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The purpose of this paper is to study the two dimensional deformation due to an internal heat source in a 
thermoelastic microelongated solid. A mechanical force is applied along an overlaying elastic layer of thickness 
h. The normal mode analysis has been applied to obtain the exact expressions for the displacement component, 
force stress, temperature distribution and microelongation. The effect of the internal heat source on the 
displacement component, force stress, temperature distribution and microelongation has been depicted 
graphically for Green-Lindsay (GL) theory of thermoelasticity.  
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1. Introduction 

 
 The dynamical interaction between the thermal and mechanical fields has great practical applications 
in modern aeronautics, astronatics, nuclear reactors, and high-energy particle accelerators. Classical elasticity 
is not adequate to model the behavior of materials possessing internal structure. Furthermore, the micropolar 
elastic model is more realistic than the purely elastic theory for studying the response of materials to external 
stimuli. Eringen and Suhubi (1964) and Suhubi and Eringen (1964) developed a nonlinear theory of micro-
elastic solids. Later Eringen (1965; 1966; 1996) developed a theory for the special class of micro-elastic 
materials and called it the “linear theory of micropolar elasticity”. Under this theory, solids can undergo 
macro-deformations and micro-rotations. Eringen (1971) extended his work to include the axial stretch 
during the rotation of molecules and developed the theory of micro-polar elastic solid with stretch. The 
micropolar theory was extended to include thermal effects by Nowacki (1966), Eringen (1970), Tauchert et 
al. (1968), Tauchert (1971), Nowacki and Olszak (1974). One can refer to Dhaliwal and Singh (1987) for a 
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review on the micropolar thermoelasticity and a historical survey of the subject, as well as to Eringen and 
Kafadar (1976) in “Continuum Physics” series in which the general theory of micromorphic media has been 
summed up.  
 There are two important generalized theories of thermoelasticity. The first is due to Lord and 
Shulman (1967). The second generalization of the coupled theory of elasticity is known as the theory of 
thermoelasticity with two relaxation times or the theory of temperature-rate-dependent thermoelasticity. 
Muller (1971), in the review of thermodynamics of thermoelastic solids, proposed an entropy production 
inequality, with the help of which he considered restrictions on a class of constitutive equations. A 
generalization of this inequality was proposed by Green and Laws (1972a). Green and Lindsay (1972b) 
obtained another version of the constitutive equations. These equations were also obtained independently and 
more explicitly by Suhubi (1975). This theory contains two constants that act as relaxation times and modify 
all the equations of coupled theory, not only the heat equations. The classical Fourier law of heat conduction 
is not violated if the medium under consideration has a centre of symmetry.  
 Barber (1984) studied thermoelastic displacements and stresses due to a heat source moving over the 
surface of a half plane. Sherief (1986) obtained components of stress and temperature distributions in a 
thermoelastic medium due to a continuous source. Dhaliwal et al. (1997) investigated thermoelastic 
interactions caused by a continuous line heat source in a homogeneous isotropic unbounded solid. 
Chandrasekharaiah and Srinath (1998) studied thermoelastic interactions due to a continuous point heat 
source in a homogeneous and isotropic unbounded body. Sharma et al. (2000) investigated the disturbance 
due to a time-harmonic normal point load in a homogeneous isotropic thermoelastic half-space. Sharma and 
Chauhan (2001) discussed mechanical and thermal sources in a generalized thermoelastic half-space. Sharma 
et al. (2004) investigated the steady-state response of an applied load moving with constant speed for infinite 
long time over the top surface of a homogeneous thermoelastic layer lying over an infinite half-space. 
Sarbani and Amitava (2004) studied the transient disturbance in half-space due to moving internal heat 
source under L-S model and obtained the solution for displacements in the transform domain. Aouadi (2006) 
studied thermomechanical interaction in a generalized thermo-microstretch elastic half space. Deswal and 
Choudhary (2008) studied a two-dimensional problem due to moving loads in generalized thermoelastic 
solid with diffusion. El Maghraby (2010) considered a two dimensional problem of a generalized 
thermoelastic half space under the action of body forces and subjected to thermal shock. Youssef (2010) 
solved the problem on a generalized thermoelastic infinite medium with a spherical cavity subjected to a 
moving heat source. Shaw and Mukhopadhyay (2012; 2013) discussed a couple of problems in a 
thermoelactic microelongated medium subjected to a heat source. 
      In the present problem the authors have discussed deformation due to an internal heat source in a 
thermoelastic microelongated solid with an overlaying elastic layer of thickness h. A mechanical force of 
constant magnitude is applied along the layer. The normal mode analysis is used to obtain the exact 
expressions for the considered variables. The distributions of the considered variables are then represented 
graphically for Green Lindsay (GL) theory of thermoelasticity.  
 The constitutive equation for a homogeneous, isotropic, microelongated, thermoelastic solid are 
 

   , , ,kl 0 1 2k kl 0 kl kl r r k l l k= 1 t T u u u
t

                
, (1.1) 

 
  ,k 0 km = a  , (1.2) 

 

  ,1 1 2k 1 0 k ks t = 1 t T u
t

           
, (1.3) 

 

  ,k k
0

K
q = T

T
. (1.4) 
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 The field equation of motion according to Eringen (1999), Kiris and Inan (2007) and the heat 
conduction equation according to De Cicco and Nappa (1999) for the displacement, microelongation and 
temperature changes are 
 

  , , , ,( )0 1 2k i 0 i j ij i jj i1 t T u u u
t

                
 , (1.5) 

 

  , ,0 ii 1 1 2k 1 0 j j 0
1

a 1 t T u j
t 2

               
 , (1.6) 

 

  
.

,
2

E 0 1k 0 0 0 1k k k 1 0 0 1kK T C 1 t T T 1 t u T 1 t Q
t t t

                                  
  . (1.7) 

 
    We have considered a homogenous, microelongated, isotropic, infinite, thermoelastic body at a 
uniform reference temperature 0T  in the presence of an internal heat source Q  in the xy -plane with 

displacement vector  = u,v,0u , i.e., two dimensional disturbance of medium is assumed. 
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Fig.1. Geometry of the problem. 
 
 Hence, Eqs (1.5)-(1.7) become   
 

  ( ) ( )
2 2 2 2

0 1 2k 0 2 2 2

T u v u u
1 t 2

t x x x yx y t

                               
, (1.8) 

 

  ( ) ( )
2 2 2 2

0 1 2k 0 2 2 2

T v u v v
1 t 2

t y y x yx y t

                               
, (1.9) 

 

h      Elastic Layer        

                  

     

P1 

Thermoelastic microelongated solid 



720  P.Ailawalia, S.K.Sachdeva and D.S.Pathania 

  
2

2
0 1 1 2k 1 0 0 2

u v 1
a 1 t T j

t x y 2 t

                         
, (1.10) 

 

  .

.

2
E 0 1k

2

0 0 0 1k 1 0 0 1k2

T
K T C 1 t

t t

u v
T t T 1 t Q

t x y t tt

         

                               

 (1.11) 

 
 Constitutive stress components are 
 

  ( )xx 0 0
u v

T 2
x y

 
           

 
, (1.12) 

 

   yy 0 1 0
u v

1 t T 2
t x y

                   
, (1.13) 

 

  xy
u v

x y

  
      

.   (1.14) 

 
 The equations of motion and stress components in an elastic medium are Ewing et al. (1957) 
 

     
2 e

e e e e 2 e e
2

=
t


         


u

u u , (1.15) 

 

     e e e e e e
ij ij i , j j ,i= u u u        . (1.16) 

 
 For convenience the following non-dimensional variables are used 
 

  
*

1

x = x
c

 ,   
*

1

y = y
c

 ,   
*

1

0 0

c
u = u

T

 


,   
*

1

0 0

c
v = v

T

 


,   *t = t  ,   *
0 0t = t  ,   *

1 1t = t  , 

 

  
ij

ij
0 0

=
T





,   0

0 0

=
T

 


,   
e
ije

ij
0 0

=
T

 



,   1

1
0 0

P
P =

T



,   

0

T
T =

T
 ,   

* 2
1

1
Q = Q

c



, 

 

where,   *
2
1 Ec C

=
K


 ,     2

1
2

c =
  


. 

 
 Using the above non dimensional variables, Eqs (1.8)-(1.14) reduce to (after dropping superscripts) 
 

  
2 2 2 2

1 2k 1 2 32 2 2

u T u v u
= 1 t h h h

t x x x yt x y

                     
, (1.17) 
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2 2 2 2

1 2k 3 2 12 2 2

v T v u v
= 1 t h h h

t y y x yt x y

                     
, (1.18) 

 

  
2

2
4 1 2k 5 6 7 2

u v
h 1 t T h h h

t x y t

                       
, (1.19) 

 

  .

,

2
8 0 1k

2

9 0 1k 10 11 0 1k2

T
T h 1 t

t t

u v
h t h h 1 t Q

t x y t tt

         

                            

 (1.20) 

 

  xx 1 12
u v

T h h
x y

 
      

 
, (1.21) 

 

  xy 3
u v

h
x y

  
     

, (1.22) 

 

  yy 1 12 1
u v

1 t T h h
t x y

              
 (1.23) 

 

where,      
1 2 3 2

1

2 , ,
h ,h ,h =

c

      


,     

*

2
1 0 1

4
0 0

c
h =

a

 
 

,     
*

2
1 1

5
0

c
h =

a




,     
*

2
0

6
0

h =
a


 

, 

 

  
* 2

0 1
7

0

j c
h =

2a

 
,    

*

2
E 1

8
C c

h =
K




,    

*

2
0 0

9
T

h =
K


 

,     
*

2
0 1 0 1

10
0

T c
h =

K

 

 
,     

*

4
1

11
0

c
h =

K T




,  

 

  12 2
1

h =
c




. 

 
2. Normal mode analysis 
 
 The solution of the considered physical variables can be decomposed in terms of normal mode and 
can be considered in the following form 
 

      * *, ,
* * *e e e * * * * e e e t iby

ij ij ij iju,v,T , , ,u ,v , Q x,y,t = u ,v ,T , , ,u ,v , Q x e        
 

 

 

where   is the complex frequency, b is the wave number in the y-direction and        *, , ,* * *u x v x T x x , 

        *, , , ,
* * ** e e e

ij ijx u x v x x Q   are the amplitudes of field quantities. 

 Using normal mode in Eqs (1.17)-(1.23), we get 
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    *2 * * *
1 1 2 2h D A u ibh Dv A DT D = 0     , (2.1) 

 

    ** 2 * *
2 3 3 2ibh Du h D A v ibA T ib = 0     , (2.2) 

 

   * ** * 2
6 6 2 4 4h Du ibh v A h T D A = 0      , (2.3) 

 

    * ** * 2 *
9 6 9 6 7 10 11 5h A Du ibh A v D A T h = h A Q       , (2.4) 

 

  * * * * *
xx 1 12T h Du ibh v       , (2.5) 

 

   * * *
xy 3h ibu Dv   , (2.6) 

 

  * * * * *
yy 1 12 1A T h Du ibh v        (2.7) 

 
where 
 

  2 2
1 3A = h b  ,      2 1 2kA = 1 t   ,     2 2

3 1A = h b  ,     2 2
4 5 7A = b h h   , 

 

   5 0 1kA = 1 t   ,      6 0 1kA = 1 t    ,     2
7 8 5A = b h A  ,     

d
D =

dx
. 

 

 Eliminating  *v x ,  *T x ,  * x  from Eqs (2.1)-(2.4), we get the following eight order differential 

equation for  *u x  as 

 

      *8 6 4 2 *D AD BD CD E u x = RQ     (2.8) 

 

where,     2 2
1 3 4 7 1 3 3 1 3 6 2 3 9 6 2

1 3

1
A= h h A A h A h A h h A h h A b h

h h

         , 

 

  

 

   
,

2
1 2 4 10 3 1 3 4 7 1 3 4 7 1 2 6 9

1 3

2 2 2
1 6 1 3 4 7 1 3 2 4 7 3 6 10 2

3 9 2 4 6 9 2 3 6 3 6 7 3 4 9 2 6 3 6

1
B = h A h h h h h A A h A A A h b A A h

h h

b h A A h A A A A b h A A h h h A

h h A A A h A A A h h A h h h A A A h

      

       

    

 

     

   

2 2
2 3 1 4 10 3 4 7 1 1 6 10 2 1 9 2 4 6

1 3

2 2 2
1 6 7 1 4 9 2 6 1 2 3 4 10 3 1 4 7 1 3 4 7

2 2 2 2 2 2
1 2 6 9 6 1 2 2 4 10 2 4 7

2 2
7 2 6 2 6 2 4 9 6 10 2 3 2 3 4

1
C = A A h h h A A A h b h h h A b h h A A A

h h

b h h A b h h h A A A A h h h h A A A A A A A

b A A A h b h A b h A h h b h A A

2b A h h 2b A A h h h h h A A A A A A

     

       

    

    ,6 9 3 7 6 2 3 6 4 9h A A h A A A h h   
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



2
4 10 1 2 3 1 3 4 7 6 10 1 2

1 3

2 2 2
9 1 2 4 6 6 1 7 4 9 1 2 6

1
E = h h A A A A A A A b h h A A

h h

b h A A A A b h A A b h h A A A


    

  

 

 

   2
11 1 2 4 5 4 4R b h A A A A h A  . 

 

 In a similar manner we can show that  *v x ,  * x ,  * x  satisfies the equation 

 

           *, ,8 6 4 2 * * *D AD BD CD E v x x x = RQ      , (2.9) 

 
which can be factorized as follows 
 

         *2 2 2 2 2 2 2 2 *
1 2 3 4D k D k D k D k u x = RQ    . (2.10) 

 
 The series solution of Eq.(2.8) has the form 
 

     ,
4

k x* n
n

n=1

u x = M b e S    , (2.11) 

 

     
4

k x* n
n 1

n=1

v x = M b, e S     , (2.12) 

 

     * ,
4

k xn
n 2

n=1

T x = M b e S     , (2.13) 

 

     
4

k x* n
n 3

n=1

x = M b, e S      (2.14) 

 

where        , , , , , , ,n n n nM b M b M b M b       are specific functions depending upon b,   and 2
nk , 

n=1, 2, 3, 4 are the roots of characteristic Eq.(2.10).  

where, 
E

RQ
S

*

 .        

 Using Eqs (2.11)-(2.14) in Eqs (2.1)-(2.4), we get 
 

     , ,n 1n nM b = H M b   , (2.15) 

 

     , ,n 2n nM b = H M b   , (2.16) 

 

     , ,n 3n nM b = H M b   , (2.17) 
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  1 1S ibA S ,        2
2 1 3 4 6S ibA A A b h S  ,       3 1S A S . 

 
 Thus we have 
 

     ,
4

k x* n
1n n 1

n=1

v x = H M b e S    , (2.18) 

 

     * ,
4

k xn
2n n 2

n=1

T x = H M b e S    , (2.19) 

 

     ,
4

k x* n
3n n 3

n=1

x = H M b e S     , (2.20) 

 

     ,
4

k x* n
xx 4n n 4

n=1

x = H M b e S     , (2.21) 

 

   ( )
4

k x* n
xy 5n n 5

n=1

x = H M b, e S     , (2.22) 

 

     ,
4

k x* n
yy 6 n n 6

n=1

x = H M b e S      (2.23) 

 
where 
 

  
 

 
2

1 2 n 1
1n 2 3

3 2 n 3 n

ib h h k A
H =

A b h k h k

   
   

,  

 

  
     

 
4 2 2 3

3 n 4 3 3 n 3 4 6 1n 2 n 2 4 6 n

2n 2
2 n 4 2 4

h k A h A k A A b h H ib h k h A h k
H =

ib A k A A h

           
   

,  

 

  
 2

1 n 1 2 n 1n 2 n 2n
3n

n

h k A ibh k H A k H
H =

k

  
,  

 
  4n 12 1n 2n 3n 1 nH = ibh H H H h k   ,  
 

   5n 3 n 1nH h ib k H  ,  

 
  6n 1 1n 1 2n 3n 12 nH =ibh H A H H h k   ,  
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   4 2 3 12 1S S S ibh S    ,      5 3S ibh S ,       6 1 2 3 1 1S A S S ibh S    . 

 
 Similarly for medium II (i.e., elastic layer), the solutions are of the form 
 

       , ,
2 2* r x r xe n n

n n 2
n=1 n=1

u x = R b e R b e


          , (2.24) 

 

       , ,
2 2* r x r xe n n

n n 2
n=1 n=1

v x = R b e R b e


            (2.25) 

 

where,    , , ,n n 2R b R b   and    , , ,n n 2R b R b    are specific functions depending upon b,   and 2
nr , 

,n 1 2  are the roots of characteristic equation 
 

     
*4 2 eD GD L u x = 0   (2.26) 

 

where,   
2 2 2 2 2 2 2 2

1 1 3 3 2

1 3

b l l b l l b l
G =

l l

     
,  

 

  
4 2 2 2 2 4

1 3 3 1

1 3

b l l b l b l
L =

l l

    
,  

 

and   
e e

1 e 2
1

2
l =

c

  


,       
e e

2 e 2
1

l =
c

  


,       
e

3 e 2
1

l =
c




. 

 
 Thus we have 
 

       ( ), ,
2 2* r x r xe n n

1n n 1 n 2 n 2
n=1 n=1

v x = L R b e L R b e
 

          , (2.27) 

 

     ( )( ) , ,
2 2* r x r xe n n

xx 2n n 2 n 2 n 2
n=1 n=1

x = L R b e L R b e
 

           , (2.28) 

 

     ( )( ) , ,
2 2* r x r xe n n

yy 3n n 3 n 2 n 2
n=1 n=1

x = L R b e L R b e
 

           , (2.29) 

 

       ( ), ,
2 2* r x r xe n n

xy 4n n 4 n 2 n 2
n=1 n=1

x = L R b e L R b e
 

            (2.30) 

 
where 
 



726  P.Ailawalia, S.K.Sachdeva and D.S.Pathania 

  
2 2 2

1 n 3
1n

2 n

l r b l
L =

ibl r

 
,                           ( ) ,

2 2 2
1 n 3

1 n 2
2 n

l r b l
L =

ibl r
 


 

 

  
  e e

n 1n
2n

2 r ibL
L =

    


,              

    
( ) ,

e e
n 1 n 2

2 n 2

2 r ibL
L =




   


 

 

  
   e e e

n 1n
3n

r ib 2 L
L =

     


,          

    ( )
( ) ,

e e e
n 1 n 2

3 n 2

r ib 2 L
L =




    


   

 

  
e e

n 1n
4n

ib r L
L =

  


,                           
( )

( ) .
e e

n 1 n 2
4 n 2

ib r L
L = 


  


 

 
3. Applications 
 
 In this section we determine the parameter nM  and nR ; ( n =1, 2, 3, 4). In the physical problem the 

constants nM  and nR ; ( n =1, 2, 3, 4) have to be selected such that boundary conditions at the surface are 

 

  e t iby
xx xx 1= P e          at      x h  ;      xy = 0       at      x h  ; 

 
e

xx xx=        at      x 0 ;      e
xy xy=        at      x 0 ;      eu = u        at       x 0 ; (3.1) 

 

  ev = v       at      x 0 ;     = 0       at      x 0 ;      
T

= 0
x




      at      x 0  

 
where 1P  is the magnitude of mechanical force.  

 Using the expressions of xx , e
xx , xy , e

xy , u , eu , v , ev ,   and T  from Eqs (2.18)-(2.22) and 

(2.24), (2.27)-(2.30) in the above boundary conditions (3.1), gives the following equations satisfied by the 
parameters 
 

      ( )
n n n

4 2 2k h r h r h
4n n 2n n 2 n 2 n 2 1 4n=1 n=1 n=1

H M e L R e L R e = P S
         , 

 

    n
4 k h

5n n 5n=1
H M e S  , 

 

      ( )
4 2 2

4n n 2n n 2 n 2 n 2 4n=1 n=1 n=1
H M L R L R = S        , 

 

      ( )
4 2 2

5n n 4n n 4 n 2 n 2 5n=1 n=1 n=1
H M L R L R = S        , 

 

       4 2 2
n n n 2n=1 n=1 n=1

M R R = S     , 
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      ( )
4 2 2

1n n 1n n 1 n 2 n 2 1n=1 n=1 n=1
H M L R L R = S        , 

 

   4
3n n 3n=1

H M = S , 

 

   4
2n n nn=1

H k M =0 . 

 
 After solving the above non homogenous system of eight equations , we get the values of constants 

nM  and nR ; ( n =1, 2, 3, 4) and hence we obtain the component of normal displacement, normal force 

stress, temperature distribution and microelongation due to the internal heat source in a thermoelastic 
microelongated solid with an overlaying elastic layer.  
 
3.1. Special case 
 
 Letting 0 , we obtain the results for a generalized thermoelastic solid (TS). 

 
4. Numerical results and discussions 
 
 For numerical computations, we consider the values of physical constants for a thermoelastic 
microelongated solid as given by Shaw and Mukhopadhyay (2013)  
 

    = . 10 27 59 10 N / m ,        = 10 21.89 10 N / m ,      . 10
0a = 0 61 10 N , 

 

  . ,3 3= 2 19 10 kg / m        . /5 2
1 = 0 05 10 N m K  ,      . /5 2

0 = 0 05 10 N m K  ,  
 

   EC = 966 J / kgk ,    ,0T = 293K     4 2
0j = 0.196 10 m ,     . /10 2

0 1= 0 37 10 N m    ,  
 

  . ,0t = 0 01         .1t = 0 0001 ,       / .K = 252J msK  
 
 The physical constants for the elastic medium (granite) are given by Bullen (1963) as 
 

  . ,e 10 2= 0 884 10 N / m          ,e 10 2= 1.2667 10 N / m          . .e 3 3= 2 6 10 Kg / m   
 
 The computations are carried out for the value of non-dimensional time .t =0 2  in the range 
0 y 10   and on the surface .x = 1 0 .The numerical values for normal displacement, normal force stress, 
temperature distribution and microelongation are shown in Figs 2-5 for mechanical force with magnitude  

1P = 1.0 , h=1, 0=    , .0 = 0 1 , .= 0 2   and .b=1 2  and k=2 for Green-Lindsay (GL) theory. The 
legend as follows: 
(a) thermoelastic microelongated solid(TMS) with Q = 1 is given by a solid line with dashed symbol . 
(b) thermoelastic microelongated solid(TMS) with Q = 10 is given by a dashed line with centered symbol ■. 
(c) thermoelasic solid(TS) with Q = 1 is given by a dashed line with centered symbol ▲. 
(d) thermoelasic solid(TS) with Q = 10 is given by a dashed line with centered symbol  . 
 These graphical results represent the solutions obtained by using the generalized theory (G-L theory) 
by taking 1k = 0 , 2k = 1 . 
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      It is observed from Figs 2-5 that the values of normal displacement, normal force stress, temperature 
distribution and microelongation near the point of application of the source increase with an increase in 
magnitude of the internal heat source. The values of all the quantities lie in a short range for Q = 1.0. The 
values obtained for normal force stress, temperature distribution and microelongation are in the same range. 
The values of all the quantities converge to zero with horizontal distance. 

 

 

 
Fig.2. Variation of normal displacement with horizontal distance. 

 

 

 
Fig.3. Variation of normal force stress with horizontal distance. 
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Fig.4. Variation of temperature distribution with horizontal distance. 

 

 
 

Fig.5. Variation of microelongation with horizontal distance. 
 
Conclusion 
 
a. Internal heat source and microelongation play a prominent part in the study of deformation of a 

thermoelastic medium. 
b. As expected, the body is deformed to a greater extent with an increase in the magnitude of the internal 

heat source, near the point of application of the heat source. 
c. For a fixed heat source, the value of normal displacement and normal force stress is greater for a 

microelongated solid, near the application of the source. 
 
Nomenclature 
 
  ,  ,  0 0 1a    – microelongational constants 
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 EC  – specific heat at constant strain 

 K – thermal conductivity 
  km  – component of microstretch vector 

 q – heat flux 
  kks s  – component of stress tensor 

 0T  – reference temperature 

 kkt    – microelongational stress tensor 

 u – displacement vector 

 eu  – displacement vector in elastic medium 
 ,  

1 2t t   – coefficent of linear thermal expansion 

   
10 t3 2       

   
21 t3 2       

 e , e  – Lame’s constants in elastic medium 

 e  – density of elastic medium 
    – microelongational scalar 
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