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According to the postulate concerning a local change of the “actual active radius” with a bending angle in the 

bend zone, a generalized model of strain during metal tube bending was derived. The tubes should be subjected to 
bending at tube bending machines by the method of wrapping at the rotating template and with the use of a 
lubricated steel mandrel. The model is represented by three components of strain in the analytic form, including 
displacement of the neutral axis. Generalization of the model during bending metal tubes at the tube bending 
machines as compared with the existing papers (Śloderbach, 1999; Śloderbach and Rechul, 2000) consists in 
including the neutral axis displacement and possibility of determination of strains at each point along the 
thickness of the wall of the bent tube in the bending and bend zone. The derived scheme of strain satisfies initial 
and boundary kinematic conditions of the bending process, conditions of continuity and inseparability of strains. 
The obtained analytic expressions can be classified as acceptable from the kinematic point of view.  
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1. Introduction 
 
 Tube bending see e.g. (Beskin, 1945; Boyle, 1971; Franz, 1961; 1969; Gruner, 1960; Grunow, 1985; 
Korzemski, 1968; 1971; Li et al., 2006; Pesak, 1953; Śloderbach et al., 1999; 2000; 2002; 2008; 2012; Tang, 
2000; Wick et al., 2001; Yang and Lin, 2004; Zdankiewicz, 1970; 1998; Zhang et al., 2011; Zhiqiang et al., 
2011) as a technological problem appeared in the end of the 19-th century when production of tubes started 
in an industrial scale. Tubes were delivered mainly to industry of steam engines and boilers, gas engineering, 
power engineering, civil engineering. At present, tubes and elbows are purchased by almost all branches of 
industry, and tube bending is a typical activity in many technological processes in metal industry. Production 
of tubes and elbows has been increased, and now it is increasing more quickly than the production of steel 
because tubes and elbows are made also of other materials, for example plastics.  
 We can also observe higher and higher requirements concerning the quality of the produced tubes 
and elbows, i.e., production accuracy is higher, tolerance of non-uniformity of the wall thickness distribution, 
corrugations and so on decrease. We can also talk about higher requirements concerning technological 
activities, such as tube bending, elongating, necking, beveling etc. Selection of a tube bending method is 
dependent on the kind of material used, thickness of the tube, bending radius, the required accuracy and 
quality of bending, work conditions, bend angle, serial production and others.  
 At present, tube bending at tube bending machines using the method of wrapping at the rotating 
template with the lubricated mandrel is the most widely used. Such bending always leads to the formation of 
thinner walls in the layers subjected to elongation, thickening and wrinkling (corrugation) in the layers 
subjected to compression, and deformation (ovalization) of the cross section. Such unfavorable phenomena 
should be included in the limits of tolerance given in European standards and recommendations (European 
Standard, 1993; Zdankiewicz, 1998), as well as regulations of UDT [the Polish Office of Technical 
Inspection, (UDT Conditions, 2003)]. The acceptable ovalization of the cross section according to the 
European Standard (EN 448, 1993) is up to 6%. In this paper, the authors consider only cold bending of 
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metal tubes of the assumed technological wall thickness *s  0.10 and maximal dext = 160 mm (Śloderbach, 

2012), (where *s  = g0/dext, g0 and dext - initial thickness and external diameter of the bent tube, respectively). 

In regulations of UDT (UDT Conditions, 2003), pressure tubes are assumed as thin-walled, when * .ws 0 05 , 

where *
w 0 ints g d , dint = dext  2g0, then  * * *

ws s 1 2s  . The above assumptions follow from the 

practical results obtained in the Research and Development Institute for Power Plant Maintenance in 
Wrocław, Poland (it stopped to exist in 2006). Tubes of the external diameter up to 160 mm and wall 

thickness *s  0.1 were technologically cold bent at the bending machines with the rotating template with the 

use of a lubricated rigid metal mandrel. Greater metallic tubes (with greater dext and s ) are bent by hot, half 
hot or with preheating methods (Śloderbach, 2002). 
 The main reasons influencing a shorter service life of elbows are: decrease of the wall thickness in 
the elongated layers, complex and unfavourable states of external loadings and internal stresses, large plastic 
strains forming while tube bending, storage of energy of plastic deformation and its influence on internal 
structure of the material, and creep resistance. Damages of elbows occurring during service of pipelines and 
tube installations can also be caused by unsufficient reliability of the applied method of strength calculations 
(Śloderbach and Rechul, 2000; Śloderbach, 2002; Tang, 2000; Zhiqiang et al., 2011). Strictly speaking, there 
were no accurate methods of determination of permissible distribution of wall thickness in the points of 
maximum strains in the elbow bending zone. It concerns especially the tip parts of the bending zone where 
the thickness is minimum. If we know components and intensities of strain in the bending zone, especially in 
the tip part, we will be able to make more accurate strength calculations. In consequence, we will be able to 
improve reliability of devices containing elbows.  
 The description presented herein concerns tube bending at the bending machines with the use of the 
method of wrapping the bent tube on the rotating template with a segment elastic lubricated mandrel (see 
Fig.1). This method is widely known and used. 
 

 
 

Fig.1.  Scheme of a tube bending machine with a rotating template and a flexure mandrel, 1- bent tube, 2- 
flexible segment mandrel, 3- rotating template, 4- clamping jaws, 5- clamping strip, 6- guide, 7- 
screw for regulation of clamping force of the strip and the planisher, 8-planisher. 
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 A correct analysis of plastic strains in the elbow bending zone, especially in the elongated layers is very 
important from the point of view of strength, also for service, technological, economic and safety reasons. 
 The main aim of this paper is to derive basic relationships for component measurements of strains 
including displacement of the neutral axis during bending metal tubes at bending machines by the wrapping 
method at the rotating template and using a template and a mandrel (or without a mandrel). Almost a circular 
shape of the internal surface of the bent elbow (no Brazier effect), and the assumption that dint = const must 
be kept. At present, this method is widely used for the production of most metal elbows (Beskin, 1945; 
Boyle, 1971; Franz, 1961; Gruner, 1960; Grunow, 1985; Korzemski, 1968; 1971; Śloderbach et al., 1999; 
2002; Wick et al., 2001; Zdankiewicz, 1998) for many tube installations. This method concerns especially 

bending of the tubes at the radii ( ext.R 1 5 d  ) being thin-walled ( *
ws  0.05) according to (UDT Conditions, 

2003) and thick-walled *
ws 0.05. Metallic elbows manufactured in such a way are usually applied as elemnts 

of pipelines in devices for power engineering and some other fields of industry. Tube bending at the radii (R 

< 1.5dext) is performed by other methods, and tubes of very thin walls ( *
ws <<0.05) are usually not applied in 

industrial pressure installations.  
 In literature there are no analytic expressions for strains depending on an actual value of the bending 
angle, angles determining a position of each point (particle) in the bending and bend zone, displacement of 
the neutral axis, the bending radius, dimensions of the cross section of the bent tube and suitable 
technological-material coefficients (k, and i) dependent on bending technological parameters and tube 
materials. Tube bending always leads to a reduction of the wall in elongated layers and an increase of tube 
thickness in layers subjected to compression, to ovalization and formation of corrugation which distort the 
cross section. The ovalization effect occurs as a consequence of oblateness of the cross section (Brazier 
effect), non-uniform reduction and thickening of walls of the bent elbow, and the corrugation effect. Such 
unfavourable phenomena, i.e., changes of the tube wall thickness and wrinkling, and also ovalization of the 
cross section shape should be included in the limits of permissible tolerances (European Standard, 1993; 
UDT Conditions, 2003; Zdankiewicz, 1998).  
 In this paper, the author tried to describe the strain state understanding tube bending as a three-
dimensional, heterogeneous (including changes of the strain state with the bending angle and the angles of 
the point position in the bending and bend zones) and including the influence of the neutral axis 
displacement problem. Such influence is understood in the following way: the forming field of plastic strains 
generates a displacement of the neutral axis (in this bending method it is a downward displacement in the 
direction of the layers subjected to compression), and the quantity of the neutral axis displacement affects the 
distribution of these strains.  
 From experiments, technological tests and industrial practice (Wick et al., 2001) it appears that this 
displacement is only about 5% value of the external diameter of the bent tube for thick-walled tubes (s*  

0.10) bent at relatively large bending radii (R  2dext), and about 25% for very thin-walled tubes (s* 0.01) 
bent at very small bending radii (R  1dext). Thus, such a high displacement of the neutral axis of plastic 
bending should not be disregarded in an analytic description of the strain state. Generalization of the strain 
description while bending metal tubes at bending machines related to the data from other papers (Śloderbach, 
1999; 2000) consists in including the neutral axis displacement and possibility of determination of strains in 
each point of the tube wall in the bending and bend zones.  
 In the derivation of the model for the field of strain all the thermal effects accompanying large 
deformations were disregarded. It is assumed that the tube bending process at bending machines is quasi-
isothermal. The model of tube bending was obtained on the assumption that the strain process in the layers 
subjected to tension and compression is quasi-static, so dynamic effects were omitted (Śloderbach et al., 
2006; 2008). 
 It is assumed that strains in the tube bending process are identified with plastic strains. Thus, it 
appears that plastic strains are of the order of some tens of percent (even to 50%), and the maximum elastic 
strains are equal to decimal parts of the percent and they are neglected in an analytic description. In the 
angular measure of the bending process, only some degrees concern elastic strains.  
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2. Geometric-analytic description of the bending process  
 
 

 
 

Fig.2. Geometrical and dimensional quantities pertaining to tube-bending processes. 
 
3. The basic assumptions  
 
 It is assumed that the tube material is an incompressible rigid-plastic (with isothropic hardening) 
continuous medium satisfying the condition of plasticity (M-H-H) and the Levy-Mises flow laws. Its 
properties while bending are described by two technological-material coefficients (k and i ). Thus, the 
constant plastic volume of the material is assumed before and after bending. The neutral axis of plastic 
bending is determined by the radius R0. The axis separating elongated and compressed layers in the bending 
zone is a line of stress discontinuity (Hill, 1986; Johnson and Mellor, 1975; Marciniak, 1971; Mendelson, 
1988; Olszak et al., 1985; Szczepinski, 1973; Śloderbach, 1999, 2002; Tang, 2000). The strains on the axis 
with the radius R0 and at the beginning and the end of the bending zone are equal to zero. In the paper it is 
also assumed that in the tip points of the elongated layers (environment of the mandrel), the tube bending 
process at the bending machines (tube bending by wrapping at the rotational template and with the use of a 
lubricated mandrel) is a complex process of heterogeneous curvilinear elongation (biaxial stretch drawing) 

under the three dimensional stress state (spatial while bending thick-walled tubes, for example when *
ws > 

0.05, and plane while bending thin-walled tubes). In the case of the compressed layers, it is a composition of 
two processes: the heterogeneous curvilinear compression and unfree upsetting. Moreover, it is assumed that 
the internal section  of the tube remains circular, so a deformation in the form of the cross section flattening 
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is not taken into account. It can be a result of the influence of a suitable and well manufactured mandrel (for 
example a flexural and segment one) and its precise set-up while tube bending. As introduction of the 
technological-material coefficient k allows to include (in part and indirectly) also the influence of mandrel 
friction to the tube wall on strain distribution. 
 In real tube bending processes at bending machines, in the compressed layers there are no such strain 
states as those occurring under free compression and upsetting. Tube bending is not a case of free 
(unbounded) bending but it is forced by the structure of working tools of the bending machine (matrix, 
mandrel, flatter, strip and its pressure force). There are some boundary limitations of displacements resulting 
from the bending machine structure, forces of external friction of the material and the bending machine tools, 
clearances between the walls of the bent tube and the tools. The amount and quality of lubrication is of a 
great importance, too.  
 
4. Procedure of strain component derivation  
 
 The generalized expressions for three components of the strain state for the considered tube bending 
at bending machines are going to be derived at three stages:  
1.  Derivation of the expressions for principal strains in relative and next in logarithmic measures while 

bending when the influence of the neutral axis displacement on the strain distribution is not taken into 
account,  

2.  Derivation of the expression for the neutral axis displacement of plastic bending y0, 
3.  Formal derivation (according to Fig.4) of expressions for strain components in order to describe the 

deformation state for the problem including the neutral axis displacement by an introduction of the 
derived relationship for y0 into the equations. 
 

4.1. Derivation of expression with no neutral axis displacement  
 
Ad.1. The basic aim is an analytic derivation of the plastic strain components, i.e., the longitudinal (along the 
tube axis), circumferential and radial (along the thickness) components in measures of relative and 
logarithmic strains during tube bending at bending machines by wrapping at the rotating template using the 
mandrel or with no mandrel, on the assumption that dint  const. It concerns thin-walled and thick-walled 
metallic tubes subjected to cold bending. The expressions determining the strain components have been 
derived on the assumption of plane sections (simple bending) for an incompressible plastic material. This 
method allows determination of the strain state at each material point included in the bending and bend zone. 
Such an analytic strain scheme satisfies kinematic conditions of the process, i.e., initial and boundary 
conditions of the tube bending process, conditions of continuity of strains and displacement conformity, and 
incompressibility of the material, like in the method of selection of kinematically permissible fields of strains 
or velocity fields of strain (Hill, 1986; Olszak et al., 1985; Szczepinski, 1973; Śloderbach, 1999; 2002; 
Życzkowski, 1981). 
 An important problem is to determine a form for a change of “actual active radius” r*(N) in the 
bending zone (determined at each N-th point along the thickness, and for total thickness of the bent tube, so 

as r*=  
  ,N

00

N

g g
r







 depending on a change of the bending angle b. The increase related to length of the 

bending radius R, defines an increment of the relative longitudinal (along the tube axis) strain  N
1d . The 

local “actual active radii (r*(N) and r*) depend on the actual value of the angles   �and  determining 
positions of the points in the bending zone, and on the actual position of the external point in the considered 
N-th layer included in the wall of the bent tube (see Fig.3), also on total dimensions of the cross section in 
the elongated and compressed layers. 
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Fig.3. A concept of division of the transversal section of a thick walled pipe for the analytical and FEM 
method. 

 
 In the analytic method, a possibile number of the analyzed points along the thickness of the bent tube 
wall is N  1; n), when n. In this method, a division along the wall thickness is laminar into the N-th 

number of layers  N
l0g  in thickness, thickness of which is measured from the internal tube surface to the 

external point of the N-th layer (see Figs 2 and 3), where  
 

 ext int
ext int

k
k k

0
d d

g r r
2


   . Such division results 

from the fact that tube dimensions are given as (ldextg0), where l – tube length. When N = 1, then 
 1

0l0g g , and when N  , then  N
l0g  0. In the case of the finite element method (FEM) applied for the 

thick walled tubes, the division is annular into a finite number of cylinders (rings) n of the equal thickness. 
From Fig.3 it also appears that when the wall thickness is considered as one layer for N = 1, then 

       
int ext extint, and1 1 1 1

00l0g g g d d d d    , where ext int .0d d 2 g   

 The value of the modified relative strain 1 , (i.e., the strain corresponding to the experimental 

results) obtained after previous integration of the expression for d 1 within the limits of angle ; b2   

depends on the actual value of the bending angle b, actual values of the point position angles ,   in the 
bending zone, actual dimensions of the bent tube in the elongated and compressed layers, the bending radius 
R, and suitable correction technological-material coefficients k and i . Let us describe the strain state 
assuming the following postulate:  

 
Postulate A* 

 

 An increment of the longitudinal component (along the tube axis)  N
1d  of the strain state, according 

to the notations in Figs 2 and 3 (tube bending at bending machines by using the mandrel, or with no mandrel 
but keeping the constant internal diameter dint  const), for the external point of every N-th layer included in 
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the tube wall is directly connected with an increment of “the local active actual radius”  * Nr , and increments 

of circumferential and radial strains  N
2d  and  N

3d  are presented in the following way 
 

   
 

 
 

*

, N
00

N
N N

11 1 g g

d
d d d


  

r

R
            and  

   (4.1) 

   
 

 

N
N i

2 N
ext

d
d 

r

r
                  and                  

 

 

N
N i

3 N
0

d
d 

g

g
  

 

where *dr  =    
 

* cos N
00

NN b
b g g

d
d

2 

      
  

r s


, because when N = 1, then  N
00g g  and the sign (+) 

is related to the elongated layers, and () to the compressed ones.  
 For the division of a thick-walled tube into a finite number of cylinders (rings) prepared for the FEM 

method, we take 
 

   
 *

,
N

N
1

d
d  

r

R
        

 

 
,

N
N i

2 N
ext

d
d 

r

r
          

 

 

N
N li

3 N
l0

d
d 

g

g
     and     

N n
N

i li
N 1

g g




   

 

where gi - running thickness of a bend within the bending. 
 From properties of the vector product it results that  
 

  

  

   

 

cos

sin cos cos sin

N
00

N
g g

1

N Ng g
i g i g

g g

d
d

2

d d
2 2

2 2





    


       
                      




s

R

r r

R R




 
  (4.2) 

 

where R   R- length (modulus) of the bending radius and R = const, 
 

and      
 sin N

00

N N b
g ib g g2  

     
  

s s r ,      so     

 

 

cos sin

.N
00

N g
i g

1
g g

d
2

d
2 

  
  

    
 
  

r

R



  

 Thus, 
 

        

 
 

   

 

   ( )

ext

cos sin
, andN N N00 g g g g0 00 0

N b
N Ni b

i i
1 2 3N Ng g

0

r d
dr dg2

d d d
2 R r g 

             
 
  

 (4.3) 
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where  N
ir  - local actual radius related to the external point of the (N-th) layer included in the tube wall is 

 N
ir  = rint +  N

ig  and  N
ir  rint; ri. 

 When: N = 1 and when the averaged strains are related to the central layer, then 
 

int
N i

i im
g

r r r
2

   , where rim – averaged small active bending radius related to a half of the actual 

thickness of the bent tube wall,  
ext

Nr  - local external radius related to the external point of the (N-th) layer 

included in the tube wall,  
ext

Nr  (rint; rext and  
ext

Nr = rint +  N
0g .  

 When N = 1, then  
ext ext ,

Nr r  because    andN N
0 i i0g g g g  , where gi- local actual thickness 

of the wall of all the section, gi  0; g0,    andN N
i0g g  - initial thickness of the considered (N-th) layer of 

the bent tube wall, such that  N
0g  0; g0, and the actual local wall thickness for the external point of the 

(N-th) layer of the tube section such that  N
ig 0; gi, respectively. 

 A formal notation of expression (4.3)1 in the integral form in the range of a change of angle  from 
the actual value of angle 2 to the value of angle b, i.e., in the range   ; b2  , is as follows  

 

  

 
 

 

cos sin
cos

sin .
b b

N
00

N
i

N
1 i

g g
2 2

r d
2

r d
2 R 2 R 2

 


 

              
  
  

   

 
 After formal integration through the parts of 1, we obtain  
 

           

 

 

 
 

cos cos cos
cos

cos .
b

N
00

N b
Ni

Ni
1 00g g

2

r
2 dr

d g g
R R 2 d






                                  

  (4.4) 

 
 As it results from expression Eq.(2.4), the longitudinal component of the plastic strain 1 (expressed 

in measures of relative strains) contains two terms. The first term 

 

 

cos cos cos

N
00

N b
i

g g

r
2

R 

        
   

 
 
 

 - 

represents a part of relative longitudinal (along the tube axis) strains 1, connected with fiber elongation in 
the elongated layers, and shortening in the compressed layers, respectively depending on the tube 
dimensions, coordinates of the particle position and the bending radius, as well as on the actual value of the 
bending angle b. 

 The other term, 
 

 
cos

cos
b

N
00

N
i

g g
2

dr
d

R 2 d






         
 - represents the part of the longitudinal strain 

(along the axis) 1 connected with a change of the tube wall thickness, i.e., a reduction of thickness in the 
elongated layers, and increase of thickness in the compressed layers, respectively. This term value estimated 
from calculations is negligibly low because its maximum value equals only some per cent as compared with 
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the value of the first term. Thus, this term is disregarded in further considerations and calculations, and in 
consequence the applied procedure and calculations should be simpler. Thus  
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 The bent tube is a spatial element, so the local description of the stress state should be based on three 
main components of the plastic deformation state (components: longitudinal (along the axis), circumferential 
and radial (along the thickness)) obtained after formal integration of expressions Eq.(4.3) in the range of 
angle ; b2  . The expression determining the circumferential component was obtained on the assumption 

that during tube bending material particles  are moving along the elbow radius to the center of the bent tube 
in the elongated layers and from the center in the compressed layers. The actual and averaged local 
components of the strain state take the following form  
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 where: 

 

 N
id - local actual diameter related to the external point of the N-th layer of the bent elbow included in its 

thickness in the bending zone,    N N
i id 2r , 

 
ext

Nd  - local initial external diameter related to the external point of the N-th layer included in the bent tube 

wall, so as  
ext

Nd   (dint; dext and    
ext ext

N Nd 2r  and  
ext

Nr  =  
int

Nr  +  N
0g  or  

ext
Nr  = intr  +  N

0g , 
 N
0g  - local initial thickness of the N-th layer of the tube included in the bent tube wall so as  N

0g  (0; g0 

and  N
ir  = intr  +  N

ig , 
 N
ig  - local actual thickness of the tube layer determined for the N-th layer included into the bent elbow 

wall calculated in measures of relative strains.  
 Expressions Eq.(2.6) are expressed in local and actual (along thickness) geometrical parameters of 

the bent tube   int
Nd ,  

ext
Nd ,  N

ig  and   N
0g . Thus, they can be used for analytical calculations of strain 

distribution along the tube wall thickness in elongated and compressed layers. In future, the calculation 
method should be improved and numerical methods using the finite element method should be applied. 

 The strains should be measured during experiments performed in order to verify analytical or 
numerical calculations. Thus, transformation of Eqs (4.6) for the determination of strains for the total 
thickness of the elbow wall (it concerns especially thin-walled tubes) measured on external surfaces (external 
measuring quantities after bending), or measurements of the initial thickness of the tube which is going to be 

bent requires averaging and replacement of the values  
ext

Nd  from Eq.(4.6) by dext , and  N
0g  g0, because when 

N = 1 then  N
0g  = g0, 

 
ext

Nd  = dext, 
 N
i id d . Now, it is necessary to derive measures of the logarithmic 
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strains, useful in plastic work technologies for the case of large strains (Franz, 1961; Hill, 1986; Johnson and 
Mellor, 1975; Marciniak, 1971; Mendelson, 1988; Śloderbach, 1999; 2002; Życzkowski, 1981), as 
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 The expressions for component strains Eqs (4.1) - (4.7) describe deformation in bending tubes made 
of plastic and incompressible continuous media (Śloderbach, 1999; 2002). Real materials undergo a 
deformation in another way (especially in the compressed layers), and tube bending at bending machines is 
not unbounded upsetting in those layers. There are boundary limitations (especially in the compressed layers 
of the bent tube) resulting from the bending machine structure and its rigidity. 

 There are also forces of external friction of the tube with the bending machine tools, and internal 
friction in the bent tube materials, as well as elastic strains of the bending machines from bending moments, 
tensile and compressive forces, and others. From tests described in literature (Franz, 1961; Gruner, 1960; 
Grunow, 1985; Korzemski, 1968; 1971; Wick et al., 2001; Yang and Lin, 2004; Zhang et al., 2011; Zhiqiang 
et al., 2011) and the tests performed by the author (Śloderbach, 1999; 2000; 2002) it appears that expressions 
Eqs (4.1)-(4.7) should be modified. Only the longitudinal component (along the tube axis) should be 
modified because values of the circumferential and radial components (along the thickness) result directly 
from a value of the longitudinal component and the condition of plastic incompressibility of the material. 
The longitudinal component expressed in logarithmic (real) measures of strains Eq.(4.7) was modified 
because the results of experimental measurements are defined in such measures and determined on the 
external surfaces of the bent tube (Franz, 1961; Gruner, 1960; Grunow, 1985; Korzemski, 1968; 1971; 
Śloderbach, 1999; 2000; 2002).  

 Modification of expressions Eq.(4.7) consists in an introduction – according to the experimental data 
– of two parameters k and i (technological-material parameters of the tube bending process) for the case N = 
<1>. Thus  
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where gi – local actual thickness of the bent elbow wall,  
di – local actual external diameter of the elbow in the bending zone: di = 2ri, di = dint+ 2gi, 
i – technological-material coefficient of strain distribution in the elongated layers (i = 1) and compressed 
layers (i = 2), defined from experiments, so as (1  1 and 2  0, 1). In most cases of known tests on the 
tube bending process using the method considered in this paper it can be assumed that 2  0.5,  
k – technological-material coefficient dependent on the bent tube material and the applied bending 
technology, determining a bending zone range in the bent zone. This coefficient is defined during 
experiments, theoretically k ; )1  . It seems that in the case of most of metallic materials it is sufficient 

when k ;1 6 .  



A derivation of the generalized model of strains during … 155 

From the tests and calculations it even appears that k ;1 3 , see e.g. (Franz, 1961; Gruner, 1960; 

Grunow, 1985; Korzemski, 1968; 1971; Śloderbach, 1999; 2000; 2002). In the case of more ductile, soft, 
plastic materials bent at elevated temperatures (hot, semi-hot or preheated bending) bent with a greater radius 
R and at a more fitted expanding mandrel (segment, with an adjusted external diameter) with rich lubrication 
of the mandrel and the tube interior, the coefficient k is lower (tends to the unit, k 1). 

Thus, it appears that the coefficient k allows including (indirectly and in part) some effects of friction 
between the mandrel and the bent tube wall. For elbows bent to 180o, the coefficient k expresses a ratio of the 

bending angle 0  to a real value of the bending angle  b i.e., 0

b

k





. When the bent angle (0 = kb = 

180o), for example as in Franz (1961), Korzemski (1971), Śloderbach (1999; 2002), then k =
o

b

180


. If 0  = 

90o, then 2 0  = k b = 180o, when 0  = 60, then 3 0  = k b = 180o, etc. 
 From the known tests of bending using the method of wrapping and the template and mandrel it 
appears that the coefficient k decreases when the mandrel is well chosen, put forward and lubricated, and if 
the applied metals and their alloys are soft and very soft. In such a case, the angular range of the bending 
zone in the bent zone increases. On the contrary, from the tests of bending using the mandrel (Franz, 1961; 
Gruner, 1960; Grunow, 1985; Korzemski, 1968; 1971; Śloderbach, 1999; 2000; 2002) we can draw a 
conclusion that when the force of friction between the mandrel and the internal wall of the bent tube 
increases, and in the case of harder materials, the coefficient k increases, too. In that case, the angular range 
of the bending zone decreases in the bent zone.  

    For the transformed and adapted for analytical calculations strains in external points of every N-th layer 
included in the bent tube wall in elongated and compressed layers the expressions Eq.(4.8) take the form 
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 From the assumptions and derived expressions Eqs (4.1)-(4.9) it appears that the bending angle b is 
the basic parameter determining the advancement of the bending process. 

 
4.2. Derivation of the expression for displacement of the neutral axis  

 
Ad.2. The aim is to derive an extended (for transient zones and for unfree bending) expression determining 
the displacement of the neutral axis of plastic bending. In paper (Tang, 2000) the author derived the 
following approximate expression for the displacement of the neutral axis  
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.  (4.10) 

 
 The extended expression determining the displacement of the neutral axis resulting from Chapter 
ad.1 in this paper (with no derivation), valid for transient zones and not unbounded bending, is as follows 
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where: 0 – correction coefficient of the displacement of the neutral layer, 0  0; 1, r -relative radius of 

bending, 
ext

R
r

d
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r r
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 The coefficient 0 determines characteristic technological-material parameters of the tube bending 
process, such as: kind of mandrel, tube material, shape of the template and the flatter, strip pressure, 
clearances, forces of friction between the bent tube and the bending machine device, rigidity of the bending 
machine, kind of bending (cold, hot, self-hot, with preheating). From Eqs (4.10) and (4.11) it appears that for 

very small bending radii R  0.5dext; 1dext and thinner-walled tubes ( *
ws  0.05), the maximum 

displacement of the neutral axis can be equal to ~25% of a diameter value of the tube which is going to be 
bent. Greater displacements of the neutral axis can be caused by another bending technology because in the 

case of the considered ranges r  and *
ws  tubes are often bent with the use of a force which is opposite to the 

force rotating the template so as to obtain a suitable stress distribution in the cross section. From the 
extended Eq.(4.11) it also appears that the displacement of the neutral axis is influenced not only by the 
bending radius and the tube thickness (thin-walled) (see Franz, 1961; Hill, 1986; Korzemski, 1968; 1971; 
Śloderbach, 1999; 2002; Wick et al., 2001; Yang and Lin, 2004), but by a suitable technology, bending 
parameters and the tube material, as well. From Eq.(4.11) it also appears that there are three additional 
parameters determining the displacement of the neutral axis and its position in the bending zone: the bending 
angle and the angle determining a position of the point in the bending zone, and the coefficient k. Thus, if 
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 see Eq.(4.11).  

 

 
 

Fig.4. Schematic picture of the elbow cross-section  and its characteristic parameters. 
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 Taking some additional calculations into account, in practice it is recommended to limit the 
considered bending method to the radii (R  1.5dext). Pressure tubes which are most often used in pipelines 
for power industry and other tube installations of the devices of power engineering are usually in the range 

(0.00 *
ws  0.125) or (0.00 *s  0.100). 

 The introduced limitations concerning the tube bending parameters cause that, for example, the 

maximum (for instance for R = 1.0dext, 
*
ws  = 0.03 and 0 = 0.5) - relative (related to the external diameter of 

the bent tube) displacement of the neutral axis is y0/dext  10%. However, for some ranges (R and *
ws ) and 

bending technologies and tube materials, relationships Eqs (4.8) or (4.9) which do not include the 
displacement of the neutral axis y0 can be applied for strain description. Thus, they were applied for a precise 
description of fundamental experiments presented by (Franz, 1961). The estimated maximum value y0, can 
be in practice even lower owing to a suitable selection and set-up of tooling of the bending machine, removal 
of clearances, a more plastic material for the bent tube, application of bending at elevated temperatures, 
increase of rigidity of the bending machine and so on. In the compressed layers, effects resulting from not 
unbounded upsetting may be less, they will be more intense along the perimeter of displacement of the bent 
tube material to the sides, upward and along the bent axis; it can cause lower values of the coefficient 0 . 
 
4.3.  Relationships including the displacement of the neutral axis  

 
Ad.3. The derived relationships for the strain state determination which describe the problem including the 
displacement of the neutral axis of plastic bending (according to Figs 2, 3 and 4) and according to items Ad.1 
and Ad.2 by a suitable substitution of expression Eq.(4.11) determining y0 for the modified Eqs (4.8) and 
(4.9) are as follows 
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where: 1- directed angle of circulation of the elongated layers of the bent elbow, so as 
 

  1 0; 90o + 0, 
 

0 – angular range of the displacement of the neutral axis and 
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y y
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b). – for compressed layers  
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where 2 – directed angle of circulation of the compressed layers of the bent elbow, so as 2  0; 90o - 0. 
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 The systems of Eqs (4.12), (4.13) are the searched set of expressions for the description of the strain 
state in the bending process at bending machines (thin-walled metal tubes) with the method of wrapping at 
the rotating template and using the mandrel, or without a mandrel, but when din  const is kept while 
bending. The derived sets of equations include the effect of the displacement of the neutral axis of plastic 
bending on the deformation field. If in the sets Eqs (12) and (13) we substitute (y0 = 0), then the problem 
does not include the influence of the displacement of the neutral axis of plastic bending on the strain 

distribution. When, for example, (R = 1.0dext, 
*
ws  = 0.03 and 0 = 0.5), then (y0max/dext  10%), and then the 

calculated increments of longitudinal and equivalent strains including the effect of the displacement of the 
axis are by ~20% greater as compared with the values obtained for the case which does not include the axis 
displacement y0. It means that for some certain values of the bending radius (R  1.5dext) and for thin-walled 

tubes when ( *
ws  0.03), displacements of the neutral axis should not be neglected in the analytic description 

of the strain state. The estimated maximum value of y0 /dext can be lower when, for example, (R 1.5dext) 

and (0.03  
*
ws  0.125), then (y0max/dext  6% and less). This is an additional reason why the relationship 

Eq.(2.8) can be used for the analysis and description of experimental results included in a fundamental paper 
(Franz, 1961), not including displacement of the neutral axis. Relationships Eq.(2.8) used in Śloderbach 
(1999; 2000) do not include the displacement of the neutral axis y0, because the bent tube tested in (Franz, 

1961) was thick-walled where *
ws   0.127, then ( *s  0.1), and it was bent at the radius R  1.73  dext (so R  

1.5  dext). Then for 0 = 0.5, y0max  2.43 mm and y0max/dext  5.5%. 
 Expressions (4.12) – (4.13) can be written in a more compact form as 
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 According to the assumptions that the derived expressions for strain components in tube bending 
processes are identified with plastic strains (it appears that in the angular measure elastic strains are related to 
the main bending angle equal to some degrees (Franz, 1961; Korzemski 1971; Śloderbach, 1999; 2000; 
2002), we obtain 
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 (4.15) 

 
5. Initial and boundary conditions for the generalized model of strains  
 
 Expressions (4.12)- (4.14) satisfy the following boundary and initial conditions for the tube bending 
process  

a) when b 0
2


    - beginning of the bending process (no bending), 

b) when b 0
2


    - beginning and end of the bending zone, 
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c)  when ( o
1 090     and 2 = 90o - 0) – position of the layer of zero elongations (the neutral axis of 

plastic bending) defined by the radius R0 in the bent zone. Then  
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d) when   o
1 2k 0    - tip points of the bending zone, and    o o;bk 0 180  , 
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e) when:    o oand1 2 bk 0 k 180        , 

then Ri, and (ri, gi) reach their extreme values, maximum and minimum (in elongated layers) or minimum 
and maximum (in compressed layers), respectively. It is a condition of initiation of the maximum strains at 
that point, and formation of the plateau zone, see (Franz, 1961; Korzemski 1971; Śloderbach, 1999; 2000; 
2002) 
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 In this case, the main components of logarithmic and relative strains and their intensities also reach 
the extreme values which differ in the zones of elongated layers and compressed layers, respectively.  
f)  when di= dint = dext (internal surface of the bent tube), then – according to expressions Eqs (4.12) -(4.14)- 

it appears that .2 20 0      

Note: The derived expressions (12)1 - (14)1 i 2, have a physical sense when the conditions for R  y0 or for R  
y0max, are satisfied, and in practice they are always satisfied.   
 
6.  Exemplary calculations  

 
 This chapter presents exemplary calculations of variation of longitudinal strains and wall thickness, 

including the displacement of the neutral axis of plastic bending related to the external diameter of the bent 
tube from the range from 0% to the maximum value 25%. Simulation calculations were performed for a 

metallic (steel) tube of dimensions (44.54.5 mm and *
ws   0.127) in the main bending plane in elongated 

layers ( = 1 = 0o), for the bending angle (0 = kb =180o). For calculations, the following values of the 
technological-material coefficients were assumed: k  3 and 1  1 and the bending radius R  77 mm (R  
1.73dext). The data for calculations were taken from (Franz, 1961). The calculations were performed using 
expressions Eq.(4.14) and the condition of plastic incompressibility of the bent tube material. The calculation 
results are presented in Figs 5 and 6. 
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Fig.5.  Exemplary calculations of longitudinal deformations, depending on the neutral axis displacement y0, 
where (dz  dext.). 

 

 

 

Fig.6.  Exemplary calculations of the wall thickes distribution as depending on the neutral axis displacement 
y0, where (dz  dext.). 
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7.  Conclusions 
 
1.  The paper contains a derivation of the generalized relationships for logarithmic and relative measures of 

strains: longitudinal (along the tube axis), circumferential and along the thickness (radial) during bending 
thin- and thick-walled metallic tubes at bending machines. Generalization of strain description as 
compared to the previous papers by the author (Śloderbach, 1999; Śloderbach and Rechul, 2000) consists 
in including the displacement of the neutral axis. The strains can be defined in the main bending plane 
and each parallel or perpendicular plane, i.e., in all points of the bending zone. The derived relationships 
describing the measures of logarithmic and relative strains depend on the bending radius R, geometrical 
dimensions of the tube, the bending angle b, angular coordinates  and , which describe the bending 
zone in the range of the bending angle k b  < 0

o; 180o>, displacement of the neutral axis y0 and two 
technological-material coefficients k and i . The results of exemplary calculations of longitudinal strains 

and wall thickness distribution for the elongated layers performed for the bending angle (0 = kb = 180o) 
including the displacement of the neutral axis related to the external diameter from the range from 0% to 
the maximum value 25%, were shown in the form of curves. The calculations included a value of the 
coefficient of the bending zone range (k = 3) and the coefficient of strain distribution in the elongated 
layers ( 1  = 1). From the graphs it appears that there is a certain proportionality between the values of the 
displacement of the neutral axis expressed in (%), and relative increment of the longitudinal strain and 
relative reduction of the elbow wall thickness.  

2.  In future tests an explicit (analytic) form of k depending on the coefficient of friction and suitable 
technological- material parameters of bending can be searched. When the coefficient of friction between 
the mandrel and the internal wall of the bent tube tends to infinity, the coefficient k tends to infinity, too. 
It means no bending because the angular range of the bending zone tends to zero ( b0o). Then, also the 
angle of bend zone tends to zero ( 0 0o).  

3.  While considering on the problems including the displacement of the neutral axis of plastic bending some 
simplifications can be introduced, for example neglecting y0 in the first or second term in the numerator in 
expressions (4.12)1 and (4.13)1 or the numerators or denominators of expressions (4.12)1 and (4.13)1 in 
order to obtain the best conformity of the calculated quantities with the experimental data or those taken 
from literature. Such simplifications should be dependent on bending parameters occurring in Eqs (4.10) 
and (4.11). 

4.  The paper (Śloderbach, 1999) presents the results of the analytical and numerical calculations based on 
the derived relationships Eqs (4.12)-(4.14). The results of calculations coincide with the experimental 

data from (Franz, 1961) for the tube of dimensions (44.54.5 mm and *
ws   0.127), the bending radius R 

 77 mm (R  1.73dext). The calculation results have been shown in the form of appropriate graphs. 
 
Nomenclature 
 

 di  – local actual external diameter of the elbow in the bending zone 

 dext and dint  – external and internal diameter of a bent tube 

    
extlint ,k kd d   – internal and external diameter of the k-th layer, respectively 

 dext and dint  – external and internal diameter of the tube for bending, respectively 
 g0  – initial thickness of a bent tube 
 gi  – actual thickness of a bend within the bending zone (i = 1 for elongated layers, i = 2 for compressed 

layers) 

  k
0g   – thickness of the k-th layer measured from dint 

      , ,
1 k n

i0l0 l0g g g   – thickness of the 1-st, k-th and n-th (last) layer 

 k  – technological-material coefficient dependent on the bent tube material and the applied bending 
technology, determining a bending zone range in the bent zone 
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 R  – bending radius 
 R0  – radius of the neutral surface following bending 
 Ri  – larger actual radius of a bend associated with longitudinal strain 
 rext and rint  – external and internal radius of a bent pipe 
 rm  – mean radius of the bent tube 
 r   – relative radius of bending 

 
*s  and *

ws   – wall thickness indexes for a pipe, where *s  = g0 / dext and *
int/w 0s g d  

 y0  – displacement of the neutral surface with respect to the initial position 
    – actual angle of the bending zone determined at the principal bending plane and at planes parallel to 

it, o; b0
2


  

where b – bending angle measured over the bending zone,  b  0o; 180o, 

0 - bend angle (the angle by which a template or a farmer is rotated); in theory for spirals 0   0o; ) but for the 

method under analysis 0   0o, 180o. Obviously, within the bending zone the two angles are equal  0 b   . When 

the plateau zone was formed, then ( 0 b   + pl ), where pl  – angle of a plateau zone (Śloderbach, 2002). 

  – actual angle determined at the planes perpendicular to the bending plane, that o o,0 90  

2  – directed angle of circulation of the compressed layers of the bent elbow 

0  – angular range of the displacement of the neutral axis 

1, 2, 3 – relative components of plastic deformations 
1, 2, 3 – logarithmic (true) components of plastic deformations 
i – technological-material coefficient of strain distribution in the elongated layers (i = 1) and compressed layers (i = 2) 
0 – correction coefficient of the displacement of the neutral layer, 0  0; 1 
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