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A nonlinear spectral transport equation for the narrow band Gaussian random surface wave trains  is derived 
from a fourth order nonlinear evolution equation, which is a good starting point for the study of nonlinear water 
waves. The effect of randomness on the stability of deep water capillary gravity waves in the presence of air 
flowing over water is investigated. The stability is then considered for an initial homogenous wave spectrum 
having a simple normal form to small oblique long wave length perturbations for a range of spectral widths. An 
expression for the growth rate of instability is obtained; in which a higher order contribution comes from the 
fourth order term in the evolution equation, which is responsible for wave induced mean flow. This higher order 
contribution produces a decrease in the growth rate. The growth rate of instability is found to decrease with the 
increase of spectral width and the instability disappears if the spectral width increases beyond a certain critical 
value, which is not influenced by the fourth order term in the evolution equation. 
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1. Introduction 
 
  An analysis of the evolution of nonlinear surface water waves has been considered to treat the 
problem either from the deterministic point of view, with emphasis on the properties and stability of 
nonlinear water waves or from the random point of view, with emphasis on wave-wave energy transfer 
within a broad spectrum due to weak nonlinear couplings  in a nearly homogenous random ocean. In the 
study of nonlinear wave-wave interactions near the gravity wave spectrum, Longuet-Higgins (1975) made 
the analysis by joining the two wave view points together.  
 Starting from Davey-Stewartson (1974) third order nonlinear evolution equation for deep water 
surface gravity waves, the effect of randomness on the stability of two dimensional surface gravity waves 
was studied by Alber (1978). Alber then obtained a spectral transport equation which is used to study the 
stability of an initially homogeneous wave spectrum. A Gaussian spectrum was considered by Alber (1978), 
while a Lorentz shape of the spectrum was considered by Crawford et al. (1980). In both the papers, it was 
shown that there is instability if the effective bandwidth is less than a critical value and the effect of 
randomness is to reduce the growth rate of instability. The deterministic results of Benjamin and Feir (1967) 
were recovered by taking the effective bandwidth to zero. 
 Dysthe (1979) showed that a fourth order nonlinear evolution equation, which is one order higher 
than the lowest order evolution equation, is a good starting point for study the nonlinear surface waves in 
deep water for waves of wave steepness up to 0.25. The stability analysis made from the fourth order 
nonlinear evolution equation gives result which is consistent with the exact result of Longuet-Higgins 
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(1978a; b) and with the experimental results of Benjamin and Feir (1967) for wave steepness up to 0.25. The 
dominant new effect that comes in the fourth order is the influence of wave induced mean flow and this 
produces a significant deviation in the stability character. Fourth order nonlinear evolution equation for deep 
water surface gravity waves including different effects were derived and stability analysis was considered by 
several authors (Stiassnie, 1984; Hogan, 1985; Dhar and Das, 1990; 1991; 1994; Janssen, 1983). 
 In the present paper, we investigate the effect of randomness on the stability of deep water capillary 
gravity waves in the presence of air flowing over water, starting from a fourth order nonlinear evolution 
equation. Following Alber (1978), we first derive a spectral transport equation for narrowband Gaussian 
surface wave trains. This spectral transport equation is then used to study the stability of a uniform 
homogenous wave spectrum having a simple normal form, similar to small oblique long wavelength 
perturbations for a range of spectral widths. An expression for the growth rate of instability has been 
obtained which consists of two terms, one of which comes from the fourth order term in the evolution 
equation, which is responsible for wave induced mean flow and this produces a decrease in the growth rate. 

The growth rate of instability as a function of the effective modulation wave number  k  has been plotted 

for the different values of the bandwidth parameter   , air flow velocity ( v ), direction of perturbation ( ) 

surface tension ( s ) and the wave steepness  0a . 

 The growth rate of instability is found to decrease with the increase of the spectral width    and 

vanish when the spectral width increases beyond a certain critical value, which is not influenced by the 
fourth order terms in the evolution equation. An expression for the critical value of bandwidth has been 
obtained from the long wave length approximation of the dispersion relation whose order is found to be of 
the order of root mean square wave steepness 0a . For vanishing spectral bandwidth and for perturbation 

direction 0  , we find the deterministic maximum growth rate of instability which was obtained in Dhar 
and Das (1990), when the value of the non dimensional surface tension s is zero. 
 
2. Derivation of the evolution equation 
 
   We take the common horizontal interface between air and water in the undisturbed state as the z 0  
plane, and air flows over water in the undisturbed state with a velocity u along the x axis. Let  , ,z x y t 
be the equation of the common interface at any time t in the perturbed state. We introduce the dimensionless 

quantities which are  ,    ,  , ,x y z   , t , v .   and s  which are the perturbed velocity potential 

in water, perturbed velocity potential in air, surface elevation of the air water interface, space coordinates, 
time, air flow velocity, the ratio of densities ' ,   of air to water, and surface tension, respectively. These 
dimensionless quantities are related to the corresponding dimensional quantities by the following relations 
 

               
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* * *
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                                                  (2.1) 

 
where k0 is some characteristic wave number. In the future all the quantities will be written in their 
dimensionless form with their asterisks dropped.  
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      The perturbed velocity potentials  ,   satisfy the following Laplace equations 
 

              in2 0 z       ,                                                                 (2.2) 
 

              in2 0 z       .                                                                  (2.3) 
 
 The kinematic boundary conditions to be satisfied at the interface are 
 

        
z t x x y y

     
  

     
,        when        z   ,                                 (2.4)    

   
     

  
v

z t x x x y y

        
   

      
,         when         z   .                                  (2.5) 

 
 The condition of continuity of pressure at the interface gives 
 

       
 1 v

t t x

   
       

  
 = 

22 2
1

2 x y z

                      
+       

            
22 2

2 x y z

                         

3
22 2

s 1
x y


                 

  (2.6)       

            

22 2 2 2 2 2

2 2 2 2
2

x y x y x yy x x y

                                     
,      when       z   .     

  
   Further,   and   should satisfy the following conditions at infinity 
 
          0        as       z  ,       0         as      z  .                                (2.7) 
  
 Since the disturbance is assumed to be a progressive wave we look for a solution to the above 
equations in the form 
 

                  *exp exp0 n n
n 1

P P P in kx t P in kx t




                                              (2.8) 

 
where P stands for  ,  ,   and the star denotes complex conjugate. Here it is assumed that 0 , 0 , n , 

n , n
 , n

  are functions of z, 1x x  , 1y y  , 1t t   and , ,0 n n
    are functions of ,1 1x y  and ,1t   is 

the slowness parameter and the frequency   and wave number k satisfy the following linear dispersion 
relation with l 0   
  

                  , ,
31

2 22 2 2 2 2 2 2k l 1 2 kv k v 1 k l s k l 0                 .           (2.9) 
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         We now suppose that the first harmonic linear wave, whose nonlinear evolution equation we are 
going to derive, has its wave number equal to k0, the characteristic wave number. So we have k = k0 = 1, and 
the linear dispersion relation (2.9) determining 0  becomes  
 

     2 21 2 1 s 0            .                     (2.10) 

 

      From Eq.(2.10), we have  =    2 2v 1 v s 1 1             
 which corresponds to two 

modes and we designate them as positive and negative modes. 
      The linear stability   should satisfy the following condition 
 

      21 s 1          .                                                                                      (2.11) 

 
 Thus our present analysis will remain valid as long as the dimensionless flow velocity of the air 

becomes less than the critical velocity  21 s 1        . For air flowing over water .0 00129   and  

s = 0.075 so this critical value becomes 28.87. 
        By a standard procedure (Dhar and Das, 1990; Majumder and Dhar, 2009; 2009) we find that 

11 12      satisfies the following fourth order nonlinear evolution equation 
 

               
2 2 3 3

1 2 3 42 2 3 2
2i i i
        

         
    

                          (2.12) 

 

where    
 2 2

1 2 3 4i i H


 

  
             

    
 
where the coefficients  , , , ,i i i 1 2 3 4    are given in the Appendix. Also , ,    denote the scaled 

variables   , , 2
gx c t y t          , g

k 1

d
c

dk 

   
 

 and H is Hilbert’s transform operator given by 

 

              1
H

2
 


   

   

,
3

2 2 2

d d



           

        
 

  .                                                 (2.13)  

 
      If we set v 0    and s = 0, then the evolution Eq.(2.12) reduces to an equation equivalent to 
Eq.(2.19) of Dysthe (1979). 
 
3. Spectral transport equation 
 
 We assume that the evolution Eq.(2.12) for the complex amplitude  , ,     describes the evolution 

of the wave train and   is a random function of  ,  . Now we seek an equation for the slow variation of the 
two point space correlation function. 
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   , ,1 2     =    , ,1 2
       (3.1) 

 
where the angular bracket denotes an ensemble average and  ,1 1 1    ,  ,2 2 2    . To obtain the 

equation for the two point correlation   from Eq.(2.12) we adopt the method followed by Alber (1978). 

 An equation is obtained from Eq.(2.12) at 1 , by multiplying both sides of this by  ,2
   . A 

second equation is obtained from the complex conjugate of Eq.(2.12) at 2 , by multiplying both sides of this 

by  ,1   . Subtracting the second equation from the first and then taking the ensemble average, we get  

 

              , ,1 22i 
      


   

         , , , ,
2 2

1 1 2 1 22 2
1 2

   
               

   
  

         , , , ,
2 2

2 1 2 1 22 2
1 2

   
               

   
  

         , , , ,
3 3

3 1 2 1 23 3
1 2

i    
                

   
 (3.2) 

         , , , ,
3 3

4 1 2 1 22 2
1 1 2 2

i    
               

     
= 

         , , , ,1 2 1 2
                .  

 
 We now consider the following average coordinates x  and spatial separation coordinates r  
 

   1
1 22

x     ,         r  = 1 2r     . (3.3) 

 
 To evaluate fourth order correlation terms in Eq.(3.2) we assume that  ,x   corresponds initially to a 

Gaussian random process and we further assume that the evolving random statistical amplitude field retains the 
same Gaussian statistical properties (Alber, 1978). For Gaussian statistics, the fourth order cumulant vanishes, 
allowing us to write the fourth order correlation in terms of product of second order correlations. 
 

  

     
     

       
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   

   
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sinh , cosh ,
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2 2 2 2 3 3
1 x x 2 y y 3 x x

2 2 2
4 x y x y 1

2 2
2 2

2 2
2 3

x
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3

2 2 2

2i i

i 4 M a x

i M a x i M a x
x x

2i M a x 2i M a x
r x

x d d
M a

x y






               



           

 
       

 
 

       
 

      
      

 

   , 

 (3.4) 
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where xA ,  xB , yA , yB , M are defined by  
 

  x
x

1
A

2 x r

 
 

 
,      y

y

1
A

2 y r

 
 

 
,      x

x

1
B

2 x r

 
 

 
, 

   (3.5) 

  y
y

1
B

2 y r

 
 

 
,      x y

1
M r r

2 x y

 
 

 
,  

and  ,2a x   is the ensemble averaged mean-square amplitude given by  

 

   ,2a x   =    , ,x x    . (3.6) 

 
 The power spectral density  , ,G p x   is defined as the Fourier transform of the two-point 

correlation function   
 

   , ,G p x   =  
 

 , ,ipr 1 1
2 22

1
e x r x r dr

2






   
   . (3.7) 

 
 Now the converse relation for   is given by 
 

   , , iprG p x e dp




    , (3.8) 

 

and consequently  ,2a x   is given by  
 

   ,2a x   =  , ,G p x dp



  . (3.9) 

 

 Now taking the Fourier transform of Eq.(3.4) with respect to r  we get the transport equation for 

 , ,G p x  . 
 

  
3

21
1 x 2 y 3 x4 3

G G G G G
2 2 p 2 p 3 p

x y xx

     
             

 

  
3

21
4 y x y4 2

G G G
p 2 p p

x yxdy

   
      

 =  sin 2
14 Q Ga   

       cos cos ,
2

2
2 2

a G
2 Q G Q a x

x x

 
     

 
 (3.10) 

     sin cos
2

2
2 x 3

a
2 p Q Ga 2 Q G

x


    


 

       
   

' , ' '
sin

' '

2
4

3
2 2 2

x a d d
Q G

x y






     

      

 

   
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where Q  is the operator given by 
 

  
2 2

1
2

x y

1
Q

2 x p y p

 
 

   
. (3.11) 

 

      Its space derivative operators 
x




, 
y




 operate only on 2a , while the operators, 
xp




, 
yp




operate on G .  

 
4. Stability analysis 
 
 The nonlinear spectral transport Eq.(3.10) has one basic solution 
 

   0G G p , (4.1) 
 

which is the random counterpart of uniform amplitude Stokes wave train of deterministic theory.  0G p  has 

Gaussian properties and is statistically uniform in space and time. To study the stability of this homogeneous 
solution to small amplitude oblique plane wave perturbation, we assume a perturbed solution to Eq.(3.10) in 
the form 
 

   , ,G p x   =    , ,0 1G p G p x  , (4.2) 
 

  2a  =  ,2 2
0 1a a x  . (4.3) 

 

 From Eq.(3.9), we have the following relations 
 

  2
0a  =  0G p dp




  , (4.4) 

 

  2
1a  =  , ,1G p x dp





  . (4.5) 

 

 Substituting Eqs (4.2) and (4.3) in Eq.(3.10) and then linearizing we get 
 

  
3

21 1 1 1 11
1 x 2 y 3 x4 3

G G G G G
2 2 p 2 p 3 p

x y xx

     
             

 

  
3

21 1 11
4 y x y4 2

G G G
p 2 p p

x yxdy

   
      

 =  sin 2
1 0 14 Q G a   

     cos cos
2

21 1
2 0 2 0

a G
2 Q G Q a

x x

 
    

 
 (4.6) 

     sin cos
2

2 1
2 x 0 1 3 0

a
2 Q p G a 2 Q G

x


    


 

       
   

' ,
sin ' '

' '

2
14

0 3
2 2 2

x a
Q G d d

x y






   
  
      

 

  . 
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 Taking the Fourier transform of Eq.(4.6) with respect to  ,x x y  defined according to  

 

   1G   =    , i lx my
1G x e dx






  , (4.7) 

 

   1A   =    , i lx my2
1a x e dx






  , (4.8) 

 

and then assuming  - dependence of  1G  ,  1A   to be of the form  exp i  , we get  

 

   3 21
1 x 2 y 3 x4

2 2 p l 2 p m l 3 p l          2 21
4 y x y 14

lm p l 2 p p m G     =  

  =      sinh cosh sinh2
1 1 0 2 1 0 2 0 1 2 1 x 04 A L G lA L G la G 2 A L p G          (4.9) 

     cosh sinh
2

4
3 1 0 1 02 2

2 l
2 lA L G A L G

l m


  


  

 
where the operator L  is given by  
 

  L = 
x y

l m

2 p 2 p

 


 
, (4.10) 

 
and the real part of   is the frequency shift, while the imaginary part of   is the growth rate of instability.  
 Similarly, taking the Fourier transform of Eq.(4.5) with respect to x , we get 
 

  1A  = 1G dp



  . (4.11) 

 
 Now in view of the relation (Alber, 1978) 
 

  

 

 

 

cosh ,

sinh ,

sinh

0 0 0
x y

0 0 0
x y

x 0 x 0
x y

0

l m l l l
G p G p k G p k

2 p 2 p 2 2 2

l m l l l
G p G p k G p k

2 p 2 p 2 2 2

l m l l
p G p p G p k

2 p 2 p 2 2

l
G p k

2

                          

                          

                
     

0 0
l l l

G p k G p k
4 2 2

              

 (4.12)  
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where ˆ ˆk lx my  , and x̂ , ŷ  are unit vectors in the x and y directions, respectively, we get the following 
equation from (4.9)  
 

  1G dp



   = 

   

 
0 0

1

l l
g p G p k h p G p k

2 2
A dp

2 f p





        
   

    (4.13) 

 

where  
 

  

   
 

 

 

,

,

.

3 21
1 x 2 y 3 x4

2 2 21
4 y x y 2 04

2
4

1 2 x 3 2 2

2
4

1 2 x 3 2 2

f p 2 p l 2 p m l 3 p l

lm p l 2 p p m la

l
g p 2 p l

l m

l
h p 2 p l

l m

       

    


       




      



 (4.14) 

 

using (4.11), Eq.(4.13) gives the following dispersion relation determining   
 

  
   

 
0 0

l l
g p G p k h p G p k

2 2
dp 1

2 f p





        
    

   . (4.15) 

 

 Now let 
 

  

     

   

   

,

,

1 x 2 y 1

1 1

1 1

f p 2 p l p m f p

g p 2 g p

h p 2 h p

     

   

  

 (4.16) 

 

where order   terms are fourth order contributions and where  1f p ,  1g p ,  1h p  are given by 

 

  

     

 

 

,

,

.

3 2 2 2 21 1
1 3 x 4 y x y 2 04 4

2
4

1 2 x 3 2 2

2
4

1 2 x 3 2 2

f p l 3 p l lm p l 2 p p m la

l
g p p l

l m

l
h p p l

l m

        


    




     



 (4.17) 
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 Substituting Eqs (4.16) in Eq.(4.15) and then keeping only  0  terms, the equation determining   

can be expressed as 
 

  
 

0 0

1 x y
1 x 2 y

l l
G p k G p k

2 2
dp dp 1

lp mp





        
    
      = 

  =
 

 

0 0 1
1

x y2

1 x 2 y

l l
G p k G p k f p

2 2
dp dp

2 lp mp





                 
      

   (4.18) 

  
   

 
1 0 1 0

x y
1 x 2 y

l l
g p G p k h p G p k

2 2
dp dp

2 lp mp





            
      . 

 
 Here for  0G p  we shall assume a simple spectrum which facilitates the solution of Eq.(4.18), in the 

two dimensional normal spectrum 
 

   0G p = exp
2 22
x y0

2 2

p pa

2 2

 
 

   
. (4.19) 

 
4.1. Roots of the dispersion relation considering third order terms only 
 
 We first determine the roots of the dispersion relation (4.18) neglecting order   terms, which 
originate from the fourth order terms in the evolution Eq.(2.12). Equation (4.18) then becomes the following 
by the use of expression (4.19) for  0G p  

 

  
   exp exp2 22

0 1

0 01

1 1

t ta
dt dt 1 0

2 k t t
k k

 

 

 
      

            

   (4.20) 

where  

  

 

 

,

ˆ ˆ ˆ ˆcos sin .

2 21
0 1 22

2

1

l m

k lx m y k x y

    

 
       

. (4.21) 

 
 Now setting r ii      in Eq.(4.1.1), where r  and i  are the real and imaginary parts of  , and 
then separating into real and imaginary parts we get two equations for the determination of the two quantities 

r and i . It is found that one of the two equations is satisfied identically with ii   . Hence we can 

suppose that the real part of   determined by Eq.(4.1.1) is zero. So setting ii   , where i  is real, 

Eq.(4.1.1) can be expressed as 
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     
2
0 1

1

ia
1 z z 0

2 k
         

 (4.22) 

where   

    ,

2ti e
z dt

z t

 



 
   (4.23) 

 

  0 i

1 1

i
z

2 k 2 k

 
 

   
, (4.24) 

 

and z  is the complex conjugate of z . 
 
4.2. Roots of the dispersion relation including higher order terms 

 
 The dispersion relation (4.18) including order   terms can be expressed as  
 
           (4.25)  

where 

        
2
0 1

1

ia
1 x x

2 k

           
 (4.26) 

and  
           1 1 1 1

1 1 1 2 3 42 2 2 2
I x I x I x I x         , (4.27) 

 
x , x  1I , 2I , 3I , 4I  being given by  
 

  , ,0 0

1 1

x x
2 k 2 k

     
   

 

 

  

 
   

 

exp
,
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1 1 2 3 42 2

1

ta
I a a 2a t 2a t dt

x t2 k






            
  

 

  

 
   

 

exp
,

22
2 2 20

2 1 2 3 42 2

1

ta
I a a 2a t 2a t dt

x t2 k






           
  (4.28) 

 

     
 

exp
,

22
0

3 1 2
1

ta
I b 2b t dt

x t2 k






  

     

 

     
 

exp
.

22
0

4 1 2
1

ta
I c 2b t dt

x t2 k






  

     

 

The constants 1a , 2a , 3a , 4a , 1b , 2b , 1c  appearing in Eqs (4.28) are given in the Appendix. 



846  D.P.Majumder and A.K.Dhar 

 As the root of Eq.(4.25) with order   terms set equal to zero is ii , where i  is real and is given by 
Eq.(4.22), we take  
 
  i 1i     , (4.29) 
 
as the root of Eq.(4.25). Substituting Eq.(4.29) in Eq.(4.25) we find that 1  in the lowest order is given by  
 

  
 
 

i
1

i

i

i

 
 

 
. (4.30) 

 
 Evaluating  ii   and  ii   from the expressions (4.26) and (4.27) for     and    , 

respectively, we get 
 
        ,1 1

i 1 1 2 3 42 2
i k k k k        

   (4.31) 

   
 

   
2
0 1

i 2

1

ia
i z z

2 k

           
 

. 

 

The expressions for 1k , 2k , 3k , 4k  are given in the Appendix. 

 From the expression (4.30) for 1  it is found that the imaginary part of   given by Eq.(4.29) is the 
following, which is therefore the growth rate of instability  , is given by 
 
     Im Imi 1        

          Im Re Im
12 4 0

1 0
1

ka
2 2 Ka z z z

2

                 
 

  cos cos sin

1
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2 2 22

1

           

 (4.32) 

where  
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 
     

            
        

      

 (4.33) 
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 The term involving 4  in the expression for   is the only higher order contribution, i.e., the fourth 

order contribution, and this originates from the term involving 4  in the evolution Eq.(2.12), which is 
known to be produced by the wave induced mean flow. 

 K  and   appearing in the expression (4.32) for   can be considered as the effective modulation 
wave number and effective bandwidth parameter respectively. Here the effective modulation wave number 
has been defined as a modulation wave number multiplied by a factor. A similar definition has been given 
for the bandwidth parameter. These two effective parameters have been introduced instead of the original 
parameter only to get a rather simplified expression for the growth rate of instability as given by Eq.(4.32). 

The growth of instability   as a function of the effective modulation wave number K  has been plotted in 
Figs 1-4 for different values of the effective bandwidth parameter  , wind velocity v  and two different 

values of the perturbation angle  , mean square wave steepness 2
0a  and for the dimensionless surface 

tension s = 0.075. In each of the figures from 1-4 both third order and fourth order results have been shown. 
In each of the figures curves labeled 1-8,   and v  have values as shown in the following table. 
  
Curve number 1 2 3 4 5 6 7 8
           1 1 0.75 0.75 0.5 0.5 0 0
         v  12 0 12 0 12 0 12 0

  
where the values of the density ratio   of air to water are 0 and 0.00129 corresponding to v = 0 and 12, 
respectively. 
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Fig.1.  The growth rate of instability   as a function of the effective modulation wave number ,K  .0a 0 1 , 

00  ; ……….. : third order result; ____________ : fourth order result. 
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Fig.2.  The growth rate of instability   as a function of the effective modulation wave number ,K  .0a 0 1 , 
030  ; ……….. : third order result; ____________ : fourth order result.  

 

 
 

Fig.3.  The growth rate of instability   as a function of the effective modulation wave number ,K  

.0a 0 15 , 00  ; ……….. : third order result; ____________ : fourth order result. 
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Fig.4.  The growth rate of instability   as a function of the effective modulation wave number ,K  

.0a 0 15 , 030  ; ………. : third order result; ___________ : fourth order result.   
 
 From these figures it is seen that the growth rate of instability decreases with the increase of the 
spectral bandwidth, and the higher order, i.e., fourth order term produces a further decrease. Now the 
instability vanishes if the spectral width increases beyond a certain critical value. To find this critical value 
of the bandwidth we proceed as follows. 
 As is evident from figures the critical slope of amplification curve diminishes with the increase in the 

spectral bandwidth. From this we find that a condition of stability is 
0

0


    
 where  Im    and 

2 2l m    is the modulation wave number. Now 
0

 
  

can be obtained from the long wave length 

approximation of the dispersion relation (4.25). By exact calculation it is found that the contribution of the 

fourth order terms in 
0

 
  

is zero. After calculation from the third order term we find the following 

expression for 
0

 
  

 

 

  cos sin .
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  (4.34) 

 

 
 

1 



  

K   

1 

2 3 

2 

3 

4 

5 

7 

8 

8 

6 

7 

4 
5 

6 



850  D.P.Majumder and A.K.Dhar 

 Therefore the condition of stability 
0

0


    
 gives 

 

  

1 2

2 2
1 1 2

0 2
1 2 22

1

2 l m
a

2 l m

 
 
      

             

, (4.35) 

 
which states that there the stability of the bandwidth exceeds a certain critical value c  given by  
 

  

1

2

2 2
1 1 2

c 0 2
1 2 22

1

2 l m
a

2 l m

 
 
      

             

. (4.36) 

 
 This critical value is of the order of 0a .  

 
5. The limit of vanishing bandwidth  
  
 The deterministic growth rate of instability can be obtained from Eq.(4.32) by making 0 . From 
Eq.(4.25) we find that 0   implies z  . So we can use the asymptotic expansion of  z  for z  , 

which is the following 
 

    ... .
2 4

i 1 3
z 1

z 2z 4z

        
 (5.1) 

 
 For the vanishing bandwidth the expression   is given by 
 

  
cos

cos sin

3 5 2
4 1 0

i0 1

22 22
i0

1

2 K a  
   

           

                      (5.2) 

where  

  

1
22

2 1
i0 1 0

1

k
2 Ka

2

 
      

, (5.3) 

 
which is of the third order, i.e., lower order growth rate of instability for the vanishing bandwidth. This can 

be made identical with the deterministic growth rate, if 2
02a  is replaced by 2

0a , the mean-square wave 
steepness (Alber, 1978). 
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 For 0  , the expression for   given by Eq.(5.2) in which we replace 2
02a  by 2

0a  becomes  
 

  

1
22

2 2 241 1 1
0 0

ll1
a l a

2 2 4 2 4

         
   

. (5.4) 

 

 From Eq.(5.4) we get the following expression for the maximum growth rate M  of instability 
 

  
2

1 0 4 0
M

1 1

a a
1

8 4

  
   

   
. (5.5) 

 

 If we set v 0    and s 0 , Eq.(5.5) reduces to Eq.(3.10) of Dysthe (1979). 

 
6. Conclusion 
 
 Dysthe (1979) has shown that a fourth order nonlinear evolution equation, which is one order higher 
than the lowest order evolution equation, is a good starting point for studying the nonlinear surface waves in 
deep water for waves of wave steepness up to 0.25. 
 In the present paper we investigate the effect of randomness on the stability of deep water capillary 
gravity waves in the presence of air flowing over water, starting from a fourth order nonlinear evolution 
equation. Following Alber (1978), we first derive a spectral transport equation for narrow band Gaussian 
surface wave trains. This spectral transport equation is then used to study the stability of a uniform 
homogenous wave spectrum having a simple normal form, similar to small oblique long wavelength 
perturbations for a range of spectral widths. An expression for the growth rate of instability has been 
obtained which consists of two terms, one of which comes from the fourth order term in the evolution 
equation, which is responsible for the wave induced mean flow. This higher order contribution in the 
expression for the growth rate of instability produces a decrease of the growth rate. The growth rate of 
instability is found to decrease with the increase in the spectral width, and ultimately the instability vanishes 
if the spectral width exceeds a certain critical value. This critical value remains unaffected by the fourth 
order terms in the evolution equation, and an expression for this critical value is obtained from the long wave 
length approximation of the dispersion relation. Since the evolution equation from which we have started our 
analysis is valid for narrow spectral band, stability beyond the critical spectral width does not imply stability 
for large spectral band widths. For vanishing spectral band widths we recover the deterministic growth rate 
of instability obtained in my paper (Dhar and Das, 1990). From this growth rate of instability the maximum 
growth rate of instability has been obtained. This again reduces to the expression of the maximum growth 
rate of instability obtained by Dysthe (1979) for v 0   , and s 0 . Dysthe found that this maximum 
growth rate of instability is in good agreement with the exact result of Longuet – Higgins (1978a; 1978b). 
Here we can conclude that our results in the limit of vanishing bandwidth agreed favorably with the result of 
Longuet – Higgins (1978a; 1978b). 
 
Appendix-1 
 
 The coefficients of Eq.(2.12)  
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     
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1 3s2i 1 3s
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   2 1 v         . 

 
Appendix-2 
 
 The coefficients ,1a  ,2a  ,3a  ,4a  ,1b  ,2b  1c  appearing in the expression (4.28) 
 

  3 2 2
1 3 4 2 0a l lm la      , 
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where   is defined by the second equation of (4.21). 

 
Appendix-3 
 
 Expressions for 1k , 2k , 3k , 4k  appearing in (4.31) 
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Nomenclature 
 
 g – acceleration due to gravity 
 H – Hilbert’s transform operator 
 k – wave number 
 P – general solution to Eqs (2.4) - (2.6) 
 s – dimensionless surface tension 
 t – time 
 v  – air flow velocity 
  , ,x y z  – space coordinates 

   – elevation of the air water interface 
   – frequency shift 

 

 
 
 

, , ,

, , ,

, , ,

i

i

i

i 1 2 3 4

i 1 2 3 4

i 1 2 3 4

  


  
  

 – coefficients given in the Appendix 

   – slowness parameter 
   – ratio of densities of air to water 
  0  – wave steepness  

  ,    – small real perturbations of amplitude and phase 

 , ,    – transformed variables 
   – frequency 
   – perturbed frequency at marginal stability 
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