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A layer of a Rivlin-Ericksen elastico-viscous fluid heated and soluted from below in the presence of 
compressibility and suspended particles (fine dust) effect is considered. For stationary convection, the Rivlin-
Ericksen, elastico-viscous fluid behaves like a Newtonian fluid. The oscillatory modes are introduced due to the 
presence of a stable solute gradient, suspended particles destabilize the system whereas the stable solute gradient 
has a stabilizing effect on the system and the effect of compressibility is to postpone the onset of thermosolutal 
convection. The stable solute gradient and compressibility postpone the onset of convection, whereas the 
suspended particles hasten the onset of convection. The stable solute gradient introduces oscillatory modes in the 
systems which were non-existent in its absence. 
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1. Introduction 

 
A layer of a Newtonian fluid heated from below, under varying assumptions of hydrodynamics, has 

been treated in detail by Chandrasekhar (1981). Chandra (1938) performed careful experiments in an air 
layer and found a contradiction between the theory and the experiment. He found that the instability 
depended on the depth of the layer. A Benard- type cellular convection with the fluid descending at the cell –
centre was observed when predicted gradients were imposed, if the layer depth was more than 10mm. But if 
the layer of depth was less than 7mm, convection occurred at much lower gradients than predicted and 
appeared as irregular strips of elongated cells with the fluid rising at the centre. Chandra called this motion 
columnar instability. The effect of particle mass and heat capacity on the onset of Ben’ard convection was 
considered by Scanlon and Segel (1973). They found that the critical Rayleigh number was reduced solely 
because the heat capacity of the clean gas was supplemented by that of the particles. The effect of suspended 
particles was found to destabilize the layer. Palniswamy and Purushottam (1981) considered the stability of 
shear flow of stratified fluids with fine dust and found that the effect of fine dust increases the region of 
instability. A study of double-diffusive convection with fine dust was made by Sharma and Rani (1989). 
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  The stability of the plane interface separating two Rivlin-Ericksen elastico-viscous superposed fluids 
was studied by Kumar at el. (2007). The density, viscosity and viscoelasticity are assumed to be, for stable 
stratifications, the system is found to be stable or unstable under certain conditions. Kumar at el. (2006) 
studied that effect of a magnetic field on thermal instability of a rotating Rivlin-Ericksen visco-elastic fluid, 
in which the magnetic field has a stabilizing as well as destabilizing effect on the system. Also, Rayleigh-
Taylor instability of a Rivlin-Ericksen elastico-viscous fluid through a porous medium was considered by 
Sharma at el. (2001). They studied the stability aspects of the system. The effects of a uniform horizontal 
magnetic field and uniform rotation on the problem was also considered separately. Kumar (2000) also 
studied the stability of superposed viscous-viscoelastic Rivlin-Ericksen fluids in the presence of suspended 
particles through a porous medium. In another study Kumar and Singh (2010) studied the stability of 
superposed viscous-viscoelastic fluids through a porous medium, and considered the effect of a uniform 
horizontal magnetic field and uniform rotation. Singh and Gupta (2011) studied the thermal instability of a 
Rivlin-Ericksen elastico viscous fluid permeated with suspended particles in a porous medium.   

Sharma et al. (2006) studied the stability of a stratified elastico-viscous Walter’s (B’) fluid in the 
presence of a horizontal magnetic field and rotation in a porous medium.   
 
2. Formulation of the problem and perturbation equations 

 
Consider an infinite horizontal Rivilin-elastico-viscous fluid layer, heated with suspended particles, 

of depth d. This layer is heated and soluted from below so that the temperature, the solute concentration and 
density at the bottom surface z = 0 are , and0 0 0T C  , respectively. A steady adverse temperature gradient 

dT

dz

 
  
 

 and solute gradient 
dC

dz

   
 

are maintained. The system is acted on by the gravity force 

 , ,0 0 gg . The effect of fluid compressibility, even small in magnitude is also considered. 

Let , , and ( , , )u v w   u denote the density, viscosity, viscoelasticity and velocity of the pure fluid, 
( , ) and ( , )t N tv x x denote the velocity and number density of the suspended particles, ,K 6   is the 

Stokes drag coefficient   being particle radius. Then the equations of motion and continuity governing the 
flow are 

 

  ( ) 2p KN
t t

                       

u
u u g v u u ,                             (2.1) 

 
and  
 
  0  u .                                                                                                                 (2.2) 
 
 Assuming a uniform particle size, spherical shape and small relative velocities between the fluid and 
particles, the presence of particles adds an extra force term in the equation of motion (1), proportional to the 
velocity difference between the particles and the fluid. The force exerted by the fluid on the particles is equal 
and opposite to that exerted by the particles on the fluid. The distance between the particles is assumed quite 
large compared with their diameters, so that interparticle reactions are ignored. The buoyancy forces on the 
particles are neglected. If mN is the mass of the particles per unit volume, then the equations of motion and 
continuity for the particles, under the above assumptions, are  
 

     mN KN
t

      

v
v v u v ,                                                                    (2.3) 

 
and  
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   .
N

N 0
t


 


v .                                                                                      (2.4) 

 
 Let , , , andv pt pC C C T q denote, the fluid at constant volume, heat capacity of particles, and heat 

capacity of the fluid at constant pressure, temperature and effective thermal conductivity of the pure fluid. 
Hence the volume fractions of the particles are assumed small, the effective properties of the suspension are 
taken to be those of the clean fluid. If we assume that the particles and fluid are in the thermal equilibrium, 
the equation of heat conduction gives 
 

  .2
v ptC T mNC T q T

t t

                 
u v                                    (2.5) 

 
 If C denotes the solute concentration, the equation of solute conduction gives 
 

  2
v ptC C mNC C q C

t t

                    
u v                                   (2.6) 

 
where , andv ptC C q    denote analogous solute quantities. 

  Spiegel and Veronis (1960) defined f as any one of the state variables (pressure p, density   or 
temperature T) and expressed it in the form 
 
  ( , , , ) ( ) ( , , , )m 0f x y z t f f z f x y z t    
 
 where mf  is the constant space average of f, 0f  is the variation in the absence of motion and f   is the 

fluctuation resulting from motion. 
  The initial state is therefore a state in which the density, pressure, temperature, solute concentration 
and velocity at any point in the fluid are given by  
 
  ( ), ( ), ( ), ( ), , , ,0z p p z T T z C C z 0 0 N N        v u  
 
constant respectively, where 
 
  ( ) , ( ) ,0 0T z T z C z C z            
 

  P(z) =  
z

m m 0

0

p g dz   , 

 

       ( ) m m m m m m mz 1 T T C C K p p            , 

 

     say , saym m
m m

1 1

T C

                       
 

 

  .m
m

1
K

p

 
     

                                                                                   (2.7) 
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 Consider a small perturbation on the steady state solution and let , , , , ( , , ), ( . , )p u v w 1 r s    u v  and 

N denote respectively the perturbations in the pressure p, density  , temperature T, solute concentration C, 

fluid velocity ( , , ),0 0 0u particle velocity ( , , )0 0 0v  and number density 0N . The change in the density 
, caused mainly by the perturbations   and   in temperature and solute concentration, is given by 
 
   m       .                                                                                 (2.8) 

 
 Then the linearized perturbation equations relevant to the problem (Spiegel and Veronis, 1960; 
Scanlon and Segel, 1973; Rivlin and Ericksen, 2001) become 
 

      ,2

m m

1 KN
p g

t t

                      
u

v u u                  (2.9) 

 
  ,0  u                                                                                                         (2.10) 
 

  ,
m

1
K t

    
v u                                                                                            (2.11) 

 

   0
N

N 0
t


  


v ,                                                                                      (2.12) 

 

      2G 1
1 h w hs

t G

           
,                                                      (2.13) 

 

      21 h w h s
t

          


                                                              (2.14) 

 

where , , , , and
m m m v m v

q q

C C

                         
 stand for viscosity, viscoelasticity, kinematic 

viscosity, kinematic viscoelasticity, thermal diffusivity and analogous solute diffusivity, respectively.  
 

Also,   , , andpt pt p0

v v m

C C CmN
h f h f f G

C C g

 
   

 
. 

 
 Initially, ( , , ), ( , , ), ( ), 00 0 0 0 0 0 T T z N N   u v , so Eq.(2.5) yields 0 = 0, identically. 
After perturbation (2.5) becomes   
 

     ( ) ( ) ( )2
m v 0 ptC T mN mN C T q T

t t

                           
u v . (2.15) 

 
 Following Speigal and Veronis (1960) wherein the flow equations are found to be the same as those 
for incompressible fluids except that the static temperature gradient is replaced by its excess over the 

adiabatic and vC  is replaced by pC , i.e.,   is replaced by 
p

g

C

 
   
 

, and linearizing Eq.(2.5) gives  
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  ( ) ,pt 20

m v p m v

CmN g q
w hs

t C t C C

  
             

                                  (2.16) 

 
i.e., Eq.(2.13). However,   remains unaltered and following the same procedure as above, Eq.(2.6) yields 
Eq.(2.14). 
 
3. The dispersion relation 

 
      Analyzing the disturbances into normal modes, we assume that the perturbation quantities are of the form 
 
   , , [ ( ), ( ), ( )]exp[ ] ,x yw W z z z ik x ik y nt                                (3.1) 

 

where andx yk k  are wave numbers along x-and y-directions respectively,  2 2
x yk k k   is the resultant 

wave number and n is the growth rate, which is , in general a complex constant. Using (2.15), Eqs (2.9)-
(2.14) in a non-dimensional form become 
 

         ,
2 2

2 2 2 2

1

M ga d
1 1 F D a D a W 0

1

  
                  

           (3.2) 

 

    ( )
,

( )

2
2 2 1

1
1

HG 1 d
D a Hp W

G 1

              
                                              (3.3) 

 

     
 

2
12 2

1

Hd
D a H q W

1

   
      

   
                                                          (3.4) 

 
where we have put a = kd,  
 

  , , , ,
2

1 12
m

nd m mN
M p

d

 
       

   
, 

 

  , , ,
2

q H 1 h H 1 h F
d

       


, 

 

and   
dz

d
D  . 

 
 Eliminating and  between Eqs (3.2) and (3.4), we obtain 
 

  

     

   

( ) 2 2 2 2 2 2 2 2
1

1

2 2 2 2 2 21 1
1

1 1

M
1 1 F D a D a Hp D a H q D a W

1

H HG 1
R a D a H q W Sa D a Hp W 0

G 1 1

  
                    

                                 

(3.5) 
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where 
4g d

R





 is the thermal Rayleigh number, 

 

 
4g d

S
  




is the analogous solute Rayleigh number, 

 

 1p





 is the thermal Prandtl number  

 
and  
 

 q




 is the analogous Schmidt number. 

 
 We consider the case where both the boundaries are free and perfect conductors of heat, solute, while 
the adjoining medium is assumed to be electrically non-conducting. The appropriate boundary conditions for 
the case are 
 

  at and .2W D W DZ 0 z 0 1                                                 (3.6) 
 
 The case of two free boundaries is the most appropriate. Using Eq.(3.6), we can show that all the 
even order derivatives of W must vanish for z = 0 and 1 and hence the proper solution of W characterizing 
the lowest mode is  
 
  sin0W W z  ,                                                                                        (3.7)  
 
where 0W  is a constant. 
 Substituting (3.7) in Eq.(3.5), we obtain the dispersion relation 
 

  

 

    

  

( )

( )( )

2
1 1 2

1

2 2
1 1 1 1 1

2 2
1 1

G M
R x i 1 1 iF 1 x

G 1 1 i

1 i 1 x 1 x iHp S x H i 1 x iHp

H i H i 1 x iH q

                        
                             

  (3.8) 

 
where  
 

  , , ,
2

1 1 14 2 2 4

R a S
R x i S


    
   

. 

 
 Equation (3.8) is the required dispersion relation studying the effects of suspended particles and 
compressibility on the thermosolutal convection in the Rivlin-Ericksen elastico- viscous fluid.  
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4. The stability of the system and oscillatory modes 
 

 Here, we examine whether instability can occur as oscillatory modes, if any, on the Rivlin-Ericksen 
elastico-viscous fluid in the presence of compressibility and suspended particles effects. 
 Multiplying Eq.(3.2) by W*, the complex conjugate of W, integrating over the range of z and making 
use of Eqs (3.3) and (3.4) with the help of boundary conditions (3.6), we obtain 
 

  

 

 

*
( ) *

*

*
*

*

2
1

1 2 3 1 4
1 1

2
1

5 6
1

1M g a G
1 I 1 F I I Hp I

1 G 1 H

1g a
I H q I 0

H

                                
                

 (4.1) 

 
where 
 

  

   

 

 

| | | | , | | | | | | ,

| | | | , | | ,

| | | | , | | .

1 1
2 2 2 2 2 2 2 4 2

1 2

0 0

1 1
2 2 2 2

3 4

0 0

1 1
2 2 2 2

5 6

0 0

I DW a w I D W 2a Dw a W

I D a dz I dz

I D a dz I dz

    

     

     

 

 

 

 

 
 The integrals 1 6I I  are all positive definite. Putting ii   , where i  is real and equating the 
imaginary parts, we obtain 
 

  
 

( )
*

* .

2 22
1 i1

i 1 2 3 1 42 2 2 2 2 2
1 i 1 i 1 i

2 22
1 1 i

5 62 2 2 2 2 2
1 i 1 i

HH 1M g a G
1 I FI I Hp I

1 G 1 H H

H 1 Hg a
I H q I 0

H H

                                   
                       

(4.2) 

 
 Equation (4.2) implies that ori i0 0    , which means that the modes may be non-oscillatory or 
oscillatory. The oscillatory modes are introduced due to the presence of the stable solute gradient, and were 
non-existent in its absence. 
 
5. The stationary convection 

 
 When instability sets in as stationary convection, the marginal state will be characterized by 0  . 
Putting 0   in Eq.(3.8), the dispersion relation reduces to  
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( )

,
3

1 1
G 1 x H

R S
G 1 xH H

         
                                                                            (5.1) 

 
and the Rivlin-Ericksen elastico- viscous fluid behaves like an ordinary Newtonian fluid. 
 To study the effect of suspended particles and the stable solute gradient, we examine the behaviour 

of and1 1

1

dR dR

dH dS
analytically. 

 Equation (5.1) yields 
 

  
( )

,
3

1
1 2

dR G 1 x 1
S H

dH G 1 x H

           
                                                           (5.2) 

 
which is negative, implying thereby that the Rayleigh number decreases with an increase in the suspended 
particles number density. Therefore, suspended particles destabilize the system.  
 

  ,1

1

dR G H

dS G 1 H

    
                                                                           (5.3) 

 
is positive, thereby the Rayleigh number increases with an increase in the solute parameter. The stable solute 
gradient, therefore, has a stabilizing effect on the system. 
 Graphically, it is shown in Figs 1-3. In Figs 1 and 3 as values of 1S  and H   increase the values of 

1R  increase to show that the stabilizing effects of the system. On the other hand as the values of H increase 

the values of 1R  decrease to show the destabilizing effects of the system. 
 

 
 

Fig.1.  The variation of the Rayleigh number  1R , with the wave number  , , , ,x 1 2 3 4 5 , for G=9.8, 

H=2, H 10   and  , ,1S 10 20 30 . 
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Fig.2.  The variation of the Rayleigh number  1R , with the wave number  , , , ,x 1 2 3 4 5 , for G=9.8, 

1S 10 , H 5   and  , ,H 2 4 6 . 

 

 
 

Fig.3.  The variation of the Rayleigh number  1R , with the wave number  , , , ,x 1 2 3 4 5 , for 1S 10 , 

H=2, G=9.8, and  , ,H 5 10 15  . 
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 For fixed , and ,1S H H  let G (accounting for the compressibility effects) also be kept fixed. Then 
we find that 
 

  c c
G

R R
G 1

    
                                                                               (5.4) 

 
where andc cR R  denote respectively the critical Rayleigh number in the presence and absence of 
compressibility. G>1 is relevant here. The case G<1 and G = 1 correspond to negative and infinite values of 
the critical Rayleigh number in the presence of compressibility, which are not relevant in the present study. 
Compressibility thus postpones the onset of thermosolutal convection. 
 
Conclusion  
 
 Thermosolutal convection in the presence of a compressible fluid with fine particles is considered. 
For stationary convection, the Rivlin-Ericksen, elastico-viscous fluid behaves like a Newtonian fluid. 
Suspended particles destabilize the system whereas the stable solute gradient has a stabilizing effect on the 
system and compressibility postpones the onset of thermosolutal convection. The stable solute gradient 
introduces oscillatory modes in the systems which were non-existent in its absence 
 
Nomenclature 
 
 pC  – heat capacity of a fluid at constant pressure 

 ptC  – heat capacity of the particles 

 vC  – fluid at constant volume 

 l  – depth of layer 
 K – Stokes drag coefficient 
 ( , )tN x  – number density of suspended particles 
 q – effective thermal conductivity of the pure fluid 
 R – thermal Rayleigh number 
 cR  – critical Rayleigh number in the presence of compressibility 

 cR  – critical Rayleigh number in the absence of the Rayleigh number 

 S – analogous Rayleigh number 
 T – temperature 
 ( , , )u v wu  – velocity of pure fluid 
 ( , )tv x  – velocity 
   – steady adverse temperature gradients 
   – solute gradient 
 p  – perturbations in pressure p 
   – perturbations in density   
   – viscosity 
   – viscoelasticity 
   – density 
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