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Soret driven ferrothermoconvective instability in multi-component fluids has a wide range of applications in 
heat and mass transfer. This paper deals with the theoretical investigation of the effect of temperature dependent 
viscosity on a Soret driven ferrothermohaline convection heated from below and salted from above subjected to a 
transverse uniform magnetic field in the presence of a porous medium. The Brinkman model is used in the study. 
It is found that the stationary mode of instability is preferred. For a horizontal fluid layer contained between two 
free boundaries an exact solution is examined using the normal mode technique for a linear stability analysis. The 
effect of salinity has been included in magnetization and density of the fluid. The critical thermal magnetic 
Rayleigh number for the onset of instability is obtained numerically for sufficiently large values of the buoyancy 
magnetization parameter M1 using the method of numerical Galerkin technique. It is found that magnetization and 
permeability of the porous medium destabilize the system. The effect of temperature dependent viscosity 
stabilizes the system on the onset of convection.  
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1. Introduction 
 
 Magnetic fluids, also called ‘ferrofluids’, are electrically non-conducting colloidal suspensions of 
tiny particles of solid ferromagnetic material in a non-electrically conducting carrier fluid like water or 
heptanes, kerosene, hydrocarbon, etc. These fluids behave as a homogeneous continuum and exhibit a variety 
of interesting phenomena. Ferromagnetic fluids are not found in nature but are artificially synthesized. The 
viscosity of a magnetic nanofluid as a function of the applied magnetic field, direction of magnetic field with 
respect to the flow direction and temperature, is useful for endurable applications for magnetic inkjet 
printers, heat transfer, nanomotors, nanogeneratores, inertial dampers, switches, sensors, transformer cooling, 
loudspeaker, similar micro-and nanofluidic devices, magnetic targeted drug delivery, cancer treatment in 
biomedicine field, etc. (Odenbach and Thurm, 2012), (Berkovsky and Bastovoy, 1996) and (Gazeau et al., 
1997). 
 An introduction to the research on magnetic fluids has been given in the monograph by Rosensweig 
(1985), which reviews several applications of heat transfer through ferrofluids, such as enhanced convective 
cooling having a temperature dependent magnetic moment due to magnetization of the fluid. This 
magnetization is called ferroconvection, which is similar to Bénard convection (Chandrasekhar, 1985). 
Convective instability of ferromagnetic fluids has been predicted by Finlayson (1970). Schwab et al. (1983) 
investigated experimentally the Finlayson’s problem in the case of a strong magnetic field and detected the 
onset of convection by plotting the Nusselt number versus the Rayleigh number. Then, the critical Rayleigh 
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number corresponds to a discontinuity in the slope. Later, Stiles and Kagan (1990) examined the 
experimental problem reported by Schwab et al. (1983) and generalized Finlayson’s model assuming that 
under a strong magnetic field, the rotational viscosity augments the shear viscosity. Furthermore, 
Vaidyanathan et al., (1991) investigated the theoretically the convective instability of a ferromagnetic fluid 
in a porous medium of large permeability by use of the Brinkman model. This investigation has been done to 
the effect of temperature dependent viscosity by Ramanathan and Muchikel (2006) using Galerkin technique.  
 Suresh Govindan et al. (2012) made a numerical analysis on ferroconvection with temperature 
dependent viscosity and anisotropic porous medium. Nanjundappa et al. (2012) introduced the effect of 
temperature dependent viscosity on Marangoni-Bénard ferroconvection without a porous medium under 
microgravity conditions in a horizontal ferrofluid layer in the presence of a uniform vertical magnetic field. 
Moreover, this work has been analyzed to the effect magnetic field dependent viscosity in the absence of 
temperature dependent viscosity by Nanjundappa et al. (2010). They used the Rayleigh Ritz method with 
Chebyshev polynomials of second kind as trial function. The onset of buoyancy-driven convection in a 
ferromagnetic fluid in the presence of a porous medium was studied by Shivakumara et al. (2010). The 
thermorheological effect of magnetoconvection in fluids with weak electrical conductivity was studied 
numerically by Siddheshwar (2004). 
 The study of convection in two component ferrofluids will throw light on convective instability. This 
is referred to as a type of convection known as ferrothermohaline convection studied by Baines and Gill 
(1969). Vaidyanathan et al. (1995; 1997) investigated the presence and absence of a porous medium on 
ferrothermohaline. Here, they found that the salinity of a ferromagnetic fluid enabled the fluid to destabilize 
more when it is salted from above. A really interesting situation from both a geophysical and a mathematical 
viewpoint arises when the layer is simultaneously heated from below and salted from above. Sunil et al. 
(2011) considered the double-diffusive convection on ferromagnetic fluid with rotation and internal angular 
momentum.  
 Recently, Vaidyanathan et al. (2005) attempted to study the Soret effect due to ferrothermohaline 
convection of a sparse distribution. Further, the condition of a porous medium of ferroconvective instability 
of multi-component fluid heated from below and salted from above was analyzed by Sekar et al. (2006; 
2013) for isotropic and anisotropic models. The effect of rotation on thermohaline convection in a 
ferromagnetic fluid saturating an anisotropic porous medium with the Soret effect was obtained by Sekar et 
al. (2013a) and this investigation was carried out for magnetic field dependent viscosity by Sekar and Raju 
(2013).   
 In view of these investigations, it is attempted to analyze the effect of temperature dependent 
viscosity on the Soret driven ferrothermohaline convection in the presence of an isotropic porous medium of 
low permeability, subjected to a vertical magnetic field using the Brinkman model. In this investigation, the 
free boundaries are considered. The resulting eigen value problem is solved numerically using the Galerkin 
method. Besides, an analytical formula is obtained for the critical magnetic Rayleigh number by a regular 
perturbation method.  
 
2. Mathematical formulation 
 
 In this investigation, we consider an infinite spread horizontal layer of an Oberbeck-Boussinesq 
ferromagnetic fluid of thickness “d” saturating a sparsely distributed porous medium heated from below and 
salted from above. The temperature and salinity at the bottom and top surfaces are /z d 2   are 

/0T T 2   and /0S S 2  , respectively. Both the boundaries are assumed to be free and perfect 
conductors of heat and salt. This fluid layer is taken to be an isotropic porous medium and the fluid viscosity 
is assumed to be temperature-dependent in the following form (Ramanathan and Muchikel, 2006 and 
Siddheshwar, 2004) 
 

   ( )
2

a1T 1 T T        
                         (2.1) 
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where   is a small positive quantity. 
 The gravity field g = (0, 0, -g) and uniform vertical magnetic field intensity H = (0, 0, H0) pervade 
the system. Considering the Soret effect on the temperature gradient the mathematical equations governing 
the above investigation are as follows.     
 The continuity equation for an incompressible fluid is  
 

  0  q .      (2.2) 
  
 The corresponding momentum equation is  
 

  

    (T)
( )0

TrD
p T

Dt k

                
q

g HB q q q . (2.3) 

 
 The temperature equation for an incompressible ferromagnetic fluid is 
 

  

       , , ,
2

0 v H o 0 1v H v H
C T dT dt T T d dt K T             H M M H .

       

(2.4) 

 
 The conservation of mass flux equation is given by 
 

    2 2
0 S Tt S K S S T       q . (2.5) 

 
 The density equation of state for a Boussinesq two-component fluid is  
 

     0 0 S 0t1 T T S S         .                             (2.6) 

 
 Maxwell’s equations, simplified for a non-conducting fluid with no displacement currents, become 
 
   ,0  B                0  H                                                                      (2.7a,b) 
 
where the magnetic induction is given by  
 

   0 B M H .                                                                                  (2.8) 

 
 In general, the pressure of ferromagnetic fluid can distort an external magnetic field if a magnetic 
interaction (dipole-dipole) takes place, but this is negligible for small particle concentration, as is assumed 
here. We assume that the magnetization is aligned with the magnetic field, but allows a dependence on the 
magnitude of the magnetic field, temperature and salinity, so that  
 

  
 = , ,M H T S

H

H
M .                                                                             (2.9)   

 
 The magnetic equation of state is linearized about the magnetic field H0, an average temperature T0 

and an average salinity S0, to become  
 

       H .0 0 0 2 0M M H K T T K S S                               (2.10) 
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 Here H0 is the uniform magnetic field of the fluid layer when placed in an external magnetic field 

,ext
0HH k  k is a unit vector in the z–direction, | |, | |H M H M  and  , , .0 0 0 0M H T S           

 The basic state is assumed to be quiescent and is given by  
 
   ( , , ), , , ( ) ,b b 0 b 0 S 0 S St t t0 0 0 T T T z S S S z z 1 z z               q q  

   (2.11) 

   ( ), ( ) , ( )2 S 2 S
b b 0 b 0

t tK z K z K z K z
p p z H z H M z M

1 1 1 1

      
                   

k k                    

 
where k is the unit vector in the vertical direction, t  and S  are non-negative constants. 
 Moreover, the basic state is disturbed by an infinitesimal thermal perturbation. Let the component of 
the perturbed magnetization and the magnetic field be  , , ( )1 2 b 3M M M z M    and  , , ( ) ,1 2 b 3H H H z H  

respectively. The perturbed viscosity and temperature are taken as ( )b z    and ( ) ,bT z T   respectively. 

On linearization, and assuming   0tK d 1 H     and  2 S 0K d 1 H      and using the expressions for 

Hb and Mb in Eqs (2.11), Eqs (2.7)-(2.9) become 
 

    , for ,i i 0 0 iH M 1 M H H i 1 2        , 

   (2.12) 

  

 3 3 3 2 TH M 1 H K S S K K           , 

 

    , for ,i 0 0 0 iB 1 M H H i 1 2       , 

   (2.13) 

  

   3 0 0 0 0 3 0 2 0 T 0B M H 1 H K S S K K           . 

  
 Equation (2.7b) implies that ,  H  where   is the perturbed magnetic potential and using the 
analyses of Sekar et al., (2013; 2013a), the vertical component of the momentum equation can be written as     
 

  

     

    

    .

2
0 T2 2 2 2 2

0 0 1 0 S 1 1 1

2
0 2 S T 2 2 2 2 20 2 0 S

1 1 1 0

2
2 2 2 2

0 2 S 1 2

t
t t

t

b b b b

K 1 S
w g T g S K T

t z 1

KK 1 S KK K
T S S w

1 1 1

1 w
K w w 2 w

z k z z k z zz

                      
   

                  
     

                          

 

  

(2.14) 

 
 The modified Fourier heat conduction equation is  
 

   

 ,

2 2
2 0 0 0 2 0 S

0 v H 0 0 1 0
t

t
K T K K T

C K T K c w
t t z 1 1

                                     
 (2.15) 

 
where    , .0 0 v H 0 0C C K H      

 
 The salinity equation is 
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   .2 2

S S T
S

w K S S
t


     


     (2.16) 

 
 Using the analysis similar to Sekar et al. (2013) one gets 
 

  
( )

2
20
1 2 T2

0

M S
1 1 K K S K 0

H z z zz

     
              

 
 
(2.17) 

 

where      2 2 2 2 2
1 x y              and        .2 2 2 2

1 z      

 
3. Normal mode analysis method 
 
 Analyzing the small thermal disturbances into normal modes, we assume that the perturbation 
quantities are of the form  
 

        , , , ( , ), ( , ), ( , ), ( , ) exp x yw T S w z t T z t z t S z t i k x k y      

 

where 2 2
0 x yk k k   is the resultant wave number, kx is the wave number along the x direction and ky is the 

wave number along the y direction. 
 Following the normal mode analysis, the linearized perturbation dimensionless equations 
 

   

    

   

        
 

/ /

/ /

* * * *
*

* * *

*
* * * *

*
*

* * *,
*

2 2 1 2 1 2
1 1 T 1 5

21 2 2 2 1 2 1
1 5 T S 4 4 5

2
22 2 2 2 2 2 2

2 2

D a w a R M D 1 M 1 S T M M a R D
t

M M a R 1 S T D a w a R 1 M M M S

1 Vz
1 Vz D a w D a w 2V D a w

k
2Vz

4Vz D a Dw Dw
k



           

         


       

  

       (3.1)    

 

  

     /
r

*
P * * *,

* *
2 2 1 2

2 2 2 5
T

M D D a T aR 1 M M M w
t t

           
      (3.2) 

 

  

     //
r

*
P * * / *,

*
1 22 2 1 2 1 2 2

S 6 T 5 6 S
S

D a S aR M w S M M R R D a T
t


     


          (3.3) 

 

      /
* * * / *

1 22 2 1
3 T 5 6 SD M a 1 S DT M M R R DS 0                           (3.4) 

 
where the following non-dimensional parameters are introduced 
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  //

, ,

* , * , * , * ,
1 21 2

11
2 2

0 v H 0 v Ht t

1 K aRK aRwd t
w t T

C dd C K d

                         
 

 

  * , ,0
z

z a k d
d

       
/

,

, * , , * ,
*

1 2
S S

2
0 v H S 0

K aR k
D S S k

z C d d

  
           

 

 

  
   

 
 ,

, , ,
2 2

0 00 0
1 2 3

0 0 v H

t

t

1 M HK K T
M M M

1 g 1 C 1

  
  

        
 (3.5) 

 

  

 
,

r

, ,
,

, , , P ,

, ,

2
v H0 S 2 S S

4 5 6
0 S 1 1

4 4
0 v H 0 v H S S S

S 0 v H
1 S 1

t

t t

CK K K
M M M

1 g K K K

C gd C gd K
R R C

K K K

  
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    

       
         

       

 
where R  is the thermal Rayleigh number, SR  is the salinity Rayleigh number, Pr is the Prandtl number.  

 
4. Exact solution for free boundaries using Galerkin technique 
  
 Here the simplest boundary conditions chosen, namely free-free, isothermal with infinite magnetic 
susceptibility  in the perturbed field keep the problem analytically tractable and serve the purpose of 
providing a qualitative insight into the problem. The case of two free boundaries is of little physical interest, 
but it is mathematically important because one can derive an exact solution, whose properties guide our 
analysis. Thus the exact solution of the system subjected to the boundary conditions       
 

  * * * * *2w D w T D S 0             at        * /z 1 2          and         * / .z 1 2        (4.1) 
 

is written in the form 
 

  

* * *

* *

* ( ) cos *, * ( ) cos *, * ( ) cos *,

* ( ) cos *, * ( ) sin *.

t t t
1 1 1

t t
1 1

w Aw z e z T BT z e z S CS z e z

F
D F z e z z e z

  

 

     

       


      (4.2) 

 
 Substituting Eqs (4.2) in linearized perturbation dimensionless Eqs (3.1)-(3.4) and dropping asterisks 
for convenience, we get the following equations  
 

      

       
     

   

/

/ /

( ) ( )

( ) ( ) ( )

( ) ( ) ,

2 22 2 2 2 2 2
1 1

2 2 1 2
1 1 1 5 T 1

1 2 1 1 2
S 4 4 5 1 1 5 1

1 Vz k D a w z 1 Vz D a w z

1
2V D a 1 2zDw z 2vzDw z A aR 1 M 1 M 1 S T z B

k

aR 1 M M M S z C aR M 1 M D z F 0

       

            

      

 (4.3) 
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   /

r r( ) P ( ) P ( ) ,1 2 2 2
2 2 5 1 1 2 1aR 1 M M M w z A D a T z B M D z F 0           

      
(4.4) 

 

   

   
 

//

r

( ) / ( )

P ( ) ,

1 21 2 1 2 2
S 6 1 T 5 6 S 1

2 2
1

aR M w z A S M M R R D a T z B

D a S z C 0
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                       
(4.5) 

 

   
   / / /( ) ( ) ( ) ,1 2 2 1 2 1 1 2 2 2

S T 1 5 6 1 S 3 1R 1 S DT z B R M M DS z C R D a M z F 0       
       

(4.6)  

  
 For the existence of non-trivial solutions, the determinant of the coefficients of A, B, C and F must 
vanish. This determinant on simplification yields 
 

  
3 2

1 2 3 4T T T T 0        (4.7) 
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 For obtaining stationary instability, the time-dependent term T4 is equal to zero. From Eq.(4.7) it is 
easy to obtain the eigen value Rc. 
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above choice of trigonometry function tacitly implies the use of a higher order Galerkin method. For very 
large M1, one gets the results for the magnetic mechanism, and the critical thermomagnetic Rayleigh number 
for stationary mode is calculated using 
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5. Discussion of results 
  
 The linear stability analysis of Soret driven thermohaline convection in a ferromagnetic fluid layer 
heated from below and salted from above saturating a porous medium subjected to a transverse uniform 
magnetic field has been considered in the presence of temperature dependent viscosity by using the 
Brinkman model. Here the free-free boundary conditions are used. The present investigation is carried out 
through stationary instability. The small thermal perturbation technique is used and the normal mode 
technique is applied for the perturbation quantities.   
 Before we discuss the significant results of the system, we turn our attention to the possible range of 
values of various parameters arising in the study. The range of values of the temperature dependent viscosity 
parameter V is assumed from 0.1 to 0.5 (Ramanathan and Muchikel, 2006). The ratio of magnitude to 
gravitational force M1, is assumed to be 1000 (Finlayson, 1970). The range of salinity Rayleigh number RS is 
between -500 and 500 and Soret parameter ST ranges from -0.002 to 0.002 (Sekar et al., 2013). The 
Brinkman model has been used for the permeability k which ranges from 0.1 to 0.9 (Vaidyanathan et al., 
2005) and the non-buoyancy magnetization parameter M3 is taken from 5 to 25 (Sekar et al., 2013). For these 
type of fluids M2 will have a negligible value and hence taken to be zero. The Prandtl number Pr is taken to 
be 0.01 (Vaidyanathan et al., 2005) and the magnetic numbers M4, M5 and M6 are assumed to be 0.1 (Sekar et 
al., 2013 and Sekar and Raju, 2013). The ratio of mass transport to heat transport  is assumed from 0.03 to 
0.011 (Sekar et al., 2006).  
 Figure 1 presents the plots of the critical magnetic thermal Rayleigh number NC versus the non-
buoyancy magnetization parameter M3 for different values of the temperature dependent viscosity V, ST = 
 - 0.002, RS = - 500 and k = 0.1. It indicates that the non-buoyancy magnetization parameter M3 has a 
destabilizing effect on the system when both V and M3 are increased. This is shown by a fall in NC values. 
This is because variation in magnetization releases extra energy which adds up to the thermal energy to 
destabilize the system. 
 

 
 

Fig.1.  Marginal instability curve for variation of NC versus M3 for different values of the temperature 
dependent viscosity V. 

  
 In Figs 2a and b, the variation of the critical thermal magnetic Rayleigh number NC versus the 
temperature dependent viscosity V for different permeability of the porous medium k. Both figures exhibit a 
destabilizing behavior because the presence of a porous medium increases from 0.1 to 0.9, NC decreases. It is 
also observed from the figures that the increase in the pore size makes the fluid flow easy to cause 
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convection early. Figure 2a illustrates that as k increases, NC decreases for a negative range of RS and ST and 
this behavior can also be observed exactly in the positive range of RS and ST in Fig.2b. Therefore, Figs 2a and 
b illustrate the same destabilizing effect on the convective system.   
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Fig.2. (a) Marginal instability curve for variation of NC versus V for different values of the medium 

permeability k, ST = - 0.002, RS = - 500, .0 03   M3=5. (b) Marginal instability curve for variation of 
NC versus V for different values of the medium permeability k, ST = 0.002, RS = 500, .0 03  , M3 =5. 

 
 Figures 3a, b and c represent NC versus V for different values of RS, ST and k. It is observed from Figs 
3a and b that the temperature dependent viscosity V has a stabilizing effect on the system when V increases, 
NC increases and this stabilizing effect of V is rather pronounced. Further, both Figs 3a and b are analyzed for 
different porous medium k. When the values of k are 0.1 and 0.9 and negative value of ST, the system show 
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the same stabilizing behavior and there is no change in the convective system. Figure 3c illustrates NC versus 
V for the positive value of ST, due to the positive value of ST and k = 0.9, the system has a non-equilibrium 
position compared with Figs 3a and b. Also in Fig.3c, the destabilizing behavior is not much pronounced 
when V increases, NC decreases.  
 Figures 4a, b and c show the variation of NC versus the interdiffusion of heat and mass, namely the 
Soret effect ST for different V, RS and k. Figures 4a and b give as increase of ST, increase of NC. This leads to 
stabilizing effect is not much pronounced. Figure 4c show that as ST increases, NC decreases. It is seen that 
the system destabilizes.   
 It is observed from Fig.5 that the increase in the ratio of mass transport to the heat transport   shows 
a stabilizing behavior, for an increasing value of V. When positive range of RS and ST, the critical magnetic 
Rayleigh number NC has the equal value of the negative range of RS and ST. This is because the increase in 
mass transport adds up to the system to be top heavy.   
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Fig.3. (a) Marginal instability curve for variation of NC versus V for different values of the salinity Rayleigh 
number RS, ST  = - 0.002, M3=5, .0 03   and k = 0.1. (b) Marginal instability curve for variation of NC 
versus V for different values of the salinity Rayleigh number RS, ST = - 0.002, M3=5, .0 03   and k = 
0.9. (c) Marginal instability curve for variation of NC versus V for different values of the salinity 
Rayleigh number RS, ST = 0.002, M3=5, .0 03   and k = 0.9. 
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Fig.4. (a) Marginal instability curve for variation of NC versus ST for different values of the temperature 
dependent viscosity V, RS= - 500, M3=5, .0 03   and k = 0.1. (b) Marginal instability curve for 
variation of NC versus ST for different values of the temperature dependent viscosity V, RS = -500, M3 = 
5, .0 03   and k = 0.9. (c) Marginal instability curve for variation of NC versus ST for different values 
of the temperature dependent viscosity V, RS = 500, M3=5, .0 03   and k = 0.9. 
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Fig.5.  Marginal instability curve for variation of NC versus   for different values of the temperature 

dependent viscosity V, M3=5, k = 0.1, RS = -500, ST = -0.002 and RS= 500, ST = 0.002. 
  
6. Conclusion 
  
 Soret-driven ferro thermoconvective instability of a magnetic fluid layer heated from below and 
salted from above in the presence of a porous medium and temperature field dependent viscosity suspended 
to a transverse uniform magnetic field has been investigated using the Brinkman model. The computational 
Galerkin method is applied. In this investigation, we have analyzed the effect of various parameters such as 
the medium permeability, buoyancy magnetization parameter, non- buoyancy magnetization parameter, ratio 
of mass transport to heat transport, temperature dependent viscosity parameter, Soret coefficient, salinity 
Rayleigh number and wave number.  
 The non-buoyancy magnetization parameter M3 and the permeability of the porous medium k have a 
destabilizing influence on the convective system. The stabilizing effect is investigated for the temperature 
dependent viscosity parameter V in a very small value of salinity concentration and also the destabilizing 
behavior is analyzed for the temperature dependent viscosity parameter V in a large value of salinity 
concentration. 
 Thus from the above analysis, one can conclude that the magnetization parameter, temperature 
gradient and salinity gradient have a profound influence on the onset of convection in a porous medium.    
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Nomenclature 
 
 B – magnetic induction T 
 Cv,H – effective heat capacity at constant volume and magnetic field (kJ/m3K)  
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 D/Dt – convective derivative  1s D Dt t     q ] 

 d – thickness of the fluid layer m   
 g – gravitational acceleration (0, 0, -g) ms-2  
 H – magnetic field amp/m  
 K – mass diffusivity 

 K – pyromagnetic coefficient   ,0 0H T
M T        

 K1 – thermal diffusivity W/mK 

 K2 – salinity magnetic coefficient   ,0 0H T
M S        

 Ks – concentration diffusivity W/mkg 
 k – permeability of the porous medium  

 0k  – resultant wave number 2 2 1
0 x yk k k m    

 

 kx, ky  – wave number in the x and y direction m-1  
 M – magnetization Ampm-1  
 M0 – mean value of the magnetization at H = H0 and T = T0  
 P – hydrodynamic pressure (N/m2) 
 q – velocity of the ferrofluid (u, v, w) ms-1 
 S – solute concentration kg 
 ST – Soret coefficient  
 T – temperature K 
 T – time s 
 t  – coefficient of thermal expansion K-1 

 s  – analogous solvent coefficient of expansion K-1 

 t  – uniform temperature gradient Km-1 

 s  – uniform concentration gradient kgm-1 

 0  – magnetic permeability of vacuum 

 1  – reference viscosity at T = T0 

   – dynamic viscosity kgm-1s-2 
 0  – mean density of the clean fluid kgm-3 

   – density of the fluid kgm-3 
   – growth rate s-1 
   – viscous dissipation factor containing second order terms in velocity 
   – magnetic scalar potential Amp 
   – perturbation in temperature (K) 

   – magnetic susceptibility   ,0 0H T
M H      

 

   – vector different operator  ( / ) ( / ) ( / )x y z        i j k  
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