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A theoretical solution of thermal radiation effects on an unsteady flow past a parabolic starting motion of an 
infinite isothermal vertical plate with uniform mass diffusion has been studied. The plate temperature as well as 
the concentration level near the plate are raised uniformly. The dimensionless governing equations are solved 
using the Laplace-transform technique. The fluid considered here is a gray, absorbing-emitting radiation but a 
non-scattering medium. The effects of velocity profiles are studied for different physical parameters such as the 
thermal radiation parameter, thermal Grashof number, mass Grashof number and Schmidt number. It is observed 
that the velocity increases with increasing values the thermal Grashof number or mass Grashof number. The trend 
is just reversed with respect to the thermal radiation parameter. 
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1. Introduction 
 
 Radiative heat and mass transfer play an important role in manufacturing industries. They are of 
importance in the design of fins, steel rolling, nuclear power plants, gas turbines and various propulsion 
device for aircraft, combustion and furnace design, materials processing, energy utilization, temperature 
measurements, remote sensing for astronomy and space exploration, food processing and cryogenic 
engineering, as well as in numerous agricultural, health and military applications. If the temperature of the 
surrounding fluid is rather high, radiation effects play an important role and this situation does exist in space 
technology. In such cases, one has to take into account the combined effect of thermal radiation and mass 
diffusion. 
 Natural convection of a flow past an linearly accelerated vertical plate in the presence of viscous 
dissipative heat using perturbation method by was studied Gupta et al. (1979). Kafousias and Raptis (1981) 
extended this problem to include mass transfer effects subjected to variable suction or injection. 
Soundalgekar (1982) studied the mass transfer effects on flow past a uniformly accelerated vertical plate. 
Mass transfer effects on flow past an accelerated vertical plate with uniform heat flux were analyzed by 
Singh and Singh (1983). Free convection effects on flow past an exponentially accelerated vertical plate 
were studied by Singh and Naveen Kumar (1984). The skin friction for an accelerated vertical plate was 

                                                 
* To whom correspondence should be addressed 



196  R.Muthucumaraswamy and V.Lakshmi 

studied analytically by Hossain and Shayo (1986). Mass transfer effects on an exponentially accelerated 
infinite vertical plate with constant heat flux and uniform mass diffusion were studied by Jha et al. (1991). 
Agrawal et al. (1998) studied free convection due to thermal and mass diffusion in laminar flow of an 
accelerated infinite vertical plate in the presence of the magnetic filed. Agrawal et al. (1999) further extended 
the problem of unsteady free convective flow and mass diffusion of an electrically conducting elasto-viscous 
fluid past a parabolic starting motion of an infinite vertical plate with a transverse magnetic plate. The 
governing equations are tackled using the Laplace transform technique. 
 It is proposed to study a flow past an infinite isothermal vertical plate subjected to parabolic motion 
with uniform mass diffusion in the presence of thermal radiation. The dimensionless governing equations are 
solved using the Laplace-transform technique. The solutions are in terms of an exponential and 
complementary error function. 
 
2. Mathematical analysis  
 
 An unsteady flow of a viscous incompressible fluid past an infinite isothermal vertical plate with 
uniform diffusion, in the presence of thermal radiation is considered. The fluid considered here is a gray, 
absorbing-emitting radiation but a non-scattering medium. The x -axis is taken along the plate in the 
vertically upward direction and the y -axis is taken normal to the plate. At time t 0  , the plate and fluid are 
at the same temperature T  and concentration C . At time t 0  , the plate is started with a velocity 

2
0u u t   in its own plane against the gravitational field and the temperature from the plate is raised to wT  

and the concentration level near the plate are also raised to wC . The plate is infinite, then all the terms in the 

governing equations will be independent of x  and there is no flow along the y-direction. Then under the 
usual Boussinesq’s approximation the unsteady starting motion is governed by the following equations 
 

     * ,
2

2

u u
g T T g C C

t y
 

         
 

                                           (2.1) 

 

  ,
2

r
p 2

qT T
C = k

t yy

 
 

 
                                                                                (2.2) 

 

  ,
2

2

C C
D

t y

  


 
                                                                                          (2.3) 

 
with the following initial and boundary conditions 
 
  ,u 0           , TT             CC       for all        , ,y t 0   

  :t 0   ,2
0u u t          ,wT T        wCC        at      ,y 0                               (2.4) 

  u 0        T T ,            CC     as               .y    
 
 The local radiant for the case of an optically thin gray gas is expressed by 
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                                                           (2.5) 



Radiative flow past a parabolic started isothermal …  197 

 It is assumed that the temperature differences within the flow are sufficiently small such that 4T  

may be expressed as a linear function of the temperature. This is accomplished by expanding 4T  in a Taylor 
series about T  and neglecting higher-order terms, thus  
 

  .4 3 4T 4T T 3T                                                                                  (2.6) 
 
 By using Eqs (2.5) and (2.6), Eq.(2.2) reduces to  
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 On introducing the following non-dimensional quantities 
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in Eqs (2.1), (2.3) and (2.7), we get 
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 The initial and boundary conditions in non-dimensional quantities are 
 
  U 0 ,      0  ,      C 0               for all      , ,Y t 0  
 

  : 2t 0 U t  ,     1   ,       C 1       at          ,Y 0                                                 (2.12) 
 
  U 0 ,    0 ,      C 0             as        .Y   
 
 The dimensionless governing Eqs (2.6) to (2.8) and the corresponding initial and boundary 
conditions (2.9) are tackled using the Laplace transform technique 
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   erfc Sc ,C                                                                (2.14) 
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3. Results and discussion 
 
 For physical understanding of the problem numerical computations are carried out for different 
physical parameters Gr, Gc, Sc and t. The value of the Schmidt number Sc is taken to be 0.6 which 
corresponds to water-vapor. Also, the values of the Prandtl number Pr are chosen such that they represent air 
(Pr = 0.71). The numerical values of the velocity are computed for different physical parameters like the 
Prandtl number, thermal Grashof number, mass Grashof number, Schmidt number and time. 
 Figure 1 presents concentration profiles for different values of the Schmidt number 

 Sc . ,= 0 16 0.6,2.01  and time t = 0.4 . The effect of concentration is important in the concentration field. 

The profiles have the common feature that the concentration decreases in a monotone fashion from the 
surface to a zero value far away in the free stream. It is observed that the wall concentration increases with 
decreasing values of the Schmidt number. 
 The temperature profiles are calculated for different values of the thermal radiation parameter 

 R = 0.2,2,5  and are shown in Fig.2 for air  Pr = 0.71 . The effect of the thermal radiation parameter is 

important in temperature profiles. It is observed that the temperature increases with decreasing the radiation 
parameter.  
 The effect of velocity for different values of the radiation parameter   , Gr GcR = 2,5,10 = 5 =  and 

t = 0.4  is shown in Fig.3. The trend shows that the velocity increases with decreasing the radiation 
parameter. It is observed that the velocity decreases in the presence of high thermal radiation. 
 Figure 4 demonstrates the effects of different thermal Grashof number (Gr = 2,5) and mass Grashof 
number (Gc = 5,10) on the velocity at t = 0.4. It is observed that the velocity increases with increasing values 
of the thermal Grashof number or mass Grashof number.  
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Fig.1. Concentration profiles for different values of Sc. 
 

 
 

Fig.2. Temperature profiles for different values of R. 
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Fig.3. Velocity profiles for different values of R. 
 

 
 

Fig.4. Velocity profiles for different values of Gr and Gc. 
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4. Conclusion 
 
 The theoretical solution of flow past a parabolic starting motion of an infinite vertical plate in the 
presence of variable temperature and uniform mass diffusion has been studied. The dimensionless governing 
equations are solved by the usual Laplace transform technique. The effects of different physical parameters 
such as the thermal radiation parameter, thermal Grashof number and mass Grashof number are studied 
graphically. The conclusions of the study are as follows: 
 
(i) The velocity increases with increasing the thermal Grashof number or mass Grashof number, but the 

trend is just reversed with respect to the thermal radiation parameter. 
(ii) The temperature of the plate increases with decreasing values of the thermal radiation parameter. 
(iii) The plate concentration increases with decreasing values of the Schmidt number.  
 
Nomenclature 
 
 A   – constants 
 C   – dimensionless concentration 

 C   – species concentration in the fluid 3kg m  

 pC   – specific heat at constant pressure 1J kg k   

 D   – mass diffusion coefficient 2 1m s  
 erfc   – complementary error function 
 Gc   – mass Grashof number 
 Gr   – thermal Grashof number 

 g   – acceleration due to gravity 2m s  

 k   – thermal conductivity 1 1W m K    
 Pr   – Prandtl number 
 Sc   – Schmidt number 
 T   – temperature of the fluid near the plate K   
 t   – time s 

 u   – velocity of the fluid in the x -direction 1m s  
 u   – dimensionless velocity  

 0u   – velocity of the plate 1m s  

 Y   – dimensionless coordinate axis normal to the plate 
 y   – coordinate axis normal to the plate m  

    – volumetric coefficient of thermal expansion 1K  

    – volumetric coefficient of expansion with concentration 1K  
    – similarity parameter 
    – dimensionless temperature 
    – coefficient of viscosity Ra s  

    – kinematic viscosity 2 1m s  

    – density of the fluid 3kg m  

    – dimensionless skin-friction 1 2kg m s   

 
Subscripts 
 
 w   – conditions at the wall 
    – free stream conditions 
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