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A fluid flow and heat transfer analysis of an electrically conducting non-Newtonian power law fluid flowing 
over a non-linear stretching surface in the presence of a transverse magnetic field taking into consideration 
viscous dissipation effects is investigated. The stretching velocity, the temperature and the transverse magnetic 
field are assumed to vary in a power-law with the distance from the origin. The flow is induced due to an infinite 
elastic sheet which is stretched in its own plane. The governing equations are reduced to non-linear ordinary 
differential equations by means of similarity transformations. By using quasi-linearization techniques first 
linearize the non linear momentum equation is linearized and then the coupled ordinary differential equations are 
solved numerically by an implicit finite difference scheme. The numerical solution is found to be dependent on 
several governing parameters, including the magnetic field parameter, power-law index, Eckert number, velocity 
exponent parameter, temperature exponent parameter, modified Prandtl number and heat source/sink parameter. 
A systematic study is carried out to illustrate the effects of these parameters on the fluid velocity and the 
temperature distribution in the boundary layer. The results for the local skin-friction coefficient and the local 
Nusselt number are tabulated and discussed. 
 
Key words: magneto-hydrodynamic flow, power-law fluid, stretching sheet, heat source/sink parameter, viscous 

dissipation.  

 
1. Introduction  
 
 A number of industrially important fluids such as molten plastic, polymers, and pulp foods exhibit 
non-Newtonian fluid behavior. A non-Newtonian fluid is a fluid in which the viscosity changes with the 
applied strain rate. As a result, non-Newtonian fluids may not have well defined viscosity. In modern 
technology and in industrial applications, non-Newtonian fluids play an important role. Many modern 
materials and manufacturing processes involve non-Newtonian fluids. Examples of non-Newtonian behavior 
can be found in processes for manufacturing coated sheets, optical fibers, foods, drilling mud’s and plastics 
polymer. For a non-Newtonian fluid, the viscous stress is a nonlinear function of the rate of deformation, and 
the relationship for the power-law fluid is given by 
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where xy  is the shear stress,   is the consistency index and n is the power-law index. When n <1, the fluid 

is described as pseudo-plastic, n >1 dilatant and when n =1, it is a Newtonian fluid. Several studies in the 
literature suggest the range 0<n≤2 for the power-law index n. Schowalter (1960) was the first one, who 
formulated the boundary layer flow of a non-Newtonian fluid and established the conditions for the existence 
of a similarity solution. Acrivous et al. (1960) considered the problem of natural convection heat transfer to 
power-law fluids for different geometric configurations. Zheng et al. (2000) investigated the flow in power-
law fluid over a flat plate moving at constant speed in the direction and opposite to the direction of the main 
stream. The flow of an incompressible viscous fluid and heat transfer phenomena over a stretching sheet 
have received great attention during the last decades owing to the abundance of practical applications in 
chemical and manufacturing processes, such as polymer extrusion, drawing of copper wires, continuous 
casting of metals, wire drawing and glass blowing. Since the pioneering work of Sakiadis (1961), various 
aspects of the problem have been investigated by many authors. The various aspects of the stretching sheet 
problem involving Newtonian/non-Newtonian fluids have been extensively studied by Crane (1970), Gupta 
and Gupta (1977), Jadhav and Waghmode (1990), Rajagopal et al. (1983), Chen (2003). These research 
works do not however consider the situation where hydro-magnetic effects arise. The study of hydrodynamic 
flow and heat transfer over a stretching sheet may find its applications in polymer technology related to the 
stretching of plastic sheets. Also, many metallurgical processes involve the cooling of continuous strips or 
filaments by drawing them through a quiescent fluid and while drawing these strips are sometimes stretched. 
The rate of cooling can be controlled by drawing such strips in an electrically conducting fluid subjected to a 
magnetic field in order to get the final products of desired characteristics; as such a process greatly depends 
on the rate of cooling. In view of this, the study of an MHD flow of Newtonian/non-Newtonian flow over a 
stretching sheet was carried out by many researchers (Sarpakaya, 1961; Andersson et al., 1992, Char, 1994; 
Cortell, 2005). 
 The problem in particular has applications in polymer industry in which most of the fluids used are 
known not to obey the usual linear relationship between stresses and the rate of strain, which is assumed for 
Newtonian fluids.  
 For the non-Newtonian power-law fluids, the hydro-magnetic problem of the MHD boundary layer 
flow over a continuously moving surface over a stretching sheet has been dealt with by several authors, e.g., 
Mahmoud and Mahmoud (2006). The effect of the magnetic field is found to decrease the velocity 
distribution and thus to increase the skin-friction coefficient. However, relatively less attention has been paid 
to the accompanying heat transfer problem of power-law fluids past a stretching surface in the presence of a 
magnetic field. The MHD free-convection flow of a non-Newtonian power-law fluid at a stretching surface 
with a uniform fee-stream was studied by Emad et al. (2005). 
 All the above mentioned investigators confined their analyses to on MHD flow and heat transfer over 
a linear stretching sheet. However, the intricate flow and heat transfer problem over a non-linearly stretching 
sheet with the effects of internal heat generation/absorption is yet to be studied. This has applications to 
several industrial problems such as engineering processes involving nuclear power plants, gas turbines and 
many others and has been studied by Chaim (1995), Ishak et al. (2006), Anjali Devi and Thiyagarajan 
(2006). The main concern of the present paper is to study the effect of variable thermal conductivity on the 
power-law fluid flow and heat transfer over a non-linearly stretching sheet in the presence of a transverse 
magnetic field by taking into account viscous dissipation effects. Because of the intricacy, the influence of 
the power-law index parameter, magnetic parameter, non-linear velocity and temperature exponent and heat 
source/sink parameter make the momentum and energy equations coupled and highly non-linear partial 
differential equations. To reduce the number of independent variables, these partial differential equations are 
simplified to couple non-linear ordinary differential equations by suitable similarity transformations. The 
non-linear differential equations are linearized by using Quasi-linearization technique. These equations are in 
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turn solved numerically by an implicit finite-difference scheme along with the Gauss Seidal method with the 
help of C-programming.  
 
2. Mathematical formulation  
 
 Consider a steady laminar two-dimensional boundary layer flow of a viscous incompressible and 
electrically conducting fluid obeying the power-law model in the presence of a transverse magnetic field B0. 
The flow is generated as a consequence of non-linear stretching of the boundary sheet, caused by a 
simultaneous application of two equal and opposite forces along the x-axis, while keeping the origin fixed in 
the fluid of the ambient temperature T . The momentum and energy equations for a fluid with variable 
thermal conductivities and variable viscosities in the presence of an eternal source/sink, viscous dissipation 
are studied. The positive x-coordinate is measured along the direction of the motion, with the slot at the 
origin, and the positive y-coordinate is measured normal to the surface of the sheet and is positive from the 
sheet to the fluid. The continuous stretching sheet is assumed to have a non-linear velocity and prescribed 

temperature of the form ( ) mU x bx  and ( ) r
wT x T Ax  , respectively, where b is the stretching 

constant, x is the distance from the slot; A is a constant whose value depends upon the properties of the fluid. 
Here, m and r are the velocity and temperature exponents, respectively. It is also assumed that the magnetic 
Reynolds number Rem is very small; i.e., R e m 0 bl 1     where 0  the magnetic permeability and   
is the electric conductivity. We neglect the induced magnetic field, which is small in comparison with the 
applied magnetic field. Further, the external electrical field is assumed to be zero and the electric field due to 
polarization of charges is also negligible. Under these assumptions, the basic equations governing the flow 
and heat transfer in usual notation are 
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where u  and v  are the flow velocity components along the x and y –axes, respectively, v  is the kinematic 
viscosity of the fluid, n  is the power-law index,  is the fluid density and pc  is the specific heat at constant 

pressure. The first term in the right hand side of Eq.(2.2) is the shear rate 
u

y

 
  

. It has been assumed to be 

negative throughout the boundary layer since the stream wise velocity component u  decreases 
monotonically with the distance y  from the moving surface (for continuous stretching surface). A rigorous 
derivation and subsequent analysis of the boundary layer equations, for power-law fluids, were recently 
provided by Denier and Dąbrowski (2004). They focused on a boundary layer flow driven by a free stream 

( ) mU x x i.e., of Falkner-Skan type. Such boundary layer flows are driven by a stream wise pressure 

gradient 
dp du

dx dx
    set up by the external free stream outside the viscous boundary layer. In the present 

context no driving pressure gradient is present. Instead the flow is driven solely by the stretching surface, 
which moves with a prescribed velocity. T is the temperature of the fluid and ( )U x . T is the temperature of 
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the fluid and   is the thermal diffusivity of the fluid. The last term containing sQ  in Eq.(2.3) represents the 

temperature-dependent volumetric rate of the heat source when sQ 0  and heat sink when sQ 0 . These 
deal with the situation of exothermic and endothermic chemical reactions respectively. Thus the relevant 
boundary conditions applicable to the flow are 
 
  ( , ) ( ),u x 0 U x                                             (2.4) 
 
  ( , ) ,v x 0 0                                                   (2.5)  
 
  ( , ) ( ),wT x 0 T x                                           (2.6) 
 
  ( , ) , ( , ) , as  .u x y 0 T x y T y                    (2.7) 
 
 Here, boundary condition (2.7) means that the stream wise velocity and the temperature vanish 
outside the boundary layer. Equation (2.6) is the variable prescribed surface temperature at the wall, whereas 
Eq.(2.5) signifies the importance of impermeability of the stretching surface and Eq.(2.4) assures no slip at 
the surface. In order to obtain the similarity solutions of Eqs (2.1)-(2.7), we assume that the variable 

magnetic field ( )0B x  is of the form 
 

( )
m 1

2
0 0B x B x


 . This form of ( )0B x has also been considered in the 

studies of MHD flow problems past moving or fixed flat plate. The momentum and energy equations can be 
transformed to the corresponding ordinary differential equations by the following transformation 
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where   is the similarity variable, ( , )x y  is the stream function f and θ are the dimensionless similarity 
function and temperature, respectively. The velocity u components and v are given by 
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                                                                      (2.9) 

 
 The local Reynolds number is defined by 
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 The mass conservation Eq.(2.1) is automatically satisfied by Eq.(2.9). By assuming the similarity 
function  f   to depend on the similarity variable  , the momentum Eq.(2.2) and the heat Eq.(2.3) 

transform into the coupled non-linear ordinary differential equations of the form 
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 The boundary conditions Eqs (2.4)-(2.7) now become  
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   is the local Eckert number. Here, primes and the subscript η denote 

differentiation with respect to η. Equations (2.11) and (2.12) are solved numerically subject to the boundary 
conditions Eq.(2.13). It should be noted that the velocity  U U x  is used to define the dimensionless 

stream function in Eq.(2.11). The local Reynolds number in Eq.(2.10) describes the velocity of the moving 
surface that drives the flow. This choice contrasts with the conventional boundary layer analysis, in which 
the free stream velocity is taken as the velocity scale. Although the transformation defined in Eqs (2.8) and 
(2.10) can be used for arbitrary variation of the transformation results in a true similarity problem only if U 

varies as mbx . Such surface velocity variations are therefore required for the ordinary differential Eq.(2.11) 
to be valid. The physical quantities of interest are the skin-friction coefficient fC  and the local Nusselt 

number Nu x , which are defined as 
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respectively, where the wall shear stress w  and heat transfer from the sheet wq are given by 
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with 0  and k being the dynamic viscosity and thermal conductivity, respectively. Using the non-
dimensional variables (2.7), we obtain 
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where xy  is the shear stress and R e x  is the local Reynolds number. 
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3. Numerical procedure 
 
 The system of transformed governing non-linear coupled differential Eqs (2.11) and (2.12) with the 
boundary conditions (2.13) is solved numerically using the finite-difference scheme. This method is 
unconditionally stable and has second-order accuracy with arbitrary spacing. The transformed non-linear 
differential equations are first linearized by Quasi-Linearization technique discussed by Bellman and Kalaba 
(1965). For the sake of brevity, the details of the numerical solution procedure are not presented here. It is 
worth mentioning that a uniform grid is satisfactory in obtaining sufficient accuracy with an error tolerance 
less than 10-5. 
 
4. Results and discussions 
 
 The computations have been carried out for various values of the magnetic field parameter M, 
power-law index n, Eckert number Ec, velocity exponent parameter m, temperature exponent parameter r, 
modified Prandtl number Pr and heat source/sink parameter S. Numerical computations of the problem are 
performed by the implicit finite difference scheme along with the  Gauss-Seidal iteration method with the 
help of C-programming. 
 Figures 1a-1c represent the horizontal velocity profile ƒ' with η for different values of the velocity 
exponent parameter m for a) pseudo plastic fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids 
(n=1.6). From the geometrical representation we observe that the effect of increasing values of the velocity 
exponent parameter m is to reduce the momentum boundary layer thickness, which tends to zero as the space 
variable η increases from the boundary surface. Physically, m<0 implies that the surface is decelerated from 
the slot, m=0 implies the continuous momentum of a flat surface and m>0 implies that the surface is 
accelerated from the extended slit. The velocity profile ƒ' decreases with the increase of the stretching sheet 
parameter m. 
 

 
 
Fig.1.  Velocity profiles for different values of m for M=0, Pr=1, r=0, S=0, Ec=0 a) pseudo plastic fluids 

(n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
 
 Figures 2a-2c demonstrate the dimensionless velocity profile ƒ' for the different values of the 
magnetic field parameter M for a) pseudo plastic fluids (n<1) b) Newtonian fluids (n=1) c) dilatent fluids 
(n>1) respectively. The effect of the magnetic field parameter results in flattering of velocity profile ƒ' in all 
the cases. The graphs of temperature profiles θ for a) pseudo plastic fluids (n<1) b) Newtonian fluids (n=1) 
c) dilatent fluids (n>1) for different values of the stretching sheet parameter m in the presence/absence of a 
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magnetic field parameter M is shown in Figs 3 and 4, respectively. The effect of increasing values of the 
stretching sheet parameter m is to decrease temperature profiles θ. However, the effect of the stretching sheet 
parameter m is larger in the presence of the magnetic field parameter when compared with the effect in the 
absence of the magnetic field parameter. 
 

 
 
Fig.2.  Velocity profiles for different values of M for m=0.1, Pr=1, r=0, S=0, Ec=0 a) pseudo plastic fluids 

(n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
 

 
 
Fig.3.  Temperature profiles for different values of m for M=0, Pr=1, r=0, S=0, Ec=0 a) pseudo plastic 

fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
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Fig.4.  Temperature profiles for different values of m for M=1, Pr=1, r=0, S=0, Ec=0 a) pseudo plastic 

fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
 
 Figures 5 and 6 illustrate the dimensionless temperature profiles for different values of m for the 
temperature exponent parameter r=0.1 and -0.1, respectively. It follows from these figures that the effect of 
the stretching sheet parameter m leads to a decrease in the temperature profiles. It can be seen that the effect 
is smaller when r=0.1 in comparison to its effect when r=-0.1. Figures 7a-c illustrate the dimensionless 
temperature for different values of the modified Prandtl number Pr for a) pseudo plastic fluids (n<1) b) 
Newtonian fluids (n=1) c) dilatent fluids (n>1). The temperature of the fluid decreases with the increase of 
the Prandtl number Pr. The effect is larger in pseudo plastic fluids in comparison to its effect in dilatent 
fluids. This is because of the fact that the boundary layer thickness decreases with an increase in the Prandtl 
number. 
 

 
 
Fig.5.  Temperature profiles for different values of m for M=1, Pr=1, r=0.1, S=0, Ec=0 a) pseudo plastic 

fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
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Fig.6.  Temperature profiles for different values of m for M=1, Pr=1, r = -0.1, S=0, Ec=0 a) pseudo plastic 

fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
 

 
 
Fig.7.  Temperature profiles for different values of Pr for M=1, m=0.1, r=0.1, S=0, Ec=0 a) pseudo plastic 

fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
 
 Figures 8a-c represent the dimensionless temperature profiles for different values of the Eckert 
number Ec for a) pseudo plastic fluids (n<1) b) Newtonian fluids (n=1) c) dilatent fluids (n>1), respectively. 
It is observed that the dimensionless temperature profile θ increases with an increase of the Eckert number 
Ec. The effect of viscous dissipation is greater in pseudo plastic fluids in comparison with other fluids. In 
Figures 9a-c the temperature profiles θ are plotted for different values of the heat source/sink parameter S for 
a) pseudo plastic fluids (n>1) b) Newtonian fluids (n=1) c) dilatent fluids (n>1), respectively. From these 
figures we see that the temperature distribution is lower throughout the boundary layer for negative values of 
heat sink and higher for positive values of S heat source as compared with the temperature profiles in the 
absence of the heat source/sink parameter i.e., S=0. 
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Fig.8.  Temperature profiles for different values of Ec for M=0, m=0.1, r=0.1, S=0, Pr=1 a) pseudo plastic 
fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 

 

 
 
Fig.9.  Temperature profiles for different values of S for M=1, m=0.1, r=0.1, Pr=1, Ec=0 a) pseudo plastic 

fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
 
 Figures 10a-c reveal the influence of the temperature exponent parameter r for the fluid a) pseudo 
plastic fluids (n<1) b) Newtonian fluids (n=1) c) dilatent fluids (n>1), respectively. The effect of increasing 
values of the temperature exponent parameter r is to decrease the temperature profiles as noticed from the 
figures. The effects of the power law index n on dimensionless velocity profiles ƒ  and temperature profiles 
θ are plotted in Figs 11a and b, respectively. It can be seen from the figures that with an increase of the 
power law index n the values of the velocity profiles ƒ' increase. The dimensionless temperature profiles 
decrease with an increase of the power law index n as noticed from Fig.11b. 
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Fig.10. Temperature profiles for different values of r for M=1, m=0.1, S=0, Pr=1, Ec=0 a) pseudo plastic 

fluids (n=0.8) b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 
 

 
 

Fig.11a. Velocity profiles for different values of n for m=0.1, M=0, Pr=1, r=0, S=0, Ec=0. 
 

 
 

Fig.11b. Temperature profiles for different values of n for M=0.1, m=0.1, S=0, Pr=5, Ec=0, r=1. 
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Table1. Comparison of some of the values of the skin friction coefficient for m=1 for different values of n 

and M. 
 

 
 
 
 
 
 

 The values of the local skin friction coefficient   ƒ 0  are shown in Tab.1 for different values of 

the power-law index n and magnetic field parameter M. It is observed that with an increase in the magnetic 

field parameter M   ƒ 0 values increase. The effect of the power-law index n for fixed values of the 

magnetic parameter reduces   ƒ .0  

 
Table 2. Numerical values of the Nusslet number for different values of physical parameters. 
 
r=-1 r=0 r=1 

S Pr M m/r n=0.8 n=1 n=1.6 n=0.8 n=1 n=1.6 n=0.8 n=1 n=1.6 

   -0.3 0.36912 0.45484 0.41274 -0.31214 -0.27212 -0.27753 -0.77311 -0.75516 -0.75403 

   0 0.28616 0.32606 0.28208 -0.34956 -0.32934 -0.34124 -0.79451 -0.78701 -0.79141 

0 1 1 0.5 0.16291 0.14254 0.08196 -0.40972 -0.42086 -0.44921 -0.82981 -0.84105 -0.85801 

   1 0.05589 -0.0081 -0.06401 -0.46671 -0.50546 -0.53794 -0.86479 -0.89441 -0.91731 

m Pr M S n=0.8 n=1 n=1.6 n=0.8 n=1 n=1.6 n=0.8 n=1 n=1.6 

   -0.1 0.14331 -0.00841 -0.10994 -0.50891 -0.57006 -0.61511 -0.95031 -0.98301 -1.00646 

1 1 0 0 -0.04069 -0.15634 -0.23651 -0.60546 -0.65959 -0.69924 -1.01380 -1.04544 -1.06801 

   0.1 -0.18012 -0.27481 -0.34241 -0.68778 -0.73702 -0.77330 -1.07135 -1.10206 -1.12404 

 
 The numerical values of the Nusslet number for different values of physical parameters are shown in 
Tab.2. It is observed from the table that the effect of increasing values of the power-law index n is to 
decrease the wall temperature gradient whereas a reverse trend is seen for the magnetic field parameter M 
when S=0. The increasing values of the temperature exponent parameter r and velocity exponent parameter 

m reduce the values of    .0   This result has significance in industrial applications to reduce expenditure 

on power supply. The effects of the Prandtl number and heat source/sink decrease the wall temperature 
gradient. 
 
5. Conclusions 
 
 In summary, the present study describes the power law fluid flow and heat transfer over a non-
linearly stretching sheet in the presence of a transverse magnetic field by taking into account viscous 
dissipation effects and heat source/sink parameter. From the numerical results and above discussions it can 
be found that  
1) The effect of m is to decrease the temperature profile ƒ  and profile θ a) pseudo plastic fluids (n=0.8) 
 b) Newtonian fluids (n=1) c) dilatent fluids (n=1.6). 

n/M 0.0 0.5 1 

0.8 1.1068 1.4646 1.7774 

1 1.0000 1.2247 1.4142 

1.6 0.979 1.1204 1.2389 
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2) The effect of increasing values of the magnetic parameter M is to decelerate the velocity profile ƒ . 
3) The effect of the temperature exponent parameter r and modified Prandtl number is to decrease the 

temperature profiles θ. 
4) The viscous dissipation effect is to increase the temperature profiles. 
5) The heat source/sink parameter reduces the temperature profiles for S<0 (sink) and increase the 

temperature profiles for S>0 (source) when compared with S=0. 
6) The effect of the power-law index parameter n is to increase the velocity profile ƒ  and reduces the 

temperature profiles θ. 
 
Nomenclature 
 
 A – constant  
 0B  – uniform magnetic field  

 b – stretching rate, positive constant  
 fC  – skin-friction  

 pc  – specific heat at constant pressure  

 cv  – kinematic viscosity  
 cE  – local Eckert number 

 ije  – strain tensor   

 f – dimensionless stream function  
 ( )h x  – heat transfer coefficient  
 K – consistency coefficient  
 k – thermal conductivity  
 nM  – magnetic parameter  

 m – velocity exponent parameter  
 Npex  – Peclet number   

 Nu x  – Nusselt number  

 n – power-law index  
 rP  – modified Prandtl number  

 p – pressure  
 sQ  – temperature-dependent volumetric rate of heat source  

 wq  – local heat flux at the sheet  

 Rex  – local Reynolds number  

 r – temperature exponent parameter  
 T – fluid temperature  
 ( )wT x  – temperature of the stretching sheet  

 T  – ambient temperature  

 ( )U x  – velocity of the stretching sheet  
 u – velocity in x direction  
 v – velocity in y-direction  
 x – horizontal distance  

  y – vertical distance  
   – thermal diffusivity  
   – heat source/sink parameter  
 ij  – Kronecker delta  

   – similarity variable  
   – dimensionless temperature  
 0  – magnetic permeability  



272  N.Kishan and P.Kavitha 

   – density  
   – electrical conductivity  
 xy  – shear stress  

   – stream function  
 
Subscripts  
  
 w  – condition at the stretching sheet  
   – condition at infinity  
 
Superscript  
 
 ' – differentiation with respect to η  
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