) and Ibearugbulem (2012) 
 
 

Table 2. Inelastic values (T/S = 0.9) and elastic values of k for selected boundary conditions.  

 Boundary 

Conditions 

a Inelastic k   Elastic k (Ibearugbulem 2012)  Percentage Difference 

p = 0.1 p = 2.0 p = 0.1 p = 2.0 p = 0.1 p = 2.0 

CCSS 199.134 11.306 215.104 11.346 –7.424 –0.353 

CCCC 396.099 20.439 427.970 20.512 –7.447 –0.366 

CSSS 94.948 12.337 102.429 12.354 –7.304 –0.138 
a Solutions for the inelastic plate buckling of the SCCC, CCCC and CSSS boundary conditions are found in this 

Present Investigation, Ibearugbulem et al. (2013b) and Eziefula et al. (2013) respectively. 
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4. Conclusions 
 
 This investigation was designed to analyze the inelastic stability of a thin flat rectangular isotropic 
plate subjected to uniaxial in-plane compression with clamped and simply supported edges in both 
characteristics dimensions. The deformation theory of plasticity based on Stowell’s method and a work 
principle were used to derive the inelastic governing equation. The deflection function was formulated with 
the Taylor series. The results of the investigation were compared with the elastic buckling values and the 
results show strong consistency. The idea of the results is to provide an alternative means of estimating the 
deflection and buckling coefficient of thin flat rectangular isotropic plates as well as to provide a solution for 
the CCSS boundary conditions. The approach proposed in this investigation could be extended to the 
inelastic stability of thin rectangular isotropic plates of other boundary conditions. This approach is valid for 
continuous and isotropic plates subjected to proportional loading for a range of metal materials.  
 
Nomenclature 
 
 A – amplitude of the deflection function 
 a – length of plate 
 b – width of plate 
 C – clamped edge 
 CCSS – rectangular plate clamped along one longitudinal edge, clamped along one short edge, simply supported 

along one longitudinal edge, and simply supported along one short edge 
 D – plate flexural rigidity in the elastic range 
 D   – plate flexural rigidity in the plastic range 
 E – Young’s modulus  
 H – buckling curve expression 
 h – thickness of plate 
 J, K – unknown constants in the polynomial series   
 k – plate buckling coefficient 
 m – number of half-waves of the buckling mode along the x-direction 
 Nx – uniaxial in-plane compressive load on x-plane 
 Nx,CR – critical buckling load 
 n – number of half-waves of the buckling mode along the y-direction  
 p – aspect ratio  
 R, Q – non-dimensional axes of the x- and y-coordinates respectively 
 S – simply supported edge 
 S – secant modulus 
 T – tangent modulus 
 w – out-of-plane deflection  

 ,R Qw w    – first derivative of the deflection in the R- and Q-coordinates, respectively 

 ,R Qw w   – second derivative of the deflection in the R- and Q-coordinates, respectively 

 x,y – Cartesian coordinates in the horizontal and vertical direction, respectively 
 ν – Poisson ratio 
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