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The paper contains two parts. In the first part, basic relationships were derived and some problems connected 

with stability loss during hydraulic forming of round metallic drawpieces with liquid pressure were discussed. 
The aim of the considerations is to test drawability of sheets by estimation of acceptable values of plastic strains 
and the corresponding heights of spherical shells. The analysis was based on some selected real conditions of 
stability loss. The influence of the coefficient of material hardening for the drawpiece, the coefficient of normal 
anisotropy and coefficients of plane anisotropy on acceptable values of plastic strains  and heights of the formed 
drawpieces corresponding to the given condition of stability loss was also tested.  

 
Key words:  hydraulic forming, stability loss, boundary strains, height of drawpieces, normal and plane 

anisotropy.  

 
1. Introduction  

 
 During processes of plastic working, various technological operations connected with sheet-metal 

forming are very important. In the case of thin sheets, the processes where a required shape of the drawpiece 
is obtained by biaxial tension under the plane stress state are important, and there are many operations of 
sheet forming when biaxial uniform tension occurs. Here, we can mention technological processes of stretch 
drawing or forming of sheets fixed at the periphery. Then, drawpieces are usually formed by means of 
liquids (synthetic oils), synthetic resins or a rigid punch (Jentet, 1961; Michałowski, 1967; Okamoto et al., 
1968). 

 A test of hydraulic forming of sheets by a liquid (Jovignot’s test) is an example of a laboratory 
test simulating real forming conditions and belonging to the mentioned processes of technological 
forming.   

 Figure 1 shows a scheme of Jovignot’s test, where a specimen 1 is fixed between the die and the 
blankholder so that the periphery cannot be displaced. The test is usually realized up to the moment when 
the drawpiece cracks in the most weakened point of the central part in the surroundings of point M. A 
more detailed description of experiments and the obtained test results is presented in (Banasiak, 1971), 
From that paper it appears that almost 95% drawpieces had cracks caused by local reduction of the sheet 
thickness in the surroundings of point M. Technological test of the sheet disk forming with a liquid 
belongs to axially-symmetric problems (Kaczanow, 1969; Marciniak, 1961; 1968; Piwnik, 1985; 1991; 
Sokołowski, 1957; Szczepinski, 1967; Śloderbach and Sawicki 1984; Życzkowski, 1981; Życzkowski and 
Szuwalski 1982). 
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Fig.1. Scheme of forming of a sheet disk fixed at the periphery by liquid pressure (Jovignot’s test). 
 
2. The aim and basic assumptions  

 
 The aim of this chapter is the presentation of a method for determination of the height h (parameter 

of sheet drawability) of the formed cap for four practical engineering conditions of stability loss. The other 
aim is to test the influence of some material parameters on that height (and on drawability of the sheet 
material), such as the coefficient of hardening n, coefficient of normal anisotropy r and coefficients r1 and r2 
of anisotropy on the sheet plane (plane anisotropy). From most experimental data it appeared that reduction 
of wall thickness in the cap vertex at the crack moment exceeded 50%. Thus, during forming high plastic 
strains occur (even > 60%), whereas the maximum elastic strains are of a low order, for example 0.5%. An 
anisotropic model of a rigid-plastic body with hardening, Levy-Mises laws of plastic flow, and logarithmic 
measures of principal strains were assumed analysis of the problem.   

 According to Bressan and Williams (1983), El-Sebaie and Mellor (1972), Hill (1983), Johnson and 
Mellor (1975), Marciniak (1968; 1971), Marciniak and Kuczynski (1967), Mellor (1969), Moore and 
Wallace (1964/1965), Swift (1952), the following types of stability loss of the deformed shell were taken 
into account:  
a)  liquid pressure acting on the formed shell reaches its maximum value,   
b)  the product of the plasticizing stress and the actual wall thickness in its certain point (it is usually the 

vertex point) reaches the maximum), 
c)  occurrence of local reduction of the drawpiece thickness causing a local change of the ratio of principal 

stresses under which a local reduction of thickness initiates as one or some chases, 
d)  formation of so-called unstability being a shearing band in the place of thickness reduction under the 

plane stress state (PSS) for a case of tensile strains when the shear stress   reaches its critical value.   
 It is assumed that the drawpiece material satisfies the Huber-Mises-Hencky (H-M-H) condition of 

plasticity generalized for a case of bodies of anisotropic properties by Hill (1986). Levy-Mises associated 
laws of plastic flow and plastic incompressibility of the drawpiece material are also assumed.  
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Fig.2. Scheme of forming the spherical shell and the basic geometric dimensions. 
 

 The assumed scheme of strains and stresses in the formed disk was the same as in the case of the 
deformed membraneous shell. According to the membraneous theory, the drawpiece forming from a sheet 
disk fixed at the periphery and subjected to liquid pressure takes a form of a spherical cap of gradually 
reducing thickness, see Fig.2.   

 Logarithmic components of strains (circumferential, longitudinal and those along the thickness of the 
considered element of the shell) are Marciniak (1966; 1968), 
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 According to the above assumptions, the drawpiece takes the shape of a spherical cap when 21 

. Substituting (1)1,2 to the condition ( 21  ) and after transformations we obtain a differential equation 
(Marciniak, 1966; 1968). 

 The condition of plastic incompressibility takes the form (Marciniak, 1971)  
 

  0321  . (2.2) 

 

 Let us solve the considered differential equation. Let us include the boundary condition (when ri = a 

then g = g0), the condition of plastic incompressibility of the material (2.2), and geometric relationship 

  22 2a R h R    resulting from Fig.2. Then, we obtain   
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 Including suitable geometric reltionships resulting for a spherical cap in Fig.2 into expression (2.3), 

after transformations we have  
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where g0 – the initial thickness of the drawpiece, g – the actual thickness of the drawpiece wall 
corresponding to the actual radius ri. 

 Let us remember that the maximum reduction of thickness occurs in the vertex of the drawpiece 
along the radius ri = 0. The assumption of the membraneous scheme of strains causes that  21  , thus, in 

consequence, we obtain  3i  )( . Including the above remarks in Eq.(2.4), after transformations we have 

(Marciniak, 1971)  
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 The above expression determines the dependence of the maximum height of the formed drawpiece 

on the maximum intensity of strain reached for a given condition of stability loss, see conditions (a-c) given 
in this chapter of the paper.  

 
3. Determination of stability loss states  
 
3.1. The basic equations and relations  
 

1.    In the case of sheets we often meet a special case of anisotropy when in the material there are three 
perpendicular directions: the rolling direction and the direction perpendicular to it, both located on the sheet 
plane, and the direction normal to the sheet plane. This kind of anisotropy is often called orthotropy.  

 The theory of plasticity of an anisotropic (orthotropic) body was developed by Hill (1986) and it is 
cited in many scientific books, monographs and handbooks, it is often applied in engineering practice.   

 Under the biaxial stress state and on the assumption that directions of the principal stresses 1  and 

2  on the sheet plane coincide with the rolling direction and and the direction perpendicular to it located on 

the sheet plane, and the direction of the third principal stress ( )3 0   is perpendiclar to the sheet surface, the 
condition of plasticity, the equivalent strain and the laws of plastic flow take the following forms  
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 In the above equations, coefficients B and C are constants characterizing anisotropy on the material 
(sheet) plane so as  
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 2.    So-called normal anisotropy is a special case of anisotropy. It results in the same properties of 

the sheet in all directions occurring on the sheet plane, but the properties of the sheet in the direction 
perpendicular to its surface are different. Thus, we obtain (r1 = r2  = r), so 
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 Isotropy is the simplest kind of the material properties. In such a case, plastic properties of the sheet 
do not depend on any direction and they are the same in all directions. Then  
 
  B = C = r = 1. (3.4) 

 
 For an analysis of stability loss during a test of hydraulic forming of drawpieces the following power 

form of equation was assumed for the hardening curve for the drawpiece material  
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 It is the Swift equation (Gabryszewski and Gronostajski, 1991). 
 

3.2. Boundary strains from the conditions of stability loss  
 
 In Johnson and Mellor (1975), Marciniak (1971) it has been shown that in the plastic forming 

processes under the plane stress state we can distinguish three characteristic kinds of stability loss and 
determine boundary strains for those states.  

a) Stability loss takes place when the drawpiece deformation process proceeds with no synchronous 
increase of liquid pressure. As it was previously said, physically it means that pressure reaches its maximum 
value, in the mathematical form it is  
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 In Marciniak (1971), only a case of isotropic materials was considered. In this paper, we use the 

same procedure for the determination of the eqivalent strain corresponding to the state (3.6) for anisotropic 
materials: 

- for a sheet material of properties of plane anisotropy  
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- for a sheet material of properties of normal anisotropy  
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- for a sheet material of isotropic properties according to Marciniak (1971) 
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b) Stability loss takes place at the moment when a certain part of the drawpiece (usually the vertex 

part) begins to deform more than the others. Then in the surroundings of that part, a spherical shape of the 
drawpiece becomes a little disturbed (Marciniak, 1971). This phenomenon takes place when the plastic 

strength in the drawpiece wall, expressed by the product  p g  , reaches, as it was previously said, the 

extreme value, and during further deformation of the drawpiece it begins to reduce. Mathematically, the 
following condition corresponds to that state  
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 According to the procedure shown in Marciniak (1971), including the constitutive relationship (3.5) 

we obtain the following formulas  
- for a sheet material of properties of plane anisotropy  
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- for a sheet material of properties of normal anisotropy  
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- for a sheet material of isotropic properties according to Marciniak (1971) 
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c) The third form of stability loss is caused by non-uniform strain distribution resulting from local 

reduction of the material thickness (formation of one or more chases) in the vertex part of the drawpiece 
during continuation of the forming process. Deepening of the chase can be accompanied by further 
deformation of the areas in the direct neighbourhood of the chase with gradually decreasing rate. This 
deformation stops when the stress state in the chase reaches the point S on the ellipse of the condition of 
plasticity, Fig.3. Then, according to the theory of associated laws of plastic flow formulated by Levy-Mises, 
we obtain  
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 The stress state corresponding to the point S on the ellipse of plasticity, Fig.3, and the mathematical 

condition (3.14) are as follows:  
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- for a sheet material of properties of plane anisotropy 
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- for a sheet material of properties of normal anisotropy  
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- for a sheet material of isotropic properties according to Marciniak (1971) 
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Fig.3. Transient stress states in the formed drawpiece. 
 
 In order to determine values of the boundary strains for that form of stability loss, we should use a 

general condition of instability in forming of metal sheets under the plane stress state (PSS), presented in 
Moore and Wallace (1964/1965). The condition has the following form  
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where z – so-called critical abscissa, see Fig.4, of the following form  
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where  - is the coefficient of the ratio of principal stresses for a given condition of stability loss.  
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Fig.4. Scheme of the hardening curve with the point of contact s and the subtangent abscissa. 
 
 Substituting expression (3.5) to the left side of Eq.(3.20), after suitable operations we obtain the 

following expression  
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 Let us substitute the expressions for the coefficient  for the ratio of principal stresses (3.15)3 - 

(3.17)3 to expression (3.19), and include Eq.(3.20). Now, we can derive suitable formulas for critical 
(boundary) values of the equivalent strain )(i  corresponding to a form of stability loss, namely  

- for a sheet material of properties of plane anisotropy  
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- for a sheet material of properties of normal anisotropy  
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- for a sheet material of isotropic properties  
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d) The fourth form of stability loss can occur as a result of local shearing initiation along the wall 
thickness in the direction of the maximum shear stresses (formation of so-called unstability as a shearing 
band) in the place of reduction of thickness under the plane stress state (PSS) for a case of tensile stresses, 
see (Bressan and Williams, 1983; Hill, 1986; Johnson and Mellor, 1975; Kaczanow, 1969; Maeciniak, 1971, 
Sokołowski, 1957; Szczepiński, 1967). When the principal stresses are tensile (have the same signs), then the 
planes of the maximum shear stresses run through the sheet surface at the angle of 45o along one straight line 
(Hill, 1986; Kaczanow, 1969; Szczepinski, 1067). 

 Thus, in this condition the shearing stress   reaches the critical value. The condition directly 
preceeds cracking of the formed drawpiece, see the experimental data in Tab.1.  

 The condition of stability loss derived in Bressan and Williams (1983), Johnson and Mellor (1975) 
concerns only the material of isotropic properties. Thus  
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 Finally, we can state that in the end of the 20th century and in recent years many interesting papers 

has been published, for example (Ostrowska-Maciejewska et al., 2013; Pęcherski, 1996; 1998). In these 
papers the authors considered the influence of anisotropy induced by plastic strains, and presented 
macroscopic effects resulting from formation of microscopic shear bands during big plastic deformations in 
metallic materials. The papers present also mathematical foundations of boundary states for anisotropic 
materials.  
 
4. Summary and conclusions  

 
1.  This chapter presents the results defining a height of the formed spherical cap made from the sheet disk 

fixed at the edge during a test of hydraulic forming for four chosen conditions of stability loss met in 
engineering practice. These conditions were determined according to other papers, for example (El-
Sebaie and Mellor, 1972; Hill, 1986; Marciniak, 1971; Marciniak and Kuczynski,1967; Moore and 
Wallace, 1964/1965; Szczepiński, 1967). The formed disk takes a form of a spherical cap, deformations 
of which have been specified according to the membraneous theory of shells (Marciniak, 1966; 1968; 
1971). During such a process, the wall thickness varies depending on the actual radius ri and advance of 
the process (in the considered case on the cap height h). The maximum reduction of the wall thickness 
can be seen in the vertex (central) part of the formed shell.  

2.  The drawpiece height is also influenced by material parameters of the sheet disk, the hardening 
coefficient n and the coefficient 0. In all the cases, an increase of the coefficient n causes an increase of 
the boundary equivalent strains  (i) and, in consequence, an increase of the cap height h. On the other 
hand, in all the cases under consideration an increase of the preliminary strain 0 causes a decrease of (i) 

and the cap height h.  

3.  In the end of the 20th century and recently many interesting papers have been published, see (Ostrowska-
Maciejewska et al., 2013, Pęcherski, 1996; 1998). They address the influence of anisotropy induced by 
plastic strains on plastic properties of sheets.   

 
Nomenclature  
 
 a  – external radius of the drawpiece 
 B and C  – coefficients of anisotropy on the sheet plane (plane anisotropy) 
 D  – material constant for power curve of hardening (Swift equation), see (Swift, 1952) 
 g  – actual thickness of the drawpiece wall corresponding to the actual radius ri, 
 g0  – initial thickness of the sheet 
 h  – height of the drawpiece 
 n  – coefficient of the hardening curve 
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 p  – liquid pressure during the test of hydraulic forming 
 R  – radius of the spherical cap describing a shape of the drawpiece cap 
 r  – coefficient of normal anisotropy 
 ri  – actual radius of the drawpiece 
 r0  – actual radius of sheet disk before forming 
 z  – value of the abscissa corresponding to the stability loss (Moore and Wallace, 1968) 

   – angle between the radius R in the place corresponding to the actual radius and the axis of drawpiece 
symmetry 

 , ,1 2 3     – principal components of logarithmic plastic strains-circumferential, longitudinal and along the 

thickness in the direction normal to the sheet surface, respectively 
 321   ,,   – rates of principal logarithmic plastic strains-circumferential, longitudinal and along the thickness in 

the direction normal to the sheet surface, respectively 

 (i)  – logarithmic plastic equivalent strain (strain intensity),  ( )
2 2 2

i 1 2 3
2

3
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 0  – logarithmic preliminary strain (material constant) 
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  – coefficients representing properties of plane anisotropy 

   – ratio of principal stresses ( / )2 1     

 321  ,,   – components of principal stresses 

 p   – stress equal to the plastic strain 

    – shear stresses under the plane stress state 
 cr   – critical shear stress under the plane stress state (PSS) 
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This part of the paper contains the calculation results presented in the form of suitable diagrams and tables. 
The calculations were made according to the relationships obtained in Part I devoted to a laboratory test of 
hydraulic forming for some chosen engineering conditions of stability loss. The influence of the coefficient of 
material hardening, the coefficient of normal anisotropy and the coefficients of plane anisotropy on acceptable 
plastic strains and heights of the formed drawpieces corresponding to a given condition of stability loss was 
tested, too. 

 
 Key words: hydraulic forming, stability loss, boundary strains, height of the drawpiece, normal snd plane anisotropy. 

 
1. Introduction  

 
 As it was said in the introduction to Part I, a test of hydraulic forming of sheets with a liquid, so-

called Jovignot’s test is a laboratory test simulating real conditions of forming and belonging to 
technological processes mentioned above. The test is usually applied for investigations on drawability, 
strength and plastic properties of sheets, and a replacement of a rigid punch by liquid pressure eliminates the 
influence of friction between the punch and the sheet surface. The stress and strain states in the formed 
drawpiece are usually different from those occurring in industrial forming operations (except for forming 
with the use of liquid, rubber or another synthetic resin), but the test is still useful and it is often applied in 
various versions. Some authors think (Banasiak, 1971; Jentet, 1961; Michałowski, 1967; Okamoto et al., 
1968) that the data coming from the test of shallow drawing by a liquid are more useful for sheet drawability 
estimation than those coming from a test using a rigid punch. Special cases are usually mentioned, namely 
forming of sheets for bodies of cars and rail-coaches, sheets for aircrafts (Michałowski, 1967), forming of 
many kinds of dishes and similar goods, bending of tubes and metallic panels for shaped welded tubes (with 
an intermittent weld), bending of sheets for any housings of machines and devices applied in industry and at 
home, bending of shells for cleaded energetic pipelines and others.  

 The test of sheet forming is also often applied in aircraft industry (Michałowski, 1967) and power 
industry. A modified version of Jovignot’s test is applied for investigations of sheet properties under 
dynamic forming or during technological cladding processes. It is especially important under high strain 
rates (explosive method) because a lack of friction effects allows a more precise determination of sheet 
properties influencing their usability for technological forming processes.  

 In practice, Jovignot’s test is often carried out in order to measure the height h of the drawpiece as a 
measure of sheet drawability, and register the pressure corresponding to the moment directly before the 
crack. In more than 95% cases, it is the pressure behind the point pmax , where the working pressure reaches 
its maximum value (it is one of the points of stability loss of the deformed shell). The crack formation break 
the test and causes disconnection of the pressure pump forcing the liquid.  

 At present, during tests of such kind it is possible to measure and register continuously actual values 
of the pressure and the corresponding cap heights. Thus, it is possible to register and measure a value of pmax 
and the corresponding cap height. In this test, the point pmax is equally important as the maximm point at the 
curve of uniaxial tension used for the determination of strength of elements of machines and devices.  
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The assumed scheme of strains and stresses in the formed sheet disk was the same as in the deformed 
membraneous shell, It is a certain simplification as compared with a real distribution of strains and stresses 
in the metallic spherical cap. In consequence, the drawpiece heights h determined in the paper can be lower 
than the real height. Thus, it can be a certain lower estimation quickly obtained from simple analytic 
expressions.  
 As it was said, this part of the paper presents the influence of the coefficient of hardening and 
preliminary plastic strain, and the influence of normal anisotropy and plane anisptropy (on the sheet surface) 
on the critical value of the equivalent plastic strain )(i , corresponding to  the above conditions of stability 

loss (a-d). Under the above assumptions we may know only the critical equivalent logarithmic plastic strain 

)(i - it is enough for the determination of the critical value of the drawpiece height h.  

 According to the membraneous theory, the drawpiece was made from a sheet disk fixed at the 
periphery and it was subjected to liquid pressure. Under the assumptions contained in Part I of this paper, it 
becomes a spherical cap of gradually reducing thickness (from the periphery to the centre). Under the 
assumed constant volume of the material, an increase of the drawpiece area must be compensed by a 
reduction of thickness; the maximum reduction of thickness occurs in the vertex part.  

 
2. Disccusion of the obtained results  

 
 According to Part I of this paper, the behaviour of instability states of the formed drawpiece in 

Jovignot’s test can be shown in the graph of the system pressure – equivalent strain  )(ip  , see Fig.1. 

 

 
 

Fig.1.  Scheme of the process of deformation of the drawpiece formed by a liquid with characteristic points 
determining the given conditions of stability loss and the crack point. 

 
 From Fig.1 it appears that for a given material the first (a), second (b), trhird (c) and fourth (d) form 

of stability loss follow one by one during the process of drawpiece forming. When the point representing the 
third form of stability loss as initiation of a chase is exceeded, local initiation of the plane state of 
deformation (PSD) takes place, and areas outside the chase pass into the rigid state. After exceeding the 
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fourth form of stability loss (shearing) most drawpieces are subjected to cracking soon. At the next stage of 
the forming process, the drawpiece is subjected to macrocracking (usually in the vertex part), and in 
Jovignot’s test the drawpiece forming process is finished.  

 The obtained calculation results are presented in Table 1 and in suitable diagrams being nomograms. 
Figure 2 shows the results for the drawpiece made of an isotropic material. Curve 1 was obtained from 
Eq.(3.9), part I, from the condition for the maximum of liquid pressure ( )/ )( 0ddp i  , and curve 2 – from 

Eq.(3.13), part I. Curve 3 comes from Eq.(3.23), part I for the condition ( 012   / ) – initiation of the 
plane state of deformation (PSD) – formation and development of the chase up to the crack. Curve 4 was 
obtained from Eq.(3.24), Part I resulting from the condition for reaching the critical values  cr  by the 

shear stress (Bressan and Williams, 1983) under plane state of stresses (PSS) for a case when two principal 
stresses are tensile (El-Sebaie, 1972; Gabryszewski and Gronostajski, 1991; Hill, 1986; 1983; Kaczanow, 
1969; Szczepinski, 1967; Życzkowski, 1981). 
 

 
 

Fig.2.  Diagrams of height of the formed drawpiece versus the coefficient of hardening for four cases of 
stability loss. 
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Table 1. Comparison of the experimental (Bressan and Williams, 1983) and theoretical results. 
 

 
 
 

Material 

 
 
 

n 

 
 
 
0 

0

g

g
 

Experiment Theory 
Instability

 
Cracking Eq.(3.24) Eq.(3.23) 

Soft copper  0.30 0.010 0.555 0.50 0.71 0.51 

Semi-hard copper  0.30 0.070 0.590 0.58 0.75 0.54 

Soft bronze  0.48 0.000 ------ 0.50 0.57 0.43 

Semi-hard bronze  0.48 0.078 ------ 0.51 0.62 0.46 

Soft aluminium  0.25 0.000 0.565 0.48 0.74 0.52 

Killed steel 0.20 0.000 0.570 0.48 0.79 0.53 

Stainless steel 0.50 0.010 0.520 0.50 0.56 0.42 
 
 Table 1 contains a comparison of the experimental data obtained in Bressan and Williams (1983) and 

the calclation results for the third and fourth condition of stability loss [see Eqs (3.23) and (3.24) part I] for 
an isotropic material.  

 Figure 3 presents the results obtained for a sheet of properties of normal anisotropy for  three 
conditions of stability loss depending on a value of the coefficient of hardening n and some chosen values  
(r = 0.5; 1; 2; 3; 4 and 5) of the coefficient of normal anisotropy r. The assumed material constant was 0 = 
0.016 (Marciniak, 1971). From the figure it appears that the height of the formd drawpiece h increases 
together with the next condition of stability loss and with a increase of the coefficient of hardening n and 
normal anisotropy r. It is easy to predict it because the coefficient of hardening causes an increase of the 
acceptable stress, and an increase of the coefficient of normal anisotropy r elongates the ellipse of plasticity 
in plane state of stresses (PSS), see (Gabryszewski and Gronostajski, 1991; Marciniak, 1971; Moore and 
Wallace, 1964/1965) in the case of positive principal stresses and, in consequence, an increase in values of 
acceptable stresses in the drawpiece forming process by a liquid. An increase of r also causes that reduction 
of the drawpiece wall is less, so the resistance against wall reduction increases. Thus, materials of greater 
coefficients r have better drawability properties (Gabryszewski and Gronostajski, 1991; Marciniak, 1968; 
1971; Moore and Wallace, 1964/1965). 

 Figures 4-6 present calculation results for the sheet of anisotropic properties on the plane. The 
assumed values of pairs of coefficients (r1 and r2), representing properties of plane anisotropy were defined 
according to the data from literature (Banasiak, 1971; Marciniak, 1971). From the diagrams it appears that 
the influence of plane anisotropy on the height of the formed drawpiece h is ambiguous. Basing on the 
obtained calculation results, we can generally state that anisotropy on the sheet plane does not influence 
drawability (height of the formed drawpiece) in a distinct way. The graphs were presented depending on the 
hardening parameter n for three successive (a-c) conditions of stability loss. The constant 0 = 0.016 was 
assumed for calculations.   
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Fig.3.  Graphs of height of the formed drawpiece depending on the parameter of hardening n and the 
coefficient of normal anisotropy r for three conditons of stability loss. 
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Fig.4.  Graphs of spherical cap height depending on the coefficient of hardening n and some selected pairs  
  of coefficients of plane anisotropy  r1 and r2 for three conditions of stability loss. 
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Fig.5.  Graphs of spherical cap height depending on the coefficient of hardening n and some selected pairs  
  of coefficients of plane anisotropy r1 and r2 for three conditions of stability loss. 
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Fig.6.  Graphs of spherical cap height depending on the coefficient of hardening n and some selected pairs  
  of coefficients of plane anisotropy r1 and r2 for three conditions of stability loss. 
 
3. Final remarks and conclusions  

 
 1. In Fig.1 it can be seen that in the case of a given material the first-a, second-b, third-c and fourth-d 

form of stability loss in the process of drawpiece forming follow one by one. When the point representing the 
third form of stability loss is exceeded and chase is initiated, local initiation of the plane state of 
deformations (PSD) begins, and areas outside the chase pass into the rigid state. After exceeding the fourth 
form of stability loss (shearing), most drawpieces are subjected to cracking after a moment. At the next stage 
of forming, the drawpiece is subjccted to macrocracking (usually at the vertex part of the drawpiece), and 
during Jovignot’s test the drawpiece forming process is finished.  

 2. From Fig.2 it appears that the maximum shell height h and maximum equivalent strain  (i) are 
obtained from the fourth condition of stability loss (instability in form of shearing) under plane state of 
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stresses (PSS), when both stresses are tensile (they have the same positive signs), and the minimum one – 
from the condition for the maximum of liquid pressure pmax.  

 3. Figure 3 shows the influence of normal anisotopy r on the height h of the formed spherical cap for 
three (a-c) conditions of stability loss, because in the literature the fourth condition relates only to isotropic 
materials. From the diagrams it appears that an increase of the coefficient of anisotropy r for the (H-M-H) 
condition of plasticity including the influence of normal anisotropy causes elongation of the ellipse of 
plasticity (Banasiak, 1971; Marciniak, 1971; Moore and Wallace, 1964/1965; Szczepinski, 1967; Śloderbach 
and Sawicki, 1984), and in consequence an increase of acceptable values of stresses and strains.  

 4. Figures 4-6 presents the influence of coefficients of anisotropy on the drawpiece plane (r1 and r2) 
on the drawpiece height h for three (a-c) conditions of stability loss. It is difficult to determine the influence 
of coefficients of plane anisotropy on the cap height h and generally speaking we can state that it does not 
exist. It results from the fact that the (H-M-H) ellipsis of plasticity is subjected not only to elongation under 
the change of (r1 = 1/C) but also to rotation around the beginning of the coordinate system under the change 
of (r2 = 1/B). A more detailed analysis of that phenomenon can be found in Banasiak (197), Marciniak and 
Kuczynski (1967). Generally speaking, an increase of the coefficients r1 and r2 causes a decrease of 
differences between the results for the second-b and third-c forms of stability loss, see Figs 9-10. An increase 
of the coefficient r2 under a constant and low value of the coefficient r1 causes that differences in the cap 
height h for three different conditions of stability are big, see Figs 8-9. The above calculation results seem to 
prove a thesis formulated by Prof. M. Zakrzewski from the Wrocław University of Technology. In the 1990s 
he found that in the sheet forming process plane anisotropy did not influence drawability (acceptable strains, 
drawpiece height, forming depth). Its influence is manifested by formation of „ears”, see (Banasiak, 1971; 
Gabryszewski and Gronostajski, 1991; Marciniak, 1961; Ostrowska-Maciejewska et al., 2013) at free 
peripheries of the formed drawpieces. In Jovignot’s test the „ears” do not appear because a periphery of the 
sheet disk is fixed in the matrix.  

 5. The derived expressions for the drawpiece height can give lower calculation results than the 
experimental results. It can be caused by the assumed spherical shape of the formed shell resulting from the 
membraneous theory of strain distribution (1 = 2) whereas in fact that shape is more similar to paraboloid 
of revolution (Marciniak, 1971). It can be an effect of non-uniformity of distribution of strains and their 
components in the vertex part, especially at the end stage of forming, where (1  2). 

 6. Let us note that the applied first three conditions of stability loss (a-c), except for the fourth one 
(which, according to Tab.1, sometimes gives thickness reduction less than in the case of experiments) 
determine states preceeding macrocrack of the drawpiece. In many cases, they are lower (safe) estimations of 
actual height of the formed drawpiece in Jovignot’s test.  

 7. As it was mentioned in Part I of this paper, many interesting papers were published at the end of 
the 20th century, for example (Ostrowska –Maciejewska et al. 2013; Pęcherski, 1996; 1998) where the 
authors analysed the influence of anisotropy induced by plastic strains on plastic properties of drawability of 
metallic materials. These papers present macroscopic effects resulting from the formation of microscopic 
shear bands during big plastic deformations of metallic materials. They also present mathematical 
foundations of boundary states for anisotropic metallic materials.  

 
Nomenclature  
 
 a  – external radius of the drawpiece 
 B and C  – coefficients of anisotropy on the sheet plane (plane anisotropy) 
 D  – material constant for power curve of hardening (Swift equation), see (Swift, 1952) 
 g  – actual thickness of the drawpiece wall corresponding to the actual radius ri 
 g0  – initial thickness of the sheet 
 h  – height of the drawpiece 
 n  – coefficient of the hardening curve 
 p  – liquid pressure during the test of hydraulic forming 
 r  – coefficient of normal anisotropy 



Conditions of stability loss during the test of hydraulic … 937 

 
/ ,

/
1

2

r 1 C

r 1 B


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  – coefficients representing properties of plane anisotropy 

 321  ,,   – principal components of logarithmic plastic strains – circumferential, longitudinal and along the 

thickness in the direction normal to the sheet surface, respectively 
 321   ,,   – rates of principal logarithmic plastic strains - circumferential, longitudinal and along the thickness 

in the direction normal to the sheet surface, respectively 
 (i)  – logarithmic plastic equivalent strain (strain intensity) 

 2
3

2
2

2
1i 3

2
 )(  

 0  – logarithmic preliminary strain (material constant) 
   – ratio of principal stresses ( )/ 12   

 321  ,,   – components of principal stresses [Pa} 

 p   – stress equal to the plastic strain [Pa] 

    – shear stresses under the plane stress state [Pa] 
 cr   – critical shear stress under the plane stress state (PSS) in [Pa] 
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