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 In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures  are 
presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is 
proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular 
meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of 
Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of 
permeability of porous media and velocity of fluid flow through porous media have been received.  
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1. Introduction 
 

 The aqueous humor is a substance responsible for keeping proper tension of the eyeball and for 
nutrition and purification of its structure. The correct value of intraocular pressure occurs when the aqueous 
humor is produced and drained into the ciliary body at the same rate the (Fig.1). As results of disorder of 
this process optic nerve can be damaged. Damage of the optic nerve causes permanent and total blindness. 
The value of intraocular pressure at 21 mmHg, considered as the highest acceptable value for healthy eye, 
was established (Niżankowska, 2006). A better understanding of pathomechanisms of diseases is the key to 
their effective treatment. Therefore it is very important to understand and describe the aqueous humor 
behavior in eye structures (Niżankowska, 2006). 

In the literature a lot of mathematical models describing the behavior of the aqueous humor in the 
eye structures have been presented. All of them have in common the assignment of rheological properties of 
water to the aqueous humor. This is far-reaching simplification, because in aqueous collagen fibers, ascorbid 
acid and ions of various elements humor are supended. Therefore the aqueous humor should be treated as a 
couple stress fluid, or power series fluid (Walicka and Walicki, 1999).  

The aqueous humor consists of 98% water. The composition of the aqueous humor is approximate to 
blood plasma composition. Differences of quantity in percents of suspended elements between that two fluids 
are very small. Therefore, a considerable approximation of the aqueous humor properties would be determine 
the rheological properties of blood plasma. Blood donation is a much less invasive procedure than aqueous 
humor donation. Blood donation procedure is also much less risky (Gabelt and Kaufman, 1995; Gedde, 2012).  

Discussion on the flow of the aqueous humor in eye structures and its meaning for the control of 
intraocular pressure was initiated by Goldman. In 1950 he developed a technique for monitoring the direction of 
the flow and for making a quantitative analysis of the flow. Goldman assumed that the method of administration 
and sampling the dye did not affect the test results, and defined - from post-injection of the dye (fluorescein) into 
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the structures of the eye dye – the velocity and flow directions of the fluid. The test method proposed by 
Goldman was very invasive, because the dye was administered directly by injection into the eyeball. 

Currently used methods of flow testing are less invasive and based on fluoroopthometry. The dye is 
administered in the form of drops (Millar et al., 2011). 

 

 
 

Fig.1. The structure of the eyeball. 
 

 Another group of studies are the studies that describe the physical properties of the aqueous humor 
and specify the flow rate produced in the ciliary body. These studies determine the effect of the amount of 
the fluid produced, and the pressure in the blood vessels of the IOP. Based on experimental methods methods 
of mathematical description of the behavior of the aqueous humor in the eye structures have been developed. 
These phenomena were mathematically described by Friedland (Heys et al., 2002). The model assumes a 
significant simplification, it is assumed that the tissues in the eye are rigid and do not affect the flow of the 
liquid. The geometry of the eye has also been simplified to the extent that it was possible to apply the Navier 
Stokes equations for the front and rear chamber. Friedland’s model was developed by Tiedman (Heys et al., 
2002). He introduced an iris as diaphragm pressure relief valve. He assumed that it is supported on the edges 
and bears pressure on the inner surface. He simplified the model assuming an infinitely small thickness of 
the iris and the lack of its effect on the flow of the aqueous humor. Heys’s model constitutes a development 
of the two previous solutions and considers the effect of the iris of a finite thickness for the flow of the 
aqueous humor (Heys et al., 2002). Kaufman made certain assumptions about the passivity of the flow of the 
aqueous humor and its independence from energy. Moreover, he assumed that the outflow occurs only 
through the trabecular meshwork (Millar et al., 2011). The flow of the aqueous humor in the anterior 
chamber of the eye was analyzed by Fitt and Gonzalez (2006). All the models presented above and used to 
describe the behavior of the fluid within the eye have one common feature, namely the assumption that the 
rheological properties of the aqueous fluid are comparable to the properties of water.  
 The objective of this paper is to analyze the possibilities of using rheological models of Newtonian 
and non-Newtonian fluids for mathematical modeling of the aqueous humor flow in the trabecular 
meshwork. The trabecular meshwork is modeled as a porous medium, which is a rectilinear array of parallel 
capillary tubes. A Newtonian fluid, a couple stress fluid and a generalized second grade fluid of a Shulman’s 
type were considered as examples. 
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2. Mathematical models of the aqueous humor flow 
 

2.1. Kaufman’s model 
 
 The behaviour of the aqueous humor in the eyeball according to Kaufman and coworkers (Gabelt 
and Kauffman, 1995; Millar et al.,2011) can be presented by the following equations 
 

  i s fF F F  , 
 

  o t uF F F  , 
    (2.1) 
  tot trab u psC C C C   , 
 

  i oF F F   
 

where : F  – the flow rate, iF  – the  total flow of the aqueous humor to the eye, sF  – the flow of the aqueous 

humor through active secretion, fF  – the flow of the aqueous humor by filtration, oF  – the total outflow of 

the aqueous humor from the eye, tF  – the outflow of the aqueous humor through the trabecular meshwork, 

uF  – the outflow of the aqueous humor through the  sclera, totC , ppC  – total conductance of the flow, trabC , 

TMC  – conductance of the flow through the trabecular mesh, uC  – conductance of the flow through the 

sclera, psC  – conductance of inflow of the aqueous humor. 

 The flow of the aqueous humor in the eye may be presented by the hydraulic model and Goldman’s 
equation, assuming that the liquid flow is passive, an energy-independent and occurs in the direction of the 
pressure gradient. In addition, it is assumed that the outflow occurs only through the trabecular meshwork. 
This simplification shall be allowed, because 90% of the aqueous humor flows in this way. It can then be 
assumed that Eqs (2.2) and (2.3) determining the pressure difference p  are true (Millar et al., 2011)  
 

 i vp p p   ,  (2.2) 
 

and the flow rate F  
 

  trab i vF C p p   (2.3) 
 

where ip  – the  intraocular pressure, vp  – the episcleral vessels pressure. 
 For a human body the flow rate F amounts to 
 

      min. . . .
min

l
l

F 0 28 15 6 mmHg 7 6 mmHg 2 24
mmHg

 
          
 

. 

 
2.2. Heys’s model 
 

 Heys’s model (Heys et al., 2002) assumes that the aqueous humor has the following properties: 

density 3
kg1000

m
 
  

, viscosity . 4 kg7 5 10 ms
     

 for  37 C , the Reynolds constant of 0.001 was 

determined for the flow in the eyeball by Friedman. The length scale of the flow of the aqueous humor was 
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 45 10 m , and the characteristic velocity of the flow was 6 m
2 10

s
     

. Heys’s model did not consider the 

dependence between the flow rate and intraocular pressure, his model also ignored the effects of the mass 
forces (Heys et al., 2002). Equations determining the motion of a viscous liquid can be presented as 
 

  v 0  , 
    (2.4) 

  2dv
P v

dt
    , 

 

leaving aside in Eqs (2.4) the effect of inertial forces we obtain (Heys et al., 2002) 
 
  u 0  , 
    (2.5) 

  2P G u 0    . 
 

 The geometrical dimensions of the eye in the model were taken from ultrasound and biomicroscopic 
examinations. The model takes into account the phenomenon of changing the shape of the iris and blinking. 
The eye model was created and analyzed using the finite element method in the software module FIDAP 
FIGEN. Heys gave the dependence that determines the flow of the aqueous humor within the eye of 
additional parameters (2.6), and a simplified version (2.7) (Heys et al., 2002)  
 

 
 TM o v U

n
o

C p p F
v

A

 
 , (2.6) 

 

 
 PP o v

n
v

C p p
v

A


  (2.7) 

 
where op  – the pressure measured at the outlet of the trabecular meshwork, vp  – the episcleral vessels 
pressure. 
 The simplified version excludes the impact from drainage of the aqueous humor through the sclera 
(FU) for a normal flow rate of fluid (vn). It was assumed that the aqueous humor flows only through the 
trabecular network and therefore the conductance of the flow through the structure (CTM) was replaced by the 
total conductance (CPP). The flow area of the trabecular meshwork (Ao) was replaced by the total contact 
surface of the vitreous and aqueous humor (Av).  
 
2.3. Fitt’s-Gonzalez’s model 
 
 Fitt and Gonzalez (2006) analyzed the flow of fluid for five different groups of factors forcing the 
flow. 
 The factors were divided into groups associated with: 
- fluctuations of temperature between individual structures of the eye. 
- the production of the aqueous humor in the ciliary body, 
- changes in eye position, 
- effects of accommodation, 
- eye movements during REM sleep. 
 They developed equations that describe the flow of the aqueous humor in the eye structures, by using 
the finite element method implemented in Femlab software (Fitt and Gonzalez, 2006)  
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   x
zz 0

0

p
vu g 1 T T 0        

,  (2.8) 

 

  y
zz

0

p
vv 0  


,  (2.9) 

 

  zp 0 ,  (2.10) 
 

  x y zu v w 0   ,  (2.11) 
 

  zzT 0 .  (2.12) 
 

a)  

 

b)

 

c)

 

 

d) e)

 
Fig.2.  Aqueous humor flow in Fitt’s-Gonzalez’s model: a) boundary conditions, b) flow forced by 

temperature differences, c) flow forced by production of the aqueous humor by the ciliary body, d) 
flow during sleep, e) flow forced by eyeball movements (Fitt and Gonzalez , 2006). 
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 The problem was analyzed considering the following boundary conditions 
 
   , , , dla ,0 1u v 0 w w x t T T z 0        (2.13) 

 
   , dla ,0u v w 0 T T z h x y     .  (2.14) 

 
 Assuming the simplest case (i.e., no transfer through the aperture of the pupil (w0=0), the gravity 
acting along the positive axis, and hydrostatic pressure), we determine v=0 , therefore the flow is in a vertical 
plane (x, z) of the front chamber. The solution for this case is given by the following relationships 
  

  
    0 1 0

a

g x a 2 T T
p p

2

    
  ,  (2.15) 

 

 
 0 1

1
z T T

T T
h


  ,  (2.16) 

 

  
   22

1 0T T gaz z h

24vh

 
   .   (2.17) 

 
 In Eqs (2.8)-(2.17) fluid velocity is determined by  , ,u v wq , the coordinate system is shown in 

Fig.2, where p  means the pressure, ap  – environmental pressure, g  – acceleration due to gravity, a  – the 

radius of the eyeball, 0  – density,   – the coefficient of linear expansion, T  – temperature, ,0 1T T  – the 

temperature of the front and rear part of the cornea, v  – kinematic viscosity,   – current function. 
 Based on the analysis of the results obtained it was found that a temperature difference between the 
eye structures has the greatest impact on the circulation of the fluid in the structures of the eye. The velocity 
of the aqueous humor thus obtained is an order of magnitude greater than the flow rate enforced by other 
factors. 
  
3. The proposed computational models for the flow of the aqueous humor through the 

trabecular meshwork 
 
 Most of the aqueous humor is drained from the eye to the ciliary body through the trabecular 
meshwork. In this way, about 90% of the aqueous humor is discharged. That is why it is necessary to 
develop computational models allowing a description of the behavior of biological fluids in the tissues. To 
approximate the behavior of the fluid within the trabecular network a model of a porous medium can be 
used, which consists of an array of parallel and straight glass capillary tubes, arranged parallel to the 
direction of the flow. In contrast, in mathematical modeling of the aqueous humor models of a Newtonian 
fluid, a couple-stress fluid and Shulman’s fluid can be used. 
 
3.1. Flow of a Newtonian fluid through a porous medium  
 
 The generalized model of a Newtonian fluid flow in porous media - obtained from Navier and Stokes 
- is known in the literature as a Brinkman-Forchheimer-Darcy model (Amiri and Vafai, 1994; 1998; 
Nakayama et al., 2004; 2006). The equation of motion for this model can be represented by the following 
relationships (Walicka, 2002; Walicka and Walicki, 2012): 
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- continuity equation 
 
  0  ,  (3.1) 
 
- momentum equation 
 

    p2

p p n n

p
t

                  

F
        (3.2) 

 
where p  is the medium porosity, n  – permeability,   – dynamic viscosity, F – geometric tensor,   – 

averaged velocity, p  – averaged pressure. 

 Consider a Newtonian fluid in a porous layer having a thickness pH , shown in Fig.3, which is a 

matrix composed of parallel rectilinear tubes. The flow rate of a Newtonian fluid in that layer - in accordance 
with Darcy’s law - is equal to Walicka (2002) 
 

  n dp

dy


 


   (3.3) 

 
where n  is permeability of the porous layer. 

 The flow rate of a Newtonian fluid in the capillary tube having a radius cr  (Fig.3) is given by the 
equation (Walicka, 2012) 
 

  
2

y 2
c

r dp
1

dyr

  
        

,  (3.4) 

 
and the flow rate Q  is determined by the equation  

  
cr

y

0

Q 2 rdr   .  (3.5) 

 

 
 

Fig.3. Porous area composed of parallel rectilinear tubes. 
 
 Finally, the Newtonian fluid flow rate in the capillary tube - basing on formulas (3.4) and (3.5) -is 
given by the equation 
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cr 42

c
2

c0

rr dp dp
Q 2 1 rdy

dy 8 dyr

   
           

 ,  (3.6) 

 
and averaged velocity in the capillary tube is equal to 
 

  
2

c
a 2

c

rQ dp

8 dyr
   


.  (3.7) 

 
Taking into account the porosity of the medium consisting of capillary tubes 
 

  
2 2

c c p c c
p

p

N r H N r

AH A

 
     (3.8) 

 
where cN  is the number of capillary tubes on the surface A of the porous medium, we obtain 
 

  
2

c p
a p

r dp

8 dy


     


.  (3.9) 

 
 Comparing Eqs (3.3) and (3.9), we get (Walicka, 2002; 2012; Walicka and Walicki, 2012) 
 

  
2

c p
n

r

8


  ,  (3.10) 

 
the equation determining permeability of the porous medium for a Newtonian fluid.  
 
3.2. Flow of couple-stress fluid 
 
 Flows of couple-stress fluids were investigated first by Stokes (1966) and other subsequent 
researchers.  
 Considering the analysis presented in the papers (Walicka, 2002; 2012; Walicka and Walicki, 1999; 
2012) equations of motion of couple-stress fluids may be presented in the following form 
 
  0vdiv ,  (3.11) 
 

  vv
v 42p

2

1

dt

d
 gradcurl lf ,   (3.12) 

 

    KKDD ::  42Τ
dt

de
graddiv ,  (3.13) 

 

   TωgradK ,            vω curl
2

1
 .  (3.14) 

 
In the theory of couple-stress fluids two tensors exist:  
- the stress tensor  
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  WD1T 222p    (3.15) 
 
where D  is a symmetric grad v  and W is an asymmetric part of the tensor 
 

     T T1 1

2 2
    D L L v v ,    TD D ,  

    (3.16) 

     T T1 1

2 2
    W L L v v ,    T W W ,  

 

D  is the deformation rate tensor, W  is the spin tensor, symbol T  is the tensor matrix transposition 
 
  grad v = v ;  (3.17) 
 
- the couple-stress tensor  
 

  T
s 44 KKM    (3.18) 

 
where  and   are material constants associated with couple-stress.   

 Consider the flow of a couple-stress fluid through the capillary having a radius cr , as shown in Fig.4. 

The axis y  is the axis of symmetry of the tube. The velocity field is described by the equation  
 

  
 

 

c
0 0 22

c
y 2

c c c cc
0 1

r r
2 I I

l l rr dp
1

4 dyr r r rr
I I

l l l l

                                            

  (3.19) 

 
where  0I   and  1I   are the modified Bessel functions of the zeroth and the  first order and the first kind. 

 

 
 

Fig.4. The geometry of the capillary tube. 
 
 The flow rate Q  is defined by Eq.(3.5). Substituting Eq.(3.19) into  Eq.(3.5), we get 
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 4

c 1r dp
Q

8 dy

    
    

  (3.20) 

 

where 
 

  

   
     

       

, ,

, .

c
1 0 1

2
0 1

4 r2
1 I I 1

N l

N I I l

                

            

  (3.21) 

 
 Then we obtain 
 

   
2

c
a 12

c

rQ dp

8 dyr

 
        

,     for               ;
2

1 c c1 8        ,  (3.22) 

 

and 
 

   
2

c p
c 1

r

8


    ,  (3.23) 

 
Is the equation describing permeability of a couple-stress fluid.  
 
3.3. Flow of generalized second grade fluids 
 
 Man and Sun (1987) and Tsai et al. (1988) were the first who presented the results of research on the 
flow of generalized second grade fluids. Results of research on the flow of the aforementioned fluids can 
also be found in the papers by Walicki and Walicka (Walicka 2002a; 2002b; Walicki and Walicka 1998; 
1999; 2000a; 2000b; 2000c).  
 Motion equations of generalized second grade fluids can be presented in the form of 
 
  0vdiv ,  (3.24) 
 

  Tf div
dt

dv
  (3.25) 

 
where T depends on the fluid model. Let us consider two models of fluids - proposed by Walickis (Walicki 
and Walicka, 1998) – based on the non-linear Shulman’s model. Constitutive equations can then be 
presented as: 
 
- model I 
 

  
21

2
111Mp AAA1T  ,  (3.26) 

 
- model II 
 

   
22

2
121Mp AAA1T    (3.27) 
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where 
 

      2

1

2
1

1

n

m

1
n

1

0 2

1
AAAM 


















  Atr,   (3.28) 

 
where A1 and A2 are first two Rivlin’s-Ericksen’s tensors defined by the equations 
 

   T
1    A 2D v v ,     T

2 1 1 1   A A A A v v .  (3.29) 

 
 Consider the steady laminar flow of a generalized second grade fluid in the capillary tube having a 
radius cr  (Fig.5). 

 

  
 

Fig.5. The coordinate system and velocity field in the capillary tube. 
 

The velocity field is defined as follows: 
 
 for shear flow 
 

    ,

m m n i
m mn n0 0 0 n

ys i
c ci 0

r r r
r Y 1

r r

 



 
                  

   (3.30) 

 
 for core flow 
 
    ;yc ys 0r     (3.31) 

 
where 
 

    n

inm
i
m

i
i YC

inm

n
1




       and      .c

0

r p
Y

2 y


 

 
  (3.32) 

 
The flow rate Q  is given by the equation 
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c 0 c

0

r r r

y yc ys

0 0 r

Q 2 rdr 2 rdr rdr
 
        
 
 

   .  (3.33) 

 
Using Eqs (3.32) and (3.33), we obtain 
 

    .

m
n m 3n i3 m

i3 ic 0 n
m

i 0

r n
Q Y 1 C Y 1

m 3n i

 




  
   

     
   (3.34) 

 
 Consider at the beginning the flow of a generalized second grade fluid of a power-law type in porous 
media consisting of a parallel system of straight capillaries. Equation (3.34) describes the flow rate in the 
capillary tube 
 

  
 

mm 3
c

m

r dp
Q

dy2 m 3

  
  

   
,  (3.35) 

 
while the average speed in the capillary tube is given as follows 
 

  
 

mm 3
c

a 2 m
c

rQ dp

dyr 2 m 3

  
    

    
.  (3.36) 

 
The analogue of Darcy’s law can be represented by the equation 
 

  
 

mm 3
c p

a p m

r dp

dy2 m 3

   
      

   
,  (3.37) 

or  

  
m

p dp

dy

  
      

,            
 

m 1
c p

p m

r

2 m 3

 
 


.  (3.38) 

 
 It can be noticed that the analogue of Darcy’s law has the same form (independent of coefficients 
describing the viscoelastic properties of material i  and i ) for both models of generalized second grade 
fluid of a power-law type; the flow of Rivlin’s-Ericksen’s fluid (viscoelastic fluid) to the porous layer is 
defined by Darcy’s law given by Eq.(3.3). Following in a similar way, an analogue of Darcy’s law for any 
model of fluid can be designated.  
 Consider the flow of a Shulman’s generalized second grade fluid of a power-law type in a porous 
medium consisting of a system of parallel, straight capillaries. Introducing the following equation 
 

  0

c

r
Y

r
 ,            c

0
r Y dp

2 dy

 
   

 
,  (3.39) 

 
we obtain – considering Eqs (3.39) and (3.34) - equations for the Shulman’s type fluid flow velocity through 
a porous layer. Results for selected empirical models of viscoplastic fluids are presented in Tab.1 (Walicka, 
2012) 
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Table 1. The mathematical models of viscoplastic fluids (Walicka, 2002). 

 

Model’s inventor 
name Mathematical Form Designation Equation no.

Bingham 0     

  - shear stress, 

0  - yield point, 
  - shear rate, 

  - shear or plastic viscosity 
,0    - boundary viscosity 

,m n  - exponents of the 
rheological equations of 

state 
  - material constant 

(3.40) 

Herschel-Bulkley  
1

m0      (3.41) 

Vočadlo / n1 n
0

        (3.42) 

Casson   nn1n1
0

 //    (3.43) 

Shulman   //
n1 m1 n

0
     
 

  (3.44) 

Briant 
m

1   
      




 (3.45) 

Tscheuschner 
 

0 0
n

        
  


 

 (3.46) 

 
 It may be noted that the simplification of Shulman’s model coefficients leads to the formulas 
describing the flow curves for simpler models of fluids such as: 
 
- Casson’s model: m n  and m n 2  ; 
- Vočadlo’s model: ,m 1 n 0  ; 

- Herschel’s-Bulkley’s model: ,m 0 n 1  ; 

- Bingham’s model: m n 1  ; 
- Ostwalda-de Wael’s model: , 0n 1 0   ; 

- Newton’s model: , 0m n 1 0    . 

 
4. Summary and conclusions 
 
 Despite the existence of many mathematical models describing the behavior of the aqueous humor in 
eye structures, which relatively well capture the essence of the phenomena in the eye, a common feature of 
these models should be noted; namely, the assignment of rheological properties of water to the aqueous 
humor. This simplification is probably due to the fact that the investigation of the rheological properties of 
the aqueous humor is impeded. Difficulties in the study of the rheological properties of the aqueous humor 
arise from the fact that it is a substance found in the body in very small quantities. In a normal eye there is 
only 3.000  l . The amount that can be taken without disruption of the eyeball functioning is very small. A 

considerable increase in the level of complexity of the analytical model when taking into account the 
rheological properties of the aqueous humor is also of significant importance. The increased complexity of 
the model will complicate the obtainment of analytical solutions.  
 It is also important that biological fluids under extracorporeal conditions are subject to rapid 
degradation. Along with the degradation of the material all its characteristics change. Hence it is necessary to 
set the measurement path near the place where test material is taken (Chotard-Ghodsnia and Verdier, 2007; 
Fauci and Gueron, 2001; Verdier et al., 2009).  
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 In the paper, a proposal to use rheological models of Newtonian and non-Newtonian fluids (Walicka, 
2002; Walicka and Walicki, 2012) for mathematical modeling of the aqueous humor flow in the structures of 
the eye is presented. Equations for the permeability of the porous material and liquid flow velocity in a 
porous medium are given. The trabecular meshwork was modeled as a porous medium, which is a rectilinear 
array of parallel capillary tubes. A Newtonian fluid, a couple-stress fluid and a generalized second grade 
fluid of a Shulman’s type were considered as examples.  
 
Nomenclature 
 
 oA  –surface of the trabecular meshwork - in human body about 18 2mm 

   

 vA  – contact surface of the vitreous and  aqueous humor- in human body about 65 2mm 
   

 psC  – flow conductance of the aqueous humor- in human body about 0.061-0.081 min

l

mmHg

 
 
 
 
 

 

 totC , ppC  – total flow conductance min

l

mmHg

 
 
 
 
 

l

s
Pa

 
 
 
 
 

  

 trabC , TMC  – conductance flow through the trabecular meshwork - in human body about 0.28 min

l

mmHg

 
 
 
 
 

or . 5

l

s3 8 10
Pa



 
 
 
 
 

   

 uC  – flow conductance through the sclera- in human body about 0.02 min

l

mmHg

 
 
 
 
 

 

 F  – geometric tensor 

 F  – flow rate 
min

l 
  

 

 fF  – flow of the aqueous humor by filtration - about 90% inF  
min

l 
  

 

 iF  – total inflow of the aqueous humor to the eyeball, in human body about 2-2.5
min

l 
  

 

 oF  – total outflow of the aqueous humor from the eyeball 
min

l 
  

 

 sF  – flow of the aqueous humor through active secretion- about 10% inF
min

l 
  

 

 tF  – outflow of the  aqueous humor through the trabecular meshwork 
min

l 
  

 

 uF  –outflow of the aqueous humor through the sclera . 3 l
6 7 10

s
  
  

  or .
min

4 l
1 12 10

 
  

     

 G  – the shear modulus of the iris, set as  1
G E 9 kPa

3
   

 p  – pressure  mmHg    

 ,e vp p  – episcleral vessels pressure - in human body about 7.6-11.6  mmHg  

 , ,ip p p  – intraocular pressure- in human body about 15.6±3.2  mmHg    
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 op  – pressure at the outlet of the trabecular meshwork  mmHg  

 R  – flow resistance
min

mmHg l 
  


  

 , ,1 0T T T  – temperature  K  

 u  – displacement of the iris 
 ,v v  – flow velocity 
 nv  – normal flow velocity 

   – dynamic viscosity 
   –average velocity vector 
 n  – permeability 

 p  – porosity 

   – current line 
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